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We consider two parallel layers of dipolar ultracold Fermi gases at different temperatures and
calculate the heat transfer between them. The effective interactions describing screening and cor-
relation effects between the dipoles in a single layer are modeled within the Euler-Lagrange Fermi-
hypernetted chain approximation. The random-phase approximation is used for the interactions
across the layers. We investigate the amount of transferred power between the layers as a function
of the temperature difference. Energy transfer arises due to the long-range dipole-dipole interac-
tions. A simple thermal model is established to investigate the feasibility of using the contactless
sympathetic cooling of the ultracold polar atoms/molecules. Our calculations indicate that dipolar
heat transfer is effective for typical polar molecule experiments and may be utilized as a cooling

process.

PACS numbers: 37.10.Mn, 67.85.Lm

I. INTRODUCTION

In recent years, ultracold gases of polar atoms [1-7] and
molecules [8-12] with their long-range anisotropic inter-
actions have attracted a great deal of interest for applica-
tions ranging from quantum information science [13-15]
to condensed matter physics [16-21].

Dipolar interaction is the dominant long range inter-
action in ultracold systems, if the constituent particles
carry permanent electrical or magnetic dipoles. Both,
atomic species with magnetic dipoles and, more recently,
molecular gases with electrical dipoles have been re-
alized experimentally. The presence of a long range
and anisotropic interaction has a profound effect on the
physics of the systems, leading to novel phases and pre-
viously unexplored regimes [22-26].

In most ultracold gases, the dipolar interaction is
present together with the short range interactions arising
from low angular momentum scattering [27, 28]. Usu-
ally the latter is dominant and a Feshbach resonance is
needed to probe the regimes where dipolar effects are
prominent [27, [28]. For bosons, thermalization proceeds
through S-wave scattering and most cooling methods rely
on short range interactions. Cooling of spin polarized
fermions is more challenging as they do not interact in
the S-wave channel. To obtain degenerate spin polarized
fermi gas either spin mixtures or mixture with another
species is required during cooling. Dipolar interactions
offer novel cooling methods due to their long range and
anisotropic nature. Cooling schemes which rely on the
anisotropic nature of dipolar interaction have been ex-
perimentally demonstrated for both bosons and fermions.
Dipolar anisotropy connects different angular momentum
channels resulting in coupling between translational and
spin degrees of freedom which has been used for depo-
larization cooling [29], demagnetization cooling [30], and
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more recently spin distillation [31] for bosons. In ad-
dition, universal dipolar scattering which relies both on
the anisotropy and the long range of interaction has been
used to cool a single component Fermi gas to degener-
acy [32].

In this paper, we investigate the heat transfer between
components of a system purely due to the long range
nature of dipolar interactions. Specifically, we identify
the parameter regime for which dipolar forces provide ef-
fective thermal contact between two, otherwise isolated,
parts of the system. For this purpose, we use a model
system which consists of two parallel layers of dipolar
fermions separated by a distance d. The S-wave inter-
actions between spin-polarized fermions is zero and all
the energy transfer between the layers is due to dipolar
interactions. We calculate the rate of energy transfer be-
tween the layers when there is a temperature difference
between them. Furthermore, we also estimate the time
scale to reach the thermal equilibrium between the layers.
This time scale determines whether a cooling procedure
applied to only one layer can effectively cool the other
layer, providing sympathetic cooling without the adverse
effects of contact.

To identify the relevant parameter regimes, we first
investigate the length scales of the problem. The first
length scale is provided by the geometry we consider,
the distance between the layers d. The density of the
fermions in each layer n, or equivalently the average dis-
tance between two particles inside the same layer k;l
determines the inner dynamics of each layer through the
Fermi energy Er = h%k%/2m. A third length scale, ao,
measures the importance of the dipolar interaction. The
interaction potential between two dipolar particles has
the form of V() = [Caa(1 — 3cos®)] /(4mr3) where 6 is
the angle between the intermolecular displacement 7 and
the dipole orientation, and Cy,4 is the dipolar coupling
constant [28]. The corresponding length scale ag is de-
fined as ag = Cggm/4nh%. The system is characterized

by two dimensionless parameters (A and d), derived from
the above length scales. The coupling strength between
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the dipoles are governed across the layers by d= d/ay,
and within a layer by A = agkr, where kp = v/47n is the
Fermi wave number.

We consider two parallel layers of ultracold dipo-
lar Fermi gases without any tunneling between the
layers. We describe the correlation effects between
the dipoles in a single layer (intra-layer) using the
fluctuation-dissipation theorem and the static struc-
ture factor S(q) data obtained from the Euler-Lagrange
Fermi-hypernetted-chain (FHNC) approximation [33].
We adapt the random-phase approximation (RPA) to ac-
count for the interactions across the layers (inter-layer).
The energy transfer is calculated as a function of the
temperature difference between the layers and the other
parameters characterizing the system. We express our
results in terms of a thermal conductivity between the
layers for small temperature differences.

To gauge the effectiveness of thermal coupling between
the layers, we calculate the time scale to reach equilib-
rium for small temperature difference. Our calculations
indicate that the layers are strongly coupled when the dis-
tance between the layers d is within a few dipolar length
scales ag. The amount of transferred power decreases
rapidly as the well separation distance increases.

We study the system for a wide range of A and d at tem-
peratures near the Fermi temperature Tr and at lower
temperatures close to T' = 0.17TF. In the low temperature
regime although the heat conductivity decreases signifi-
cantly, the equilibration lifetime remains unaffected as
the specific heat in each layer also decreases.

Our calculations indicate that for dipolar thermal cou-
pling to be significant the two layers in the system must
be placed within a few ag of each other. This length scale
is of the order of tens of nanometers for magnetic dipolar
atoms. For instance, Dysprosium (Dy), the most mag-
netic atom in nature with a magnetic moment of 10up,
the value of the length scale is equal to ap = 20.8nm.
This value is much smaller than the typical trapping fea-
tures in ultracold atom experiments. However, the length
scale (ag) for ultracold polar molecules are of the order of
1075 m which is easily attainable in current experiments.

Ultracold polar molecules can be cooled by focusing
the cooling effort onto a subsystem which is isolated from
the rest of the cloud except for dipolar coupling. Such
a sympathetic cooling mechanism would avoid contact
between the actively cooled part of the system and the
rest of the gas. For example, if one of the layers in our
model is cooled evaporatively, the other layer will also be
cooled without losing any particles. We also studied our
system with a layer density difference to account for such
a scenario.

The paper is organized as follows: In the next sec-
tion we introduce our model in detail and describe our
approach. In Section III, we present the results of our
calculations in various parameter regimes. Section IV
contains the discussion and relevant parameters for ex-
periments. We conclude with a brief summary.

II. THE MODEL AND METHOD

In this study, two parallel layers of an ultracold dipolar
Fermi gas, separated by a distance d is considered, as
shown in Fig.[[l The intra-layer interaction V11 within a
single layer and the inter-layer interaction Vi2 across the
layers are given by

Vi1(r) = Vao(r) = Tr 3 (1)
and
- Cdd 7‘2 — 2d2
Via(r) = Ur (P PP (2)

where the indices 1 and 2 denote different layers and
r indicates the in-plane distance between dipoles. Cyq
is the dipole-dipole coupling constant, which is Cyqy =
pop? for magnetic dipole moments u, and Cyq = p*/eo
for electric dipole moments p. Here, pg is the vacuum
permeability, €¢ is the permittivity of free space. Note
that Vi1(r) and Vi2(r) are the bare (unscreened) dipole-
dipole interactions, respectively.
The Hamiltonian of the system is

h2
HZ—%Z(V%H—V%)

1
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where m is the mass of the particles and the sums are
carried out over the particles in each respective layer.

In order to describe the correlations and the result-
ing screened dipolar interaction within a layer, we follow
Abedinpour et al. [33]. The effective intra-layer interac-
tion is obtained by using the fluctuation-dissipation the-
orem and static approximation as

e(q){l 1},

Via(q) = (4)

2 [S%(a)  S3(a)
where €(q) = h%q?/2m is the single-particle energy. Here,
S(q) is the static structure factor obtained from the
Euler-Lagrange Fermi-hypernetted-chain (FHNC) ap-
proximation method [34, 35]. In addition, Sp(q) is the
static structure factor for a non-interacting system of
two-dimensional (spin-polarized) fermions. Neglecting
the correlation effects, we use the Fourier transform of
the bare inter-layer interaction

Via(q) = —%qexp(—qd) : (5)
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FIG. 1. Schematic view of the system. We consider two dipo-
lar Fermi gas layers with different densities at different tem-
peratures. Dipoles are oriented perpendicular to the layers
which are separated by a distance d.

A. Energy Transfer Rate

The energy transfer rate between two Fermi systems
has been studied in the context of electron systems within
the balance equation approach [36], the quantum kinetic
equation [37], and the non-equilibrium Green function
method [38]. Calculations for one- and two-dimensional
electron gases |39, [40] and graphene [41] have appeared.
We adapt the energy transfer rate formulation to our
double layer dipolar system characterized by layer tem-
peratures 7T; and drift velocities v; and express it as
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7312:—712/?w|W12(q,w,T17T2)|2
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Im x1(¢,w,T1) Im x2(q,w — w12, T2) ,

where np(z) = 1/(exp(z)—1) is the Bose-Einstein distri-
bution function and w12 = ¢(v1 —v2). In our calculations,
the drift velocities are taken to be v = vy = 0 consider-
ing the linear regime. Here, P;5 is the amount of power
transferred to layer 1 from layer 2 per unit area.

In the above, x;(g,w) is the finite temperature two-
dimensional Lindhard polarization function [42] for the
ith layer. Whs is the dynamically screened effective in-
teraction, defined by

Via(q)

W12(Q7W7T1,T2) = m s

(7)
in which the total dielectric function e(q,w,T7,Ts) is
given by the random phase approximation (RPA) [42]
as

The dimensionless interaction strength parameter is
defined as A = krag where ag indicates the character-
istic length scale, obtained by ag = Cyqgm/(4mh?). Here,
m is the mass of a dipole, kr = v/47mn the Fermi wave
number, n is the 2D density of a single layer.

In the sequel, we calculate the energy transfer rate un-
der two separate conditions: (a) symmetric case where
the densities of the layers are equal (ny = ns) and
(b) asymmetric case where the densities are different
(n1 # n2). In the symmetric case, dipolar gases confined
to both layers of the system have the same Fermi levels
(EFl = FEpy = Er and kpy = ko = kF) As a result,
the polarization functions, effective potential interactions
and the interaction strengths of the layers become equal
to each other, as x1 = x2, Vi1 = Vaa, A1 = Ao, respec-
tively.

In our discussions, we use the following dimensionless
quantities for the symmetric case,

= — Q=— d=d
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where Ep = h?k%/(2m) is the Fermi energy. Using these
dimensionless quantities, the intra-layer and the inter-
layer interactions can be written as

Vi1(Q) = Va2(Q) = (%) Q’ [8(22)2 - So(lQ)Q] ;
and ®)
(@) = - (35 ) 22Qexp (-AdQ) . (10)

The dimensionless energy transfer rate Pqs is

P12

Pio =

_ _2/dQQ dQ O [Wis(Q, 2, 1, 1) 2
S (11)
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With this scaling, unity dimensionless heat transfer

e(q,w, T1,T2) =[1 = Vi1(q)x1(q, w, T1)] [1 — V22(‘J)X2(Q=W=T2)ﬂ’12 = 1 means ((kFEF)Q/h) Watts of power is flowing
2

- [V12(q)] Xl(Qa W, Tl)XQ(Qa W, TQ) .
(8)
Note that our choice for Vi1(¢) amounts to including
intra-layer correlation effects.

per meter square of the system.

In the asymmetric case, the densities of the layers are
different from each other (n; # mz), ultracold dipolar
Fermi gases within the layers have distinct Fermi levels.
Accordingly the interaction strengths are not equal, \; #



Xo. The relation between the interaction strengths and
the densities of the layers is given by

n1 A1
=, /2= 12
" %) )\2 ’ ( )

We scale all the parameters by the Fermi energy and
Fermi wave number of the first layer, and use the follow-
ing relations in order to obtain the dimensionless forms
of the corresponding quantities;

q o hw
=r-—, Qo =71° —,
@ kr1 ? Er
ty = 12 kpTs G =r %
Ep1’ Ery

III. RESULTS

We calculate the dimensionless energy transfer rate be-
tween the layers separated by a distance d for two differ-
ent cases of the system, introduced in the previous sec-
tion. The amount of transferred energy is obtained as a
function of the temperature of one of the layers, to for
fixed tl.

A. Symmetric Case (n1 = n2)

The dimensionless energy transfer rate between the
layers is shown in Fig. [ as function of t3 = kpTs/EFR
for three different values of interaction strength (A =
1.0,2.0,4.0) and three different values of t; = 1.2,1.0,0.8.
The layer separation distance is d = d/ag = 1 for all
plots.

Energy is transferred from the hot layer to the cold
one, so P12 changes sign as the temperature ¢5 crosses t.
At thermal equilibrium there is no heat flow, furthermore
P15 is linear in temperature difference near this point.

As we increase the interaction strength A, the amount
of transferred power in dimensionless units decreases (see
Fig. @). This is due to the our definition of the scaled
variables. For constant density (kr), the dimensionless
interaction strength A = agkr increases with increasing
dipolar interaction. However the actual distance between
the layers d = dag increases with increasing dipolar in-
teraction as well. To sum up, although the dimensionless
layer-separation distance remains constant, the actual
distance d varies for different values of the interaction
strength A\. Note that in Fig. [2 as we increase the in-
teraction strength (A = 1.0,2.0,4.0) between the dipoles,
we use a fixed value of (d = 1), hence the actual distance
between the layers increases.

In order to isolate the effects of the dipole-dipole inter-
action, we investigate the system for two different values
of the interaction strength ag as the actual distance d is
kept constant, presented in Fig. Bl The systems we com-
pare have the following parameters: (\,d) = (1.0,1.0)
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FIG. 2. (Color online) The absolute value of the dimensionless
energy transfer rate |P12| as a function of the temperature to
of the second layer while the other temperature t; is kept
constant at three different values, indicated by solid lines (for
t1 = 1.2), dashed lines (for ¢ = 1.0), and dotted lines (for
t1 = 0.8). Here, the interaction strengths A = 1.0,2.0,4.0
respectively while the dimensionless well separation distance
is considered as d = 1.

and (A, d) = (2.0,0.5). Here, in spite of having differ-
ent scaled distances, the actual distance between the lay-
ers are the same. The energy transfer rate increases for
stronger dipole dipole interactions, as expected. The in-
crease is not quadratic in dipolar interaction (Cgq) as
might be expected from a simple interpretation of Eq. (6]).
While the rate due to the bare interaction would increase
quadratically, the dynamically screened interaction and
the polarization functions reduce this dependence.

We also evaluate the layer separation distance depen-
dence of the energy transfer rate for a constant value of
the interaction strength, as shown in Fig. @ Here, the
first layer is at the Fermi temperature. When the dis-
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FIG. 3. (Color online) The interaction strength A depen-
dence of the dimensionless energy transfer rate |Pi2| when
the actual distance between the layers is kept constant.
Here, the dashed and solid lines denote the systems with
(A, d) = (1.0,1.0) and (2.0, 0.5), respectively. The graphs are
obtained for different temperature values of the first layer as
t1 = 0.8,1.0, 1.2, respectively.

tance between the layers increases, the amount of trans-
ferred energy decreases. Once again the decrease is slower
than the bare interaction expectation due to screening ef-
fects.

Fermion cooling gets progressively hard due to Pauli
blocking as the temperature decreases. We investigated
the heat transfer in our model for lower temperatures
close to 0.17TFr. The results are presented in Fig.[Bl Here,
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FIG. 4. (Color online) The well separation distance d depen-
dence of the dimensionless energy transfer rate |P12| is pre-
sented for a constant value of interaction strength, A = 2.0.
Here, the temperature of the first layer is kept constant at
Fermi value. The dashed and solid lines indicate the well sep-
aration distances for d = 1.0 and d = 2.0, respectively. Note
that the insets show a zoomed-in view of the graphs for d = 2.

the interaction strength and the layer separation distance
are A = 1 and d = ag, respectively. As the temperature
is lowered, the amount of transferred power between the
layers decreases. Energy transfer between the dipoles in
the opposite layers occurs due to the scattering only if
there is an unoccupied final state. At low temperatures
lack of unoccupied final states into which atoms can scat-
ter suppresses heat transfer. The effect of Pauli blocking
is also observable in the other figures when one of the
layers is at very low temperatures.

B. Asymmetric Case (n1 # n2)

As mentioned in Section II, the dipolar gases confined
in layers with unequal densities (n; # ng) will have dif-
ferent Fermi levels. The relation equation between the
densities and the interaction strengths of the layers can
be calculated by r = y/ni/na = A1/Aa, as previously
defined in Eq.

The dimensionless energy transfer rates |P12| as a func-
tion of the temperature t9 of the second layer for different
ratios of the interaction strength r = 0.5,1.0, 2.0 are pre-
sented in Fig.[6l The direction of the energy flow changes
at thermal equilibrium points where t; = t5 for each plot.
The graph (Fig.[6b) obtained for » = 1 indicates the sym-
metric case of the system.

Here as we decrease the density of the second layer
which is the source of the heat flow in the (t2 > ¢)
regime, the amount of transferred power decreases as ex-
pected. This effect is apparent in the graphs obtained for
r = 0.5 and r = 2. For the low temperature values of ¢s,
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FIG. 5. (Color online) Low temperature limits of the system
while the temperature of the first layer is kept constant at
t1 = 0.1. The interaction strength of the system is considered
as A = 1 and the actual distance between the layers is equal
to the length scale. Notice that the heat transfer |Pia| is
an order of magnitude smaller than heat transfer obtained at

t=1 (Fig. Q).

once again the energy transfer is suppressed as a result
of Pauli blocking.

IV. DISCUSSION AND CONCLUSION

We calculate the power transferred per unit area be-
tween two parallel layers of ultracold dipolar gases which
are at different temperatures. The system is character-
ized by two different dimensionless parameters: (i) the
interaction strength A and (%) the layer separation dis-
tance d. In the previous section, we calculate the trans-
ferred power as a function of layer temperatures for a
wide range of parameters. In this section we aim to as-
certain if this contactless power transfer is an efficient
cooling method.

When the two layers have the same temperature, the
transferred power is zero. We can expand the transferred
power Py2(T},Ts) around this thermal equilibrium point
(Th = T3). As can be noticed in all of the plots, for a
large range of temperatures P;2 is well approximated by
a linear fit around this point,

Ii(Tz — Tl)

P12 =~ 7

. (13)
If the temperature difference between the layers is small
enough for this approximation to be valid heat transfer
is characterized by the slope x which is an effective heat
conductivity. If the vacuum between the layers were filled
with a material of heat conductivity x the transferred
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FIG. 6. (Color online) The dimensionless energy transfer
rate |Pi2| as a function of the temperature t2 of the sec-
ond layer for the different ratios of the interaction strengths
r = Ai/A2 = 0.5,1.0,2.0. Temperature of the first layer ¢1
is fixed at t; = 1.2 (solid lines), t1 = 1.0 (dashed lines), and
t1 = 0.8 (dotted lines). In these graphs, the dimensionless
layer separation distance of the system is considered as d=1
and the temperature of the other layer is constant.

power per unit area would be given by Eq.[I3). The
heat conductivity will depend on the thermal equilibrium
temperature around which the linear fit is carried out as
well as the other parameters of the system.

We obtained the numerical values for the effective ther-
mal conductivity for typical experimental parameters.
However, the amount of heat transferred does not single-
handedly determine the effectiveness of the cooling. A
more transparent quantity can be obtained by a simple
model of thermal dynamics between the layers.

We assume that one of the layers is kept at a constant
temperature (T7) by an efficient coupling to a reservoir,
and investigate the temperature of the second layer as a
function of time (7% = T5(t)). Energy flow from the first
layer to the second one changes the internal energy of the



second layer,

= —Py,. (14)

dt
Relating this change to the specific heat per unit area of
the Fermi gas we obtain

dE d d
—2 - CVETQ(t) =Cv— (Ty(t) = Ty) .

7 (15)

If the temperature difference is small enough, the heat
flow can be replaced by the linear approximation Eq.([L3]),
yielding

R(Iat) —Th)

Cv 3 (To(t) - T = - 220

(16)
In this linear regime, equilibrium is approached with a
time constant

d Cy

K

. (17)

For a cooling method to be effective the time constant 7
must be smaller than the typical trap lifetimes.

There are two distinct classes of dipolar ultracold sys-
tems, atoms with magnetic dipoles and molecules with
electric dipoles. The relevant length scales for atoms with
magnetic dipoles and polar molecules are substantially
different. We investigate the feasibility of using the con-
tactless sympathetic cooling method separately for both
systems.

Our calculations show that the transferred power de-
cays rapidly with the distance between the layers. For an
effective thermal coupling, the interlayer distance should
be within an order of magnitude of the dipolar length
scale ag. For atomic species with magnetic moments
u, the dipolar length scale is ag = pu?uom/(4mwh?). The
length scales of three typical atoms with strong magnetic
moments such as Cr, Er, Dy are calculated as 2.4nm,
10.5nm, 20.8nm, respectively. A dipolar length scale

agp ~ 10nm means that dipolar heat transfer is effec-
tive up to at most ~ 100nm. The typical feature size
of the potential in ultracold atom experiments is deter-
mined by the wavelength of the dominant transition, and
is generally a few hundred nanometers. Thus the cooling
scenario considered here is not directly applicable to mag-
netic atomic systems. It may still be possible to measure
a perturbative heat transfer between very close layers.

For typical polar molecules, with electric dipole mo-
ment p, the dipolar length scale ag = p?m/(4weoh?) is
much larger, close to a few micrometers. Thus, the cre-
ation of two layers with separation of the order of ag does
not present a significant experimental difficulty.

We calculate the dipolar length scale ag, the ther-
mal conductivity x and the time constant 7 for experi-
mentally realized, long-lived, chemically stable Feshbach
molecules, KRb [§], RbCs [9], NaK [10], LiCs [12]. Our
results are presented in Table [l for d = ag and temper-
atures close to the Fermi temperature for three typical
densities.

The most striking result in Table[llis that the time con-
stants for reaching the thermal equilibrium between the
layers separated by a few micrometres is as short as tens
of milliseconds. The heat transfer due to dipolar coupling
is efficient for polar molecules within typical experimen-
tal distances. The cooling of ultracold polar molecules is
challenging because of the extra degrees of freedom re-
lated to the rotation and vibration of the molecules. We
believe the efficiency of long range heat transfer can be
used to partially overcome this challenge. In particular,
any cooling method can be used on only one of the layers
of our model and the other layer will follow within a time
scale 7.

We also calculate the thermal conductivity x and the
time constant 7 at lower temperatures (T' ~ 0.1TF), as
shown in the Table [l While the thermal conductivity
decreases, the specific heat of the system also decreases
and time constants are not significantly affected. Dipolar
thermal coupling is also effective in this low temperature
regime.

TABLE I. Quantitative results for some ultracold polar molecules. Here, the dimensionless well separation distance is considered

as d = 1. The dipole moments of the molecules are taken from references [d, 9, 43, l44]. Note that 1D = 3.34 x 1073°C - m.
Here, the thermal conductivity, £ and the time constant, 7 are obtained near the thermal equilibrium with (¢1,t2 ~ 1.0)

KRb RbCs NaK LiCs
p (D) 0.57 1.3 2.72 5.5
ao (pm) 0.6 5.5 7.0 63.4
n (m~?) 2.21 x10M | 2.63 x10° | 1.62 x10° | 1.98 x107
A=1{k (W/mK) |[1.58 x107*[1.17 x107'7| 2.0 x107*7 |1.19 x1072°
7 (ms) 0.116 17.07 7.86 1452
n (m~?) 8.84 x10™ | 1.05 x10™ | 6.50 x10° | 7.92 x10”
A=2rk (W/mK) [5.73 x107*|4.25 x107'7|7.24 x107'7|4.33 x10~*°
7 (ms) 0.128 18.81 8.66 1600
n (m~?) 3.54 x10™ | 4.21 x10™ [ 2.60 x10™ | 3.17 x10°
A=4|k (W/mK) |1.17 x107'%|8.65 x107'7|1.47 x107'6|8.81 x10~*°
7 (ms) 0.251 36.95 17.02 3144




TABLE II. Heat transfer of some ultracold polar molecules at low temperatures (¢1,t2 ~ 0.1). The quantitative results are
obtained for the dimensionless systems parameters A =1 and d = 1.

KRb RbCs NaK LiCs
n (m~?) 2.21 x10™ | 2.63 x10° | 1.62 x10° | 1.98 x107
k (W/m K)|9.61 x107'%|7.12 x107¥{1.21 x107'7|7.25 x10™*
7 (ms) 0.063 9.23 4.25 785.5

Sympathetic cooling method fundamentally depends
on mixing two gases at different temperatures and en-
couraging the two to thermalize by collisions. This
method is used for the cooling of neutral atoms [45-47],
atomic ions [48] and molecular ions |49, 50]. Our calcula-
tions show that material contact between the components
of the system is not necessary for sympathetic cooling, if
the dipole dipole coupling is strong enough. Although we
study heat transfer between two layers of fermions here,
our calculations can be generalized to more complex sys-
tems. The heat transfer between the layers will be me-
diated by the dipolar coupling regardless of the internal

dynamics of each layer. Our results provide a foundation
for the future studies of cooling of ultracold dipolar gases
by using heat transfer through dipolar coupling.
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