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Viability of Arctan Model of f(R) Gravity for Late-time Cosmology
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f(R) modifications of Einstein’s gravity is an interesting possibility to explain the late time
acceleration of the Universe. In this work we explore the cosmological viability of one such f(R)
modification proposed in [1]. We show that the model violates fifth-force constraints. The model
is also plagued with the issue of curvature singularity in a spherically collapsing object, where the
effective scalar field reaches to the point of diverging scalar curvature.

I. INTRODUCTION

Last two decades have seen substantial improvement
in understanding the large-scale structures of the uni-
verse from high precision measurements of cosmic mi-
crowave background radiation and distance measure-
ments of Type Ia Supernovae [2]. The later observations
have led us to conclude that the universe we live in is
expanding acceleratingly in recent times. In order to
accommodate such evolution of the universe, the stan-
dard model of cosmology is thought with a cosmological
constant term, Λ. This is the simplest extension to the
Einstein-Hilbert action. Moreover, it is consistent with
all available cosmological data till date and is commonly
known as Λ cold dark matter (Λ-CDM) model. However,
it is very difficult to explain the origin of the required
value of the cosmological constant from any fundamental
physics [3].

As an alternative to the Λ-CDM model, modifica-
tions of gravity action by higher order curvature invari-
ant terms are considered. The most promising models
in this category are f(R) theories of gravity [4]. In an
f(R)-theory Lagrangian, the Ricci scalar R is replaced
by an analytical function f(R). Initially, the diverging
f(R) models at R = 0, e.g. inverse-power law models,
f(R) ∝ Rn with n < 0, were proposed for late-time accel-
eration [5]. But, the models were shown to be unviable
because of matter instability [6] and failure to provide
matter era before the accelerating phase [7]. Addition-
ally, the models also violate the fifth-force constraints by
carrying long range force provided by extra scalar d.o.f in
the theory [8]. All these above-mentioned issues severely
constrain the allowed form of f(R), and it has steered
the streamlining of f(R) models towards a new class of
models which are analytical at R = 0.

Various observational data are putting the possibility
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of a cosmological constant as the best fit dark energy
model. Following this line, many f(R) models are pro-
posed those behave as Λ-CDM model when the space-
time is sufficiently curved i.e. f → R − 2Λ for R ≫ Λ
and f(0) = 0 [1, 9–19]. The dynamical system analysis
of f(R) theories is carried out in categorising models ac-
cording to their fixed points [7]. Fifth force constraints
on these f(R) models are evaded using the chameleon
mechanism [20, 21].

One of the serious problems in these models is the
occurrence of singularities of various types. It was ob-
served that the minimum of the scalar field potential can
be near to the singularity point (R → ∞), and hence
it is likely that the scalar field hits the singularity if
the model parameters are not fine tuned appropriately
[22, 23]. Since the potential well becomes shallower in
the presence of matter density, the possibility of the oc-
currence of singularity increases in a matter distribution
[23]. The occurrence of curvature singularity can also be
seen in a collapsing astrophysical object. In this case,
the singularity is analysed for suitable f(R) models ap-
plied to dense objects undergoing contraction in the pres-
ence of linearly time-dependent collapsing mass density
[24–26]. It is seen that the singularity is reached in a
time that is much shorter than the cosmological time
scale. In [27], both static and dynamical analysis in the
contracting astrophysical object is carried out for a gen-
eral f(R) model proposed in [15]. It was found that the
models that satisfy the fifth-force constraints are typi-
cally plagued with the curvature singularity issue. It is
also noted that the issue of curvature singularity can be
eliminated by adding an extra curvature term to the La-
grangian [17, 22]. The finite-time singularity in modified
gravity is also described in [28, 29]. It is shown that the
past singularities may be prevented for a certain range
of parameters. These singularities may also occur in fu-
ture and can be avoided for fine-tuned initial conditions
[30, 31].

In this work, our primary aim is to examine the viabil-
ity of the model proposed in [1]. We will consider fifth-
force constraint analysis, and also investigate the exis-
tence of curvature singularity along the line of [27]. Addi-
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tionally, we also carry out the dynamical system analysis
for the model in pointing out the differences with [1]. In
the above work, other than the late-time cosmology, in-
flationary dynamics were also investigated. In our work,
we will concentrate only on the viability of this model for
late-time cosmology. This work is organised as follows:
Sec. II gives the general idea about the ArcTan model
and its de Sitter points. Sec. II A discusses the fixed
points of the model in understanding its proper cosmo-
logical evolution as a late time dark energy model. The
fifth-force constraints are analysed in Sec. III. The inves-
tigation of curvature singularity is carried out in Sec. IV,
with a conclusion in the final Sec. V.

II. f(R) = tan−1R MODEL

As a modified theory of gravity, f(R) theory is de-
scribed by the following action

S =

∫

d4x
√−g

[

1

2κ2
f(R) + Lm

]

, (1)

where f(R) is an arbitrary function of Ricci scalar R,
and it is written in the following form where we sepa-
rate out the usual Einstein Hilbert contribution: f(R) =
R+ F (R). Lm is the matter part of the Lagrangian. As
mentioned earlier, the function f(R) given in Eq. (1) sat-
isfies the condition f(0) = 0, and f(R) → R−2Λ at high
curvature so that the early-time cosmology is identical
to Λ-CDM cosmology and physics is modified at the in-
frared scales (latetime) only. By varying the action w.r.t.
gµν we obtain the field equation whose trace is given by

3�F,R(R)− 2F −R+RF,R(R) = κ2T , (2)

where a comma in the subscript denotes derivative w.r.t
to Ricci scalar. We note that non-vanishing �F,R term
gives an extra dynamical scalar degree of freedom φ =
F,R other than the usual graviton.
A new model of f(R) theory has been proposed in [1]

where the function F (R) is given by

F (R) = − b

β
tan−1(βR) , (3)

with β being positive and having inverse mass dimen-
sion two. Note that the model considered here in Eq.(3)
reduces to Λ-CDM model in high curvature regime i.e.
R ≫ 1/β. The first and second derivatives of f(R) w.r.t
R for this model are given by

f,R(R) = 1− b

1 + (βR)2
, f,RR(R) =

2bβ2R

(1 + (βR)2)
2 .

(4)
The condition for scalar field φ to be non-tachyonic
(f,RR > 0) requires b > 0, and the condition for graviton
to be of non-ghost nature (f,R > 0) requires

1 + (βR)2 > b, for Rd < R <∞, (5)

b x1 x2

0.93 0.7304 0.9199

0.94 0.5776 1.0821

0.95 0.4852 1.1815

0.96 0.4081 1.2624

0.97 0.3361 1.3334

0.98 0.2630 1.3980

0.99 0.1791 1.4582

TABLE I: de Sitter points for different values of b.

with b > 0. We thus take 0 < b < 1 for all following con-
siderations. Here, Rd is the constant curvature solution
of Eq. (2) for vacuum, and can be obtained by solving
the following condition [1]

−bRd
1 + (βRd)2

−Rd +
2b

β
tan−1(βRd) = 0. (6)

Note that fixing the value of βRd in Eq. (6), one can fix
the value of b. Other than the trivial solution of R0 =
0 corresponding to the Minkowski space-time, there are
two solutions of Eq. (6), of which one is an unstable de

Sitter point x1 = βR
(1)
d and another is a stable de Sitter

point x2 = βR
(2)
d . If a de Sitter point Rd satisfies the

condition F,R(Rd)/F,RR(Rd) > Rd, then it is stable and
can describe primordial and the present epoch dominated
by vacuum energy. For b < 0.93 the Eq. (6) has only
trivial solution R0 = 0. All the de Sitter points for the
allowed values of b are summarised in Table. I.

A. Viability as a Dark Energy Model

Any f(R) modification of late-time cosmology should
give rise to accelerating expansion at the present epoch
preceded by a matter dominated era. A general dy-
namical analysis of f(R) theory is carried out in [7],
and cosmological viability conditions are derived. The
field equations are rewritten in terms of a set of first
order autonomous differential equations for dimension-
less variables y1 = − ˙f,R/Hf,R, y2 = −f/6f,RH2, and
y3 = R/6H2, where following quantities were defined

m ≡ Rf,RR
f,R

=
2bx2

(1 + x2)(1 − b+ x2)
, (7)

r ≡ −Rf,R
f

= − x(1 − b+ x2)

(1 + x2)(x − b arctan(x))
=
y3
y2
. (8)

Here, x ≡ βR. There are six fixed points characterised by
matter density Ωm(m) and weff (m) = −1− 2Ḣ/(3H2).
The point P5 and P6 fall on the line m(r) = −r− 1, and
the Λ-CDM cosmological evolution is denoted by m = 0
line. The point P5(r ≃ −1,m ≃ +0) corresponds to
matter dominated era with weff ≃ 0. The points P1(r =
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FIG. 1: Trajectory in the m − r plane for b = 0.99. Fixed
points are marked with blue dots.

−2, 0 < m ≤ 1) and P6(m = −r − 1, (
√
3 − 1)/2 <

m < 1) both correspond to accelerating expansion of
the Universe, where the former one is a de Sitter point.
Therefore, all viable dark energy models fall into two
classes [7]:
Class II: Models that connect P5 to P1, Class IV: Models
that connect P5 to P6. For a particular model, m can be
plotted as a function of r, and its cosmological viability
can be tested.
Dynamical analysis and stability of critical points for

the model of Eq. (3) have been studied in [1]. Here,
we reanalyse the stability of all the critical points. The
m vs r plot is shown in Fig.1 for b = 0.99, and all the
critical points are marked. One important characteris-
tic of this model compared to many previously analysed
model is that the plot is multivalued. The upper and
lower branch is separated by the line m = −r− 1. As we
move clockwise along the curve the scalar curvature R
decreases with point P5(r ∼ −1,m ≃ +0) corresponding
to both small and high curvature limits.
The intersection of m(r) curve with r = −2 line

gives the de Sitter points P1. We have two P1 points
at x = 0.1791 and x = 1.4582 for b = 0.99. The
stability condition for the stable de Sitter point is at
r = −2, 0 < m ≤ 1. The de Sitter point x = 0.1791
belongs to the upper branch of the curve. Since, at this
de Sitter point, m(r = −2) > 1, it is an unstable point.
The point x = 1.4582 corresponding to lower branch of
the curve is a stable de Sitter point.
The points P5 and P6 can be located at the intersec-

tions of the m(r) (blue) curve with m = −r − 1 (red)
line. The point P6 is located at m ∼ 1.54 and r ≃ −2.54
with x ≃ 0.48. As m(r ≃ −2.54) > 1, the point P6 is
an unstable point. Point P5 represents the saddle matter
era. The condition for P5 to exist is m(r = −1) = 0. It is
shown in [1] that the point P5 is situated at x = βR ∼ 0.
But, saddle matter point has to be at higher curvature
than the de Sitter point P1 to explain the cosmic his-

tory correctly. Moreover, dm/dr at P5 has to be greater
than −1 for the existence of acceptable saddle matter era.
From the definitions of m and r and Eq.(3), one can ob-
tain the expression of m′(r) [1]. Taking x → 0 limit one
can find that m′(r = −1) → −3 < −1. Thus the point
P5 with x = 0 is not an acceptable point being unstable
to its perturbations. On the other hand, in the limit of
x ≫ 1 i.e. R ≫ 1/β, r goes to −1 with m approaching
zero. One can find that m′(r = −1) → −0.0025 > −1.
Thus, in the large curvature limit the point P5 is stable
under perturbations. In conclusion, the model of Eq. (3)
gives saddle matter era at very large value of curvature
and the Universe moves from P5 to P1 (in the bottom
branch) in its cosmological evolution. According to the
original reference of [7], the model belongs to the Class
II category of f(R) models.

III. LOCAL GRAVITY CONSTRAINT

We have seen in the previous section that when cos-
mological evolution happens from P5 to P1 via the lower
branch of Fig. 1, the present dark energy dominated
epoch is preceded by the ordinary matter dominated era.
But the form of f(R) should not spoil the experimentally
verified results of General Relativity at local scales. The
fifth force originated by an extra scalar degree of freedom
in an f(R) theory must be attenuated on local gravita-
tional systems like earth and solar system so that the
theory can evade the local gravity tests. In the Einstein
frame, the scalar field ψ (corresponding to φ in Jordon
frame) is a chameleon-like field which couples to the mat-
ter in such a way that the effective mass of the scalar field
depends on the local matter density [20].
In the Einstein frame, the action can be rewritten as

S =

∫

d4x
√

−g̃
[

R̃

2κ2
− (∇̃ψ)2

2
− VE(ψ) + Lm(g̃µνe

− 2
√

6
κψ

)

]

,

(9)
where all quantities having tilde are defined in the Ein-
stein frame. The scalar field ψ for the model of Eq. (3), in
the high curvature regime (where R ≫ 1

β
and F,R ≪ 1)

is given by

ψ =

√

3

2κ2
ln f,R =

√

3

2κ2
ln(1 + F,R) ≈

√

3

2κ2
F,R.

(10)
The potential VE(ψ) is given by

VE(ψ) =
Rf,R(R)− f(R)

2κ2f2
,R(R)

∣

∣

∣

∣

∣

R=R(ψ)

= (1 + (βR)2)×

[

(

1 + (βR)2
)

b
β
tan−1(βR)− bR

]

2κ2 [1− b + (βR)2]2

∣

∣

∣

∣

∣

∣

R=R(ψ)

,(11)

where R = R(ψ) needs to be substituted by inverting
Eq. (10).
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Let us consider a spherically symmetric body with ra-
dius r̃c. The effective potential Veff is defined by

Veff(ψ) = V (ψ) + e
− 2

√

6
κψ
ρ∗ , (12)

where ρ∗ is a conserved quantity in the Einstein frame.
We assume that the spherically symmetric body has a
constant density ρ∗ = ρin inside the body (r̃ < r̃c) and
ρ∗ = ρout(≪ ρin) outside (r̃ > r̃c). ψin and ψout are the
values of the field at the minima of the effective potential
Veff inside and outside the object respectively. The thin
shell parameter is given by [20]

δr̃c
r̃c

= −ψout − ψin√
6Φc

, (13)

where Φc is the gravitational potential of the test body
(Sun/Earth). This shows that the only thin shell having
width δr̃c around the surface of the object contributes to
the field outside the object thus resulting into the sup-
pression of the fifth force on the surface of the test body.
Since |ψout| ≫ |ψin|, the above equation reduces for our
case to

|ψout| ≃
√
6Φc

δr̃c
r̃c
. (14)

To evade the local gravity tests, the right hand side of
the above equation should be [21, 32]

.

{

5.97× 10−11 (Solar system test),

3.43× 10−15 (Equivalence Principle test).
(15)

Using Rout = κρout, from Eq.(10) and Eq.(12) we obtain

|ψout| ≈
√
6

2κ

b

(βκρout)2
=

√
6

2κ

b

((x2/R
(2)
d )κρout)2

. (16)

In the previous section, we have found that there exists
stable de Sitter points only for 0.93 6 b < 1. For an
example let us consider b = 0.97 which has a stable de

Sitter point at x2 = βR
(2)
d = 1.3334. From the fact

that the energy density of the baryonic/dark matter in
our galaxy ρout is ∼ 10−24g/cm3 and the curvature at
the de Sitter minimum is roughly of the order of ρc ≃
10−29g/cm3, |ψout| comes out to be

|ψout| ≈ 6.682× 10−11 . (17)

Since |ψout| is large compared to the required values given
in Eq.(15), we can say that this model does not evade
the local gravity constraints for b = 0.97. We can get the
same result for all the values of b in the acceptable range
given in Table I. It can be seen from Eq. (6) that b is
not independent but varies as the value of βRd varies. In

Fig. 2 we show |ψout| with respect to x2(= βR
(2)
d ). It is

clearly seen that |ψout| is greater than 0.5× 10−11. From
this result, one can draw the conclusion that the model
given by Eq. (3) hardly satisfies the Solar System con-
straint and does not satisfy Equivalence Principle con-
straint.

FIG. 2: |ψout| vs. βR
(2)
d

.

IV. CURVATURE SINGULARITY IN ARCTAN

MODEL

In this section, we will analyse the behaviour of the
effective scalar degree of freedom in a system of collapsing
mass density. We will show that in finite time, the field
evolves to a point where the Ricci scalar diverges.
From Eq. (2), we have seen that an f(R) theory has

an extra scalar degree of freedom φ = F,R, compared to
General Relativity. The associated dynamics of the field
is controlled by Eq.(2), and can be rewritten as

�φ =
dVJ
dφ

+
κ2

3
T, (18)

where

dVJ
dφ

=
1

3
(R+ 2F −RF,R). (19)

The Eq. (18) corresponds to an oscillator where the
energy-momentum part behaves as a force term. We pre-
fer to work in the Jordan frame since it is more conve-
nient to examine the issue of curvature singularity in the
Jordan frame than in the Einstein frame.
The oscillations of the scalar field φ are governed by

the potential VJ , and the form of VJ depends on the
function f(R) in a given model. Inverting the relation
φ = F,R to write the Ricci scalar R in terms of φ, and
integrating Eq. (19) w.r.t. φ, we obtain the form of the
potential VJ . In vacuum, the field φ oscillates around the
minimum φmin of the potential which is also a de Sitter
point [27]. Cosmological evolution happens around this
point. There is also a point φsing where Ricci scalar
diverges R → ∞, and it is finite field distance away from
the minimum φmin. While the scalar field φ oscillates
around φmin, it is energetically possible for the field to hit
the singularity if the potential difference between φmin
and φsing is finite.
We first analyse whether the curvature singularity

point exists in the model of Eq. (3), and secondly we
investigate the evolution of the Ricci scalar in a collaps-
ing object whose energy density is linearly growing. In
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presence of matter-energy density, the oscillations of the

field φ are governed by the effective potential V effJ . In
this case, the Eqns.(18) and (19) can be rewitten as

�φ =
∂V effJ

∂φ
, (20)

∂V effJ

∂φ
=

1

3
(R + 2F −RF,R + κ2T ). (21)

In fact, the minimum of the potential V effJ shifts from
the de Sitter point, and moves closer to the curvature sin-
gularity point. Thus the effects of matter are necessary
to be investigated even when a model is well behaved in
vacuum [23, 27].
Let us first examine the profile of the potential VJ for

vacuum i.e, κ2T = 0. For our model, the scalar field φ is
given by

φ = − b

1 + x2
. (22)

Integrating Eq. (19) w.r.t. φ, we obtain the potential in
terms of φ as

βVJ = −φ
2
√

−1− b/φ

6
+

(4 + 3b)φ
√

−1− b/φ

12

−2b

3

(

1

8
(−4 + 3b) + φ

)

tan−1(
√

−1− b/φ) . (23)

From Eq. (22), it is clear that as φ→ 0, x→ ∞, leading
to a curvature singularity.
We now probe the height of the potential barrier be-

tween the de Sitter minimum φmin and the singular point
φsing . In the region between φmin and φsing , −b/φ varies
from 1+(βRd)

2 to ∞, and therefore we can take the limit
−b/φ ≫ 1 for this region in Eq. (23). It can be easily
seen that the third term of the potential in Eq.(23) dom-
inates over other terms in this limit, and the Eq. (23) can
be rewritten as

βVJ = − b

12
(−4 + 3b)tan−1

(

√

−b/φ
)

. (24)

Since tan−1(
√

−b/φ) goes to a finite constant value for

large
√

−b/φ, we have βVJ ∝ b. We thus conclude that
the height of the potential barrier is finite and propor-
tional to the value of b. This makes the model (3) vul-
nerable to curvature singularity. In Fig. [3], potential
βVJ vs. φ has been plotted for different values of the
parameter b. φ = 0 corresponds to the curvature singu-
larity point where curvature R diverges to infinity. The
de Sitter points are marked by “∗” in the plot. It can be
seen that the de Sitter points for larger values of b are
at a greater depth from the singularity causing the lesser
probability of scalar field φ reaching singularity.
To make our analysis more quantitative we need to

solve the equation of motion and confirm that curvature

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1  0

βV
J

φ

b=0.93
b=0.97

b=1.0

FIG. 3: βVJ vs. φ for different values of parameter b. The de
Sitter points are marked by ∗ in the plot.

scalar R indeed diverges. For this, we study the issue
in an astro-physical object like galactic cloud of dust
which collapses under its own gravity. Acknowledging
the fact that its density increases with time, the energy-
momentum tensor for such a system can be empirically
taken as

T = −κ2T0(1 + t/tch). (25)

Here, tch is the characteristic time of the collapsing
object. The value of typical characteristic time for a
collapsing galactic cloud is tch ∼ 1.34 × 1015sec [27].
Though the above form of T is not exact, it can give
qualitatively correct scenario, provided that the contrac-
tion is slow enough. Since the density of dust cloud,
ρm = 10−24g/cm3 is much greater than the average den-
sity of the universe i.e. ρcrit = 10−29g/cm3, we can take
the limit R ≫ 1/β in Eq. (2). Nevertheless the astro-
physical density ρm is low enough to consider the back-
ground metric as a Minkowski metric [26]. Therefore, we
can replace covariant derivatives with partial derivatives
in Eq. (2). Moreover, spatial derivatives are also ignored
because of the presumed homogeneity and isotropy.
Considering new variables y = κ2T0/R and τ = t/tch,

the equation of motion can be obtained in terms of y and
τ as

y′′ +
y′

2

y
+ τ2chy

−1

[

1

3

(

1 +
τ

τch

)

− y−1

3
+

2

3α
tan−1(αy−1)− by

3α2

]

= 0 , (26)

where α = βκ2T0, τch =
√

α3/2bβ tch, and prime denotes
derivative w.r.t. τ . We solve the above equation and
inquire what happens to y(τ) within characteristic time
as the object collapses. Here, α ∼ ρm/ρcrit ∼ 105 and β
is average curvature of the universe at present time and
its numerical value is given by β = 1/t2U , where tU is the
age of the universe.
To solve Eq. (26), we take y′(0) = 0 and y(0) = 1

as initial conditions. The solutions of Eq. (26) are plot-
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FIG. 4: Oscillations of y = κ2T0/R vs. t/tch.

ted in Fig. [4] for b = 0.93, 0.97 and 1.0. One can no-
tice that R → ∞ corresponds to y → 0. The Fig. [4]
clearly shows that the oscillations of y gradually in-
creases and after a finite time it reaches to zero result-
ing into curvature singularity. It can be seen that y
becomes zero sooner for smaller b, and later for higher
values of b. This is consistent with what we obtained
by our previous static analysis by looking at the poten-
tial. From our numerical solutions of Eq. (26), we obtain
tsing = 0.032×1015, 0.033×1015 and 0.035×1015 sec for
b = 0.93, 0.97 and 1.0 respectively. Thus, we find that
the collapsing object encounters the curvature singular-
ity within time much smaller than the cosmological time
scale.

V. CONCLUSIONS

In this paper, we investigate cosmological viability of a
model proposed in [1] where f(R) = tan−1R. We inves-
tigate the fifth force constraint and show that it immedi-

ately violates the observational tests. Following the line
of [27], the issue of curvature singularity is investigated
in the Jordan frame.

To check the cosmological viability of the model, we do
fixed point analysis and point out some differences with
the results found in [1]. The stable fixed point P6 which
is responsible to give rise to the accelerated expansion is
not present in this model. We find the stable fixed point
P5 at very large value of the curvature. The point P5

corresponds to a saddle matter era which is at curvature
higher than the de Sitter era given by P1. We also exam-
ine the viability of the model at local gravity scales by
putting fifth force constraint through chameleon mecha-
nism given in [20].

We find out that in the field space there exists a singu-
larity point where the curvature scalar diverges to infin-
ity. The potential barrier between the de Sitter minimum
and the singularity point is finite for all allowed values of
the parameter b. We have considered the evolution of the
scalar curvature in a spherically collapsing object. The
numerical solution of the Eq. (26) is plotted in Fig. 4.
From the plot, it is evident that the time taken to reach
the singularity is finite and much less than the age of the
universe.

In conclusion, the model of Eq .(3) is plagued with the
issue of fatal curvature singularity. Additionally, we also
have found that the model does not satisfy the fifth force
constraint, and therefore it is not a viable model for the
late time Universe showing acceleration.
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