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ABSTRACT

The evolved, massive highly eccentric binary system, η Car, underwent a peri-

astron passage in the summer of 2014. We obtained two coordinated X-ray obser-

vations with XMM-Newton and NuSTAR during the elevated X-ray flux state and

just before the X-ray minimum flux state around this passage. These NuSTAR

observations clearly detected X-ray emission associated with η Car extending up
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to ∼50 keV for the first time. The NuSTAR spectrum above 10 keV can be fit

with the bremsstrahlung tail from a kT ∼6 keV plasma. This temperature is

∆kT ∼2 keV higher than those measured from the iron K emission line complex,

if the shocked gas is in collisional ionization equilibrium. This result may suggest

that the companion star’s pre-shock wind velocity is underestimated. The NuS-

TAR observation near the X-ray minimum state showed a gradual decline in the

X-ray emission by 40% at energies above 5 keV in a day, the largest rate of change

of the X-ray flux yet observed in individual η Car observations. The column den-

sity to the hardest emission component, NH ∼1024 H cm−2, marked one of the

highest values ever observed for η Car, strongly suggesting increased obscuration

of the wind-wind colliding X-ray emission by the thick primary stellar wind prior

to superior conjunction. Neither observation detected the power-law component

in the extremely hard band that INTEGRAL and Suzaku observed prior to 2011.

If the non-detection by NuSTAR is caused by absorption, the power-law source

must be small and located very near the WWC apex. Alternatively, it may be

that the power-law source is not related to either η Car or the GeV γ-ray source.

Subject headings: Stars: individual (η Car) — stars: early-type — stars: winds,

outflows — binaries: general — X-rays: stars

1. Introduction

Massive binary systems drive shock plasma heating via the collision of winds from two

stars (wind-wind collision: WWC). With typical (pre-shock) wind speeds of ≥ 1000 km s−1,

temperatures can reach as high as several tens of millions of Kelvin. X-ray emission from

these stable shocks provides important tests of shock physics, and multiple X-ray observations

of such systems have been performed for decades (e.g., Corcoran et al. 2001; Skinner et al.

2001; Pollock et al. 2005; Zhekov & Park 2010). While the spectrum below 10 keV is com-

plicated by discrete line emission and absorption components, the X-ray spectrum above

10 keV is relatively simple. This high-energy emission therefore provides important clues on

the condition of the maximum thermalized plasma where the winds collide head-on, while

also providing important information about particle acceleration through the shock. This in-

formation also helps us understand the wind and stellar properties, which can be difficult to

constrain from optical or UV observations for stars that are heavily obscured by interstellar

and circumstellar matter.

Eta Carinae (d ∼2.3 kpc, Smith 2006) is one of the most massive stars in our Galaxy

with an initial mass of &100 M⊙ (Hillier et al. 2001). After the giant eruption of the 1840s,
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the star exhibited extreme mass loss indicating that it may be near the end of its lifetime.

The star itself cannot be seen directly at most wavelengths due to an optically-thick stel-

lar wind (Ṁ ∼8.5×10−4M⊙ yr−1, Groh et al. 2012), but periodic variations over nearly all

wavelength bands revealed the presence of a binary system, with a highly eccentric (e ∼0.9)

5.54 year orbit (Damineli et al. 1997; Corcoran 2005; Damineli et al. 2008). The collision

of the wind from the more luminous primary and the secondary star produces plasma that

provides a luminous source of X-rays in the system. Since the primary star drives a dense,

slow (V ∼ 420 km s−1, Groh et al. 2012) wind, the companion must have a very fast

wind of ∼3000 km s−1 in order for the WWC to produce the observed hot X-ray plasmas

(Pittard & Corcoran 2002). The unseen companion should be, therefore, a massive O star

or a Wolf-Rayet star (Verner et al. 2005; Parkin et al. 2009; Mehner et al. 2010).

The WWC X-ray emission has been monitored intensively for 4 orbital cycles since 1996

(Corcoran et al. 2010, Corcoran et al., 2015 in prep.). In every cycle, the observed X-ray

emission increased dramatically by a factor of 3 toward periastron, then suddenly declined to

a minimum for a few months. This X-ray minimum has two distinct phases (Hamaguchi et al.

2007, see Figure 1). The first “deep X-ray minimum” phase lasts approximately 3 weeks.

During this time, the WWC X-ray emission totally disappears and residual emission from the

central point source — Central Constant Emission: CCE, (Hamaguchi et al. 2007, 2014a)

— plus reflection of the WWC X-ray emission at the surrounding bipolar nebula — X-ray

Homunculus Nebula: XHN (Corcoran et al. 2004) — is observed between 1−10 keV. The

following “shallow X-ray minimum” is defined by a three-fold increase in X-ray emission. It

has been suggested that the deep minimum is produced by an eclipse of the WWC X-ray

plasma by the optically thick primary wind, while the shallow minimum is produced by the

residual X-ray activity across periastron.

Extremely high energy X-rays near η Car have been observed previously. The INTE-

GRAL observatory detected a point-like source around η Car in the 22−100 keV band in four

pointed observations between 0.0. φorb .0.4 (Leyder et al. 2008, 2010). The Suzaku obser-

vatory confirmed the presence of extremely high energy radiation in the 15−40 keV band

from the direction of η Car (Sekiguchi et al. 2009). Since no apparent high energy source

other than η Car has been found within the 2.4′ INTEGRAL error circle (Leyder et al. 2010),

η Car has been considered as the best candidate of the counterpart. This emission did not

vary remarkably throughout an entire single orbital cycle between 2005−2011, suggesting

little connection to the WWC thermal X-ray activity (Hamaguchi et al. 2014b).

These extremely hard X-rays are suspected to originate from the γ-ray source in the

0.1−100 GeV band near η Car, which was discovered by the AGILE and Fermi γ-ray obser-

vatories (Tavani et al. 2009; Abdo et al. 2010). Again, η Car is the only known high energy
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source within the error circle, while the emission apparently varies slowly with the η Car’s

orbital period (Reitberger et al. 2015). The spectrum shows two components, which may

originate from stellar UV photons up-scattered by Compton recoil of GeV electrons that are

accelerated by the 1st-order Fermi mechanism at the WWC shocks, or pion decay of TeV

protons accelerated by the same mechanism and collided with surrounding wind material, or

both (Abdo et al. 2010; Farnier et al. 2011; Ohm et al. 2015). This source was not detected

in the very high-energy γ-ray (470 GeV−9 TeV) band with the HESS observatory, suggestive

of a spectral cut-off below 1 TeV (HESS Collaboration et al. 2012).

In this paper, we present two joint broadband X-ray observations of η Car with XMM-

Newton and NuSTAR at key orbital phases around periastron, prior to the start of the deep

X-ray minimum. XMM-Newton can obtain moderate resolution X-ray spectra below 10 keV

including key spectral diagnostics like the Fe K emission line complex and the absorption

structure of the Fe K edge, while NuSTAR can obtain direct imaging spectra in the hard

X-ray band extending beyond 10 keV. Because NuSTAR is the first focusing X-ray telescope

above 10 keV, it also allows us to determine a more accurate location of the extremely hard

X-ray source. Using these observations, we address some of the fundamental questions about

the origin of the hard X-ray emission from η Car.

2. Observations

In the summer of 2014, we observed η Car with XMM-Newton and NuSTAR simulta-

neously at two epochs around periastron (Table 1). The first observation started on June 6

when η Car was about to reach the X-ray maximum (Figure 1). The X-ray flux had already

increased by a factor of 4 relative to the fluxes around apastron. The second observation

started on July 28 when the X-ray emission had dropped nearly two orders of magnitude

from the X-ray maximum, 4 days before the beginning of the deep minimum phase, August

1, according to monitoring observations by the X-ray Telescope on Swift (Corcoran et al., in

preparation). For each observation, the XMM-Newton observation covered only a part of the

NuSTAR observation. The XMM-Newton observations were performed continuously, while

the NuSTAR observations were interrupted every ∼90 minutes by Earth occultation. Follow-

ing Hamaguchi et al. (2007), individual XMM-Newton/NuSTAR observations are designated

XMM/NUS, subscripted with the year, month and day of the observation.

XMM-Newton has three nested Wolter I-type X-ray telescopes (Aschenbach et al. 2000)

with the European Photon Imaging Camera (EPIC) CCD detectors (pn, MOS1 and MOS2)

in their focal planes (Strüder et al. 2001; Turner et al. 2001). They achieve a spatial res-
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olution of 17′′ half energy width and an energy resolution of 150 eV at 6.4 keV1. In each

observation, η Car was placed on-axis. The EPIC-pn and MOS1 observations were ob-

tained in the small window mode with the thick filter to avoid photon pile-up and optical

leakage, though the EPIC-MOS1 data in XMM140606 was still affected by photon pile-up.

The EPIC-MOS2 observations used the full window mode with the medium filter to mon-

itor serendipitous sources around η Car, so that its η Car data are significantly affected

by photon pile-up and optical leakage and thus provide no useful information about η Car.

Fortunately, most of the XMM-Newton observations were obtained during periods of low

particle background.

NuSTAR has two nested Wolter I-type X-ray telescopes with a 2×2 array of CdZnTe

pixel detectors in each focal plane (FPMA/FPMB, Harrison et al. 2013). These mirrors are

coated with depth-graded multilayer structures and focus X-rays over a 3−79 keV bandpass.

They achieve an angular resolution of roughly 60′′ half power diameter (Madsen et al. 2015).

The focal plane detectors are sensitive above 3 keV and cover a 12′ fov. The energy resolution

of the detectors is 400 eV below ∼40 keV, rising to ∼ 1 keV at 60 keV. In each observation,

η Car was placed on-axis. Because there are no bright sources (>100 mCrab) within 1◦ to

5◦, stray light contamination was not an issue.

We used the analysis package HEASoft2 version 6.16 and 6.17 and the SAS3 version

14.0.0 and Current Calibration Files (CCFs) as of 2014 December 9 for the XMM-Newton

specific data analysis. We used the NuSTAR calibration version 2015 March 20.

3. X-ray Images

Figure 2 shows theXMM-Newton EPIC-MOS2 (5−10 keV) and the NuSTAR FPMA+FPMB

(5−10 keV, 10−30 keV, 30−79 keV) images of each observation. These NuSTAR images are

the first images of the Carina Nebula near η Car at E >10 keV at this spatial resolution

(∼1′). Eta Carinae at the fov center is the brightest source below 30 keV; the source posi-

tion does not shift significantly between the energy bands. In the 30−79 keV band, η Car is

barely seen in NUS140606 and not at all in NUS140728. There are no other X-ray point sources

detected at energies above 10 keV within the error circles of the Fermi and INTEGRAL

source positions, which are shown by circles in the two right column images of Figure 2. The

1http://xmm.esac.esa.int/external/xmm user support/documentation/uhb/index.html

2http://heasarc.gsfc.nasa.gov/docs/software/lheasoft/

3http://xmm.esac.esa.int/sas/
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images below 30 keV also show the WWC binary system, WR25, and the massive O star

HD 93250.

4. Light Curves and Spectra

4.1. Event Extraction and Estimate of the Stable Component

We followed Hamaguchi et al. (2007) for extracting XMM-Newton source light curves

and spectra, taking the η Car source region from a 50′′×37.5′′ ellipse with the major axis

rotated from the west to the north at 30◦. For background estimation, we used regions

with negligible emission from η Car on the same CCD chip. In addition, we limited the

EPIC-pn background regions at around the same RAWY position of η Car, according to the

XMM-Newton analysis guide4.

We extracted NuSTAR source events from a 50.5′′ radius circle centered on η Car, which

includes 70% of photons from the star5. Though this source region is slightly larger than

the XMM-Newton source region, hard X-ray (&2 keV) emission from η Car is constrained

to within ∼10′′ from the star (Hamaguchi et al. 2014a), so that the small discrepancy in

the XMM-Newton and NuSTAR source regions should not be significant. For the NuSTAR

observations, we extracted backgrounds from a 630′′ squared box region inside the detector

fov, excluding the region within 200′′ or 300′′ from η Car and 128′′ of the other X-ray sources

detected with NuSTAR. We extracted light curves and spectra using the HEASoft tool,

nuproduct.

In addition to the WWC X-rays, η Car shows weak, stable CCE emission and time-

delayed XHN emission, which make a non-negligible contribution to the η Car spectra near

X-ray minimum (see Hamaguchi et al. 2014b). We estimated the contribution of these com-

ponents using a Suzaku observation, which we obtained on 2014 August 6 during the deep

minimum (ObsID: 409028010). We extracted spectra from the Suzaku XIS0, 1 and 3 de-

tectors from a circular region of radius 2.5′ centered on the source and fit these spectra

by a 2-temperature plasma (apec) components with individual absorption components, in-

cluding two Gaussians for the fluorescent Fe Kα and Kβ lines. We scaled the XIS1 and

XIS3 model normalization to 1.026 and 1.014, respectively, of the XIS0 normalization, fol-

4http://xmm.esac.esa.int/sas/current/documentation/threads/PN spectrum thread.shtml

5http://www.nustar.caltech.edu/uploads/files/nustar performance v1.pdf
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lowing the Suzaku data analysis guide6. We fixed the centers of the Fe Kα and Kβ lines at

6.402 keV and 7.060 keV, respectively, and constrained the Kβ line flux to 12% of the Kα

line flux (Thompson et al. 2009). We also fixed the hottest plasma temperature at 4.5 keV

due to limited photon statistics at high energies. The best-fit model is very similar to that

measured for the Suzaku data in 2009 (Hamaguchi et al. 2014b). We included this best-fit

model of the CCE and XHN contributions in our analysis of the NuSTAR data near the deep

minimum, with the normalization scaled by a factor of 1.05 to account for the instrumen-

tal normalization difference between the Suzaku XIS0 and NuSTAR/FPMA (Madsen et al.

2015).

4.2. First Observation

The XMM-Newton observation started 32 ksec after the start of the NuSTAR obser-

vation and covered part of the latter half of the NuSTAR observation (top left panel of

Figure 3). During this time, η Car did not show any long-term X-ray variation, but small

flux fluctuations on timescales of ∼1 ksec may be present; the NUS140606 light curve between

5−10 keV does not accept a constant model at above 3σ (reduced χ2 =1.66, d.o.f. =80),

though the light curve appears to be flat. A flat light curve with possible small fluctuations is

typical of η Car (Hamaguchi et al. 2007). These small fluctuations may be the low intensity

end of the X-ray flares of η Car discussed in detail in Moffat & Corcoran (2009).

The top right panel of Figure 3 shows the XMM-Newton and NuSTAR spectra of η Car

above 3 keV during these observations. The NuSTAR spectrum clearly extends up to

∼50 keV and is the first clear detection of the hard thermal tail unambiguously associ-

ated with η Car. The spectral slope above ∼9 keV matches very well with optically-thin

thermal emission from kT ∼6 keV plasma (Figure 4). The XMM-Newton spectra clearly

show emission lines at around 6−7 keV, which originate from hydrogen-like, helium-like and

nearly neutral fluorescent iron ions, as seen in earlier η Car spectra (e.g., Hamaguchi et al.

2007). However, using the nominal detector calibration, these lines were significantly shifted

to the blue side by ∼40−60 eV. After careful analyses of the emission lines at lower ener-

gies, especially compared with results of the Reflection Grating Spectrometers (RGS), and

the position of the instrumental Au-edge of the mirror coating, we can rule out that the

line shifts seen in the EPIC-pn spectrum are due to charge transfer inefficiency effects but

consistent with a general gain shift. Thus we include an additional gain component in our

XMM-Newton EPIC-pn fits in order to correct for these blue shifts. It is likely that a flatter

6http://heasarc.gsfc.nasa.gov/docs/suzaku/analysis/abc/node8.html#SECTION00870000000000000000



– 8 –

XMM-Newton spectral slope in the 7−10 keV band than NuSTAR’s is also related to this

XMM-Newton gain calibration issue.

Both of the NuSTAR/FPMA & FPMB spectra show marginal excess above 50 keV over

the extrapolation of the thermal tail, but this excess is smaller than the raw background

count rate. Since the image above 50 keV shows no hint of a point source at the η Car

position, the excess is probably caused by variations in the detector background. Using

Poisson statistics for the background events, the 3σ flux upper-limit between 50−70 keV,

where the WWC thermal tail drops enough, is 4.0×10−4 cnts s−1 sensor−1, which corresponds

to 2.8×10−12 ergs cm−2 s−1 assuming a Γ =1.4 power-law spectrum. Regardless of its origin,

this excess is below the flux at these energies measured by INTEGRAL and Suzaku (see the

solid cyan line in the top right panel of Figure 3).

The Suzaku spectra of η Car obtained between 2005−2011 suggest the presence of plas-

mas in both equilibrium and non-equilibrium conditions (Hamaguchi et al. 2014b). Since the

XMM-Newton and NuSTAR spectra do not have enough photon statistics to investigate this

feature independently, we simultaneously fit these spectra by the same spectral model for the

Suzaku spectral fit in Hamaguchi et al. (2014b), except that we do not include a power-law

component. We freed the model normalizations of NuSTAR/FPMA and of NuSTAR/FPMB

to the XMM-Newton/EPIC-pn’s, while we fixed the ionization timescale at 7.8×1010 cm3 s−1

— the best-fit value of the Suzaku spectrum in a similar orbital phase in the last cycle —

because this parameter is less sensitive with free detector gain. The best-fit result is shown in

Table 2 and Figure 3. The hottest plasma temperature kT ∼5.8 keV was significantly higher

than the plasma temperature measured in earlier observations, which were typically kT ∼4.5

keV. The elemental abundance, mainly measured from the iron K emission line fluxes, is

sub-solar and lower than the earlier Suzaku measurement (Hamaguchi et al. 2014b). This is

possibly caused by a fit of multi-temperature plasma emission by a simple 2T plasma model.

The other parameters are similar to those from X-ray spectra obtained around the X-ray

maximum in 2009. The spectrum can also be fit by a kT ∼4.5 keV thermal plasma model

plus a hard power-law component with a similar reduced χ2 value; however, for this model,

the power-law index (Γ ∼4.2) is much steeper than that derived from fits to INTEGRAL

and Suzaku spectra, and the absorption to the power-law component is unexpectedly high

(NH ∼1024 H cm−2).

4.3. Second Observation

The second XMM-Newton observation started 20 ksec after the NuSTAR observation

start and spanned the middle of the NuSTAR observation (see the bottom left panel of
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Figure 3). The short XMM-Newton observation for ∼34 ksec did not show any clear time

variation, but the long NuSTAR observation for ∼102 ksec displayed an obvious flux decrease

by ∼40% above ∼5 keV. Such a strong variation has never been seen before in a single pointed

observation of η Car, which is normally very stable on timescales of.1 day (Hamaguchi et al.

2007). This declining rate is, however, consistent with the average flux decline just before the

deep X-ray minimum, which is measured from the Swift monitoring observations (Figure 1).

The 5−10 keV light curve seems to prefer an exponential decay over a constant value.

We therefore modeled this light curve by an exponential plus constant function and found

an acceptable fit, with an e-folding time of 0.48 (0.34−0.78) days, a normalization of 0.12

(0.098−0.15) cnts s−1 at 16866.6 day in TJD, and a constant at 0.22 (0.19−0.24) cnts s−1

(reduced χ2 =0.56, d.o.f. =48). Since this e-folding time is roughly consistent with that of

the Swift light curve before the deep minimum (≈0.9 days), we suggest that the constant flux

component arises from the circumstellar X-ray contamination near η Car (the CCE + XHN

emission) that is seen clearly only during the deep minimum. However, the constant flux we

derive is a factor of 2 larger than that estimated from the best-fit deep minimum spectrum,

convolved with the NuSTAR response (0.11 cnts s−1, see also subsection 4.1). A fit of the

5−10 keV light curve, fixing the constant at 0.11 cnts s−1, also gives an acceptable result

— an e-folding time of 1.5 (1.4−1.7) day and a normalization of 0.23 (0.22−0.24) cnts s−1

(reduced χ2 =0.73, d.o.f. =49). With this decay rate, the variable emission should be

negligible (.10%) against the stable emission in ∼4.7 days (August 2); this is consistent

with the Swift light curve, which also suggests the onset of the deep minimum around this

time (Corcoran et al. in prep).

The 3−5 keV and 10−30 keV light curves also show flux declines though with poorer

statistics. We therefore fixed the e-folding time at 0.48 day in their fits and only derived

normalizations of the exponential function and the constant component. Compared to the

5−10 keV light curve, the 10−30 keV light curve has similar contribution from the constant

emission, while the 3−5 keV light curve shows a somewhat larger contribution. This result

perhaps suggests a soft X-ray component that does not vary so strongly as the hard X-ray

component does.

The bottom right panel of Figure 3 shows the XMM-Newton/EPIC-pn, MOS1 and

NuSTAR/FPMA, FPMB spectra extracted from the entire second observation. The XMM-

Newton spectra show two strong peaks around 6−7 keV. The lower energy peak centered

at 6.4 keV is the iron fluorescence line, while the higher energy peak is the Fe K thermal

emission line complex. A significant part of the iron fluorescent line should originate from

the XHN, whose reflected emission becomes more prominent as the direct WWC emission

declines. The spectra also show emission lines at 3.9 keV from Ca Kα and at 3.1 keV from
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Ar Kα. The NuSTAR spectra extend up to ∼40 keV. The spectrum above ∼10 keV has a

similar slope to that of NUS140606, suggesting the presence of kT ∼6 keV plasma (Figure 4).

The NuSTAR spectra also show an apparent small excess around 40−50 keV, but, again,

this excess is lower than the background fluctuation, and the NuSTAR image above 30 keV

does not show any obvious point source at the position of η Car. The 3σ upper-limit between

40−70 keV was 3.5×10−4 cnts s−1 sensor−1, which corresponds to 1.1×10−12 ergs cm−2 s−1

assuming a power-law spectrum with a photon index consistent with the INTEGRAL and

Suzaku spectra (Γ =1.4).

We split the NuSTAR observation into three evenly spaced intervals (A, B and C: see

bottom left of Figure 3) and extracted spectra from each interval to track the spectral

variation (Figure 5). The spectral shape above 5 keV did not apparently change between

the intervals, while the spectral normalization decreased. As seen from the band sliced

light curves, the spectrum below 5 keV is rather unchanged within the photon statistics,

suggesting the presence of a relatively stable soft component. This is similar to the behavior

observed in 2009, in which the soft band flux gradually decreased before the onset of the

deep X-ray minimum, while the hard band flux dropped sharply (see the middle panel of

Figure 2 in Hamaguchi et al. 2014a).

Before performing the spectral fittings, we calibrated the spectral normalizations be-

tween instruments. Since the X-ray flux varied through the NuSTAR observation, we gener-

ated NuSTAR spectra of η Car only during the XMM-Newton observation and simultaneously

fit them with the XMM-Newton spectra by an empirical model, free of the instrumental nor-

malization ratio. The results (Table 2) were similar to those measured for XMM140606. We

then fit the XMM-Newton spectra and the NuSTAR spectra of three intervals simultaneously.

We fixed the instrumental normalization ratios at the values derived above. We used the

same spectral model used to fit the June 6 spectra and tied the physical parameters between

the intervals, except for the normalizations of the WWC component and the fluorescent iron

line. Because of the limited spectral quality, we fixed the elemental abundance at 1 solar

value as derived from the simultaneous fit to the multiple Suzaku spectra (Hamaguchi et al.

2014b). The best-fit result is shown at the right column of Table 2. The absorption to

the hard X-ray emission, measured from the iron absorption edge, increased to an extreme

value (NFe ∼9.7×1023 H cm−2) from the first observation. This result suggests that very hot

plasma at the WWC apex was embedded further into the primary wind.
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5. Discussion

The plasma temperature in XMM/NUS140606, kT ∼6 keV, was significantly higher than

the typical plasma temperatures of η Car measured from earlier observations (kT ∼4−5 keV,

e.g. Hamaguchi et al. 2007). This measurement is weighted strongly by the slope of the

bremsstrahlung continuum above 10 keV in the NuSTAR spectra, while the flux ratio of the

helium-like and hydrogen-like Fe K lines is still consistent with a more typical temperature,

kT ∼4 keV. The 6 keV plasma temperature we derive is not perhaps caused by enhanced

WWC activity in this cycle but by stronger contribution of the thermal continuum in the

spectral fit. The second set of observations showed a similarly high plasma temperature

(kT ∼6 keV). Since η Car had a factor of two flux variation between these observations,

η Car’s WWC activity can thermalize plasma up to ∼6 keV until the X-ray minimum onset.

Our analysis of the second observation yielded one of the highest absorption columns

ever derived from η Car observations (NFe ∼1024 H cm−2)7; the other highest absorptions

were observed right after the deep X-ray minimum (NH ∼1024 H cm−2, Hamaguchi et al.

2014a, Hamaguchi et al., in preparation). This result suggests that the column density to

the WWC plasma peaks during the deep minimum and supports the hypothesis that the

deep minimum is mainly caused by an eclipse of the WWC plasma by an optically thick

absorber.

Through the second NuSTAR observation, the hard (>5 keV) X-ray emission gradually

declined without showing any significant spectral change. A similar variation was seen in the

7−10 keV spectral slope in earlier short observations around periastron (Hamaguchi et al.

2007, 2014a). Since the decline was smooth, this indicates that the WWC plasma is perhaps

evenly extended and gradually occulted by an optically thick absorber with a relatively sharp

boundary. The current best estimate of the orbital inclination (i ≈130−145◦, Madura et al.

2012) does not suggest that the WWC plasma is occulted by the primary stellar body. This

might indicate that colliding wind source might have crossed the WWC contact discontinuity,

which should have a relatively sharp density change.

NuSTAR did not detect non-thermal X-ray emission at very high energies. The upper-

limit flux between 40−70 keV in NUS140728 is 1/4.2 of the INTEGRAL measurement and

1/3.3 of the Suzaku measurement assuming a Γ = 1.4 power-law spectrum (middle panel of

Figure 6). This result is very surprising because the power-law component was apparently

stable between 2004 and 2011. Interestingly, a Suzaku observation in 2013 July with a very

long exposure of 180 ksec did not detect an excess in the 25−40 keV band (Yuasa et al.

7equivalent hydrogen column density in a solar abundance
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in prep.), so that the power-law source might be variable, and if so it may have decreased

before the first NuSTAR observation.

Reitberger et al. (2015) argued that the GeV γ-ray source was bright through 1 or-

bital cycle between 2008 August 4 and 2014 February 18. It appears that this source kept

increasing in brighteness through the 2014 periastron, according to the 1-degree aperture

photometry lightcurves weekly created by the Fermi team (LAT 3FGL catalog aperture

photometry light curves8). This means that the GeV γ-ray source and the extremely hard

(20−100 keV) X-ray source behaved differently around the 2014 periastron passage. One

possible explanation of this discrepancy is that the line of sight column to the γ-ray source

increased before the first NuSTAR observation, so that extremely hard X-ray emission from

the γ-ray source was totally absorbed. To suppress the 20−70 keV flux by .10%, the ab-

sorption column should increase to NH &2×1024 H cm−2, which can be produced if the γ-ray

source is around the line of sight to the WWC apex. The other explanation is that the γ-ray

source is unrelated to the hard X-ray source.

6. Summary

We performed two simultaneous X-ray observations of η Car with XMM-Newton and

NuSTAR around the 2014.6 periastron passage. The NuSTAR’s multi-layer coating mirrors

provided the highest spatial resolution observations of extremely hard X-ray emission from

η Car. The simultaneous observations with XMM-Newton, which has good spectral reso-

lution and high sensitivity below ∼8 keV, enabled measurement of the Fe K emission line

profile in detail and helped constrain the high-energy thermal tail seen by NuSTAR.

The NuSTAR and XMM-Newton spectra clearly showed that the thermal X-ray slope

of η Car extends up to 40−50 keV. This slope is consistent with bremsstrahlung thermal

emission from plasma at kT ∼6 keV, which was 1−2 keV higher than the ionization temper-

ature of Fe K shell ions and the plasma temperatures measured in earlier observations from

spectra below 10 keV. This slope did not change between the first and second observations

though the X-ray flux declined by a factor of 20. The WWC plasma, or at least a portion

of it, did not cool across the X-ray flux decline.

During the second observation, the X-ray flux above 5 keV gradually declined by ∼40%

in a day. This decline is consistent with the deep minimum onset on August 1st and can

8http://fermi.gsfc.nasa.gov/ssc/data/access/lat/4yr catalog/ap lcs.php?ra=10-11,

http://fermi.gsfc.nasa.gov/ssc/data/access/lat/4yr catalog/ap lcs/lightcurve 3FGLJ1045.1-5941.png

http://fermi.gsfc.nasa.gov/ssc/data/access/lat/4yr_catalog/ap_lcs/lightcurve_3FGLJ1045.1-5941.png
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be reproduced with a constant flux plus an exponential decay with an e-folding time of

0.5−1.5 day. We did not observe any color variation during the decline, which suggests that

the hottest plasma was gradually hidden. The emission suffered extremely strong absorption

(NFe ∼1024 H cm−2), which is as high as the absorption to the WWC plasma right after the

deep minimum. This result supports the hypothesis that the deep minimum is caused by a

total eclipse of the WWC apex at superior conjunction.

The NuSTAR data showed no hint of power-law emission above ∼30 keV within the

INTEGRAL error circle, giving an upper-limit below the INTEGRAL and Suzaku detection

before 2011. This indicates that the power-law source probably weakened between the Suzaku

observation in 2011 and the first NuSTAR observation in 2014. Interestingly, the GeV γ-ray

source seen by Fermi was rather stable around this periastron passage. This either implies

an increase of the absorption to the power-law source during these observations, or that the

extremely hard X-ray and GeV γ-ray sources are unrelated.

This research has made use of data obtained from the High Energy Astrophysics Science

Archive Research Center (HEASARC), provided by NASA’s Goddard Space Flight Center.
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Table 1. Logs of the XMM-Newton and NuSTAR Observations

Observatory Abbreviation Observation ID Observation Start φX Duration Exposure

(ksec) (ksec)

First (Maximum):

XMM-Newton XMM140606 0742850301 2014 June 6, 19:30 (m1) 2.9721 12.8/13.0 9.0/12.6

NuSTAR NUS140606 30002040002 2014 June 6, 10:31 2.9721 50.6 32.9

Second (Before Minimum):

XMM-Newton XMM140728 0742850401 2014 July 28, 15:50 (m1) 2.9978 33.5/33.7 23.5/32.6

NuSTAR NUS140728 30002040004 2014 July 28, 10:31 2.9979 102.1 61.3

Supplement (Deep Minimum):

Suzaku SUZ140806 409028010 2014 August 6, 20:04 3.0025 71.9 21.5

Note. — Abbreviation: Abbreviation adopted for each observation. Observation ID: Observation identification

number of each observation. Observation Start: Time of the observation start. φX: Phase at the center of the

observation in the X-ray ephemeris in Corcoran (2005), φX = (JD[observation start] − 2450799.792)/2024. Duration:

Duration of the Observation. Exposure: Exposure time excluding the detector deadtime. For XMM-Newton, the

two numbers divided by slash are of EPIC-pn and MOS1, respectively.
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Table 2. Best-fit Spectral Model

Parameter Unit First Observation Second Observation

Hot Component

kT [keV] 5.8 (5.7−5.8) 5.7 (4.8−6.4)

Z [solar] 0.69 (0.67−0.71) 1.0 (fix)

τ [nei] [cm3 s−1] 7.8e10 (fixed)†1 2.0e11 (1.5e11−2.8e11)

norm [nei] [cm−5] 3.2e-4 (<2.0e-3) 6.5e-3 (5.1e-3−9.3e-3)

norm [apec] [cm−5] 0.23 (0.22−0.23) 3.0e-14 (<5.4e-4)

norm ratio

A · · · 1.16 (1.03−1.30)

B · · · 0.65 (0.57−0.74)

C · · · 0.35 (0.27−0.43)

Gaussian6.4 flux [10−5 cnts s−1] 49 (48−53) 1.8 (1.1−2.5)

A · · · 1.9 (0.39−3.4)

B · · · 0.0 (<0.86)

C · · · 0.23 (<1.5)

NH [1023 H cm−2] 4.2 (4.1−4.2) 5.4 (4.2−6.7)

NFe [1023 H cm−2] 3.0 (2.8−3.1) 9.7 (7.8−11.7)

Cool Component

kT [keV] 2.7 (2.7−2.7) 1.4 (>0.35)

Z [solar] 0.51 (0.49−0.52) 1.0 (fixed)

norm [cm−5] 0.34 (0.34−0.35) 9.2e-4 (2.6e-4−0.13)

NH [H cm−2] 5.4 (5.3−5.5) 5.0 (fixed)

Instrument Normalization

XMM-Newton/MOS · · · 0.957†2 (0.924−0.991)

NuSTAR/FPMA 1.120 (1.114−1.125) 1.101†2 (1.058−1.143)

NuSTAR/FPMB 1.146 (1.141−1.151) 1.127†2 (1.083−1.172)

XMM pn gain

linear 1.011 · · ·

reduced χ2 (d.o.f.) 1.454 (1117) 1.094 (836)

Note. — Model: (apec[kTvar, Zvar, normvar[apec]] + nei[kTvar, Zvar, τ [nei], normvar[nei]] +

Gaussian6.4 [fluxvar] + Gaussian7.1 [0.12×fluxvar]) varabs[NHvar, NFevar] + apec[kTconst , Zconst,

normconst] TBabs[NHconst] + “the deep minimum spectrum”. The narrow Gaussian components,

Gaussian6.4 and Gaussian7.1, are for the fluorescent Fe Kα and Kβ lines, and their line center en-

ergies are fixed at 6.402 keV and 7.060 keV, respectively. The Fe Kβ line flux is tied to 12% of the

Fe Kα flux (Thompson et al. 2009). We assume an independent elemental abundance for the cool

component to simply reproduce the spectral shape. In the second observation column, the normal-

ization ratios and the Gaussian6.4 fluxes of the A, B and C intervals are obtained from the NuSTAR

spectra, while the other independent parameters (normvar[nei] and normvar[apec], Gaussian6.4
flux) are from the XMM-Newton/EPIC-pn and MOS1 spectra obtained during the XMM-Newton

observation interval. The ratios between normvar[apec] and normvar[nei] for these spectra are tied

together. Their errors are estimated after fixing the normvar[apec] and normvar[nei] parameters

for the XMM-Newton spectra at the best-fit values. The parentheses quote the 90% confidence

ranges. †1The spectrum is not sensitive to the ionization timescale because of the gain fit. We

therefore fixed it to that of the Suzaku measurement in a similar orbital phase in the last cycle.
†2The best-fit values and errors are measured from a simultaneous fit to the XMM-Newton and

NuSTAR spectra during the XMM-Newton observation interval. These numbers are fixed in a

spectral fit for the whole second observation, and therefore do not affect the fitting result of the



– 18 –

other parameters.
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140728

Chandra
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SUZAKU

RXTE/Swift

Deep ShallowX-ray Minimum

Fig. 1.— RXTE and Swift light curves of η Car (Corcoran et al. 2015, in prep.) and

the pointed observations (Hamaguchi et al. 2014a, Hamaguchi et al., in prep.). The desig-

nations, 140606 and 140728, are timings of the coordinated observations of XMM-Newton

and NuSTAR. The horizontal axis shows the orbital phase defined by Corcoran (2005). The

phase 1.0 corresponds to 2014 August 2 7:00:29 UT in this cycle.
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Fig. 2.— XMM-Newton/EPIC-MOS2 (5−10 keV) and NuSTAR/FPMA+FPMB

(5−10 keV, 10−30 keV and 30−79 keV) images of the η Car field during the first (top)

and second (bottom) observations. The grey scales of all images are adjusted with the event

count rate. In the images in the right two columns, the dashed-dot bar circles show the 90%

confidence range of the INTEGRAL source (Leyder et al. 2010) and the solid and dotted

circles the 95.4% confidence ranges of the Fermi source in the low-energy and high-energy

bands, respectively (Reitberger et al. 2015). The EPIC-MOS2 data were not used for the

timing and spectral analysis because the η Car data suffered severe pile-ups.
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Fig. 3.— Light curves (left) and spectra (right) of the first (top) and second (bottom)

observations. Left: XMM-Newton/EPIC-pn (grey, 5−10 keV) and NuSTAR/FPMA+FPMB

(red: 3−5 keV, black: 5−10 keV, blue: 10−30 keV) light curves. Each light curve bin has

500 sec for the first observation and 2000 sec for the second observation, respectively. Right:

XMM-Newton/EPIC-pn, MOS1 (black, red) and NuSTAR/FPMA, /FPMB (green, blue)

spectra of η Car. The solid lines on the June 6 spectra show the best-fit model in Table 2.

The solid cyan line on each panel for spectra shows the power-law component measured

from the Suzaku observations (Hamaguchi et al. 2014b), convolved with the NuSTAR/FPMA

response. We do not simultaneously fit the XMM-Newton and NuSTAR spectra for July 28

because the NuSTAR spectrum changed significantly during the second observation.
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Fig. 4.— 9−40 keV spectra of NUS140606 (black) and NUS140728 (red) overlaid. The NUS140728

spectrum is shifted vertically to match the NUS140606 spectrum at 10 keV. The plot also shows

bremsstrahlung models at kT= 3.0, 4.0, 5.0, 6.0 and 7.0, which are normalized at 10 keV, as

well.
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Fig. 5.— NuSTAR/FPMA+FPMB spectra of the second observation in 3 intervals (A:

black, B; red, C: green). The solid blue line shows the deep minimum spectrum, estimated

from the Suzaku observation on August 6th and convolved with the NuSTAR response.
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Fig. 6.— X-ray flux between 2−10 keV measured with RXTE and Swift (top: Corcoran et al.

2010, Corcoran et al. in prep.) and between 40−70 keV measured with Suzaku, INTE-

GRAL, and NuSTAR (middle: Leyder et al. 2008; Hamaguchi et al. 2014b), and 0.2−10 GeV

(solid line) and 10−300 GeV (dotted line) γ-ray fluxes measured with Fermi (bottom:

Reitberger et al. 2015). The orange line and shaded area in the middle panel show the

best-fit flux and its 90% error range of the power-law component, derived from the Suzaku

HXD/PIN spectra below 40 keV assuming a Γ =1.4 power-law (Hamaguchi et al. 2014b).

The multiple vertical bars on the ceiling of the middle panel show the timings of the Suzaku

observations used for this spectral fit.
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