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Abstract 
The variational Monte Carlo method is applied to investigate the ground state energy of the lithium atom 
and its ions up to	ܼ = 10 in the presence of an external magnetic field regime with ߛ = 0	~	100 a.u.  
Our calculations are based on using three forms of compact and accurate trial wave functions, which 
were put forward in calculating energies in the absence of magnetic field. The obtained results are in 
good agreement with the most recent accurate values and also with the exact values.  
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Introduction 
Over the last decade continuing effort has gone into calculating, with ever increasing 
accuracy and with various methods, the energies of atoms and ions in neutron star 
magnetic fields. The motivation comes largely from the fact that features discovered 
[1–3] in the thermal emission spectra of isolated neutron stars may be due to absorption 
of photons by heavy atoms in the hot, thin atmospheres of these strongly magnetized 
cosmic objects [4]. Also, features of heavier elements may be present in the spectra of 
magnetic white dwarf stars [5, 6]. The comparison of the stationary transitions of the 
atom with the positions of the absorption edges of the observed spectrum yielded strong 
evidence for the existence of helium in the atmosphere of GD229 [7]. The most 
prominent of the unexplained magnetic objects is the white dwarf GD 229.  
    While comprehensive and precise data for hydrogen atom in strong magnetic fields 
have been available for some time (cf. [8–11]), this is less the case for atoms and ions 
with more than one electron. Recently significant progress has been achieved with 
respect to the interpretation of its rich spectrum. Extensive and precise calculations on 
the helium atom provided data for many excited states in a broad range of field 
strengths. The authors in [12] investigated the total electronic energies of the ground 
state and the first few excitations of the helium atom for the magnetic quantum number 
	ܯ = 	0	and for both even and odd z-parity as well as their one-electron ionization 
energies as function of the magnetic field [12].   
    In early works the Coulomb field was considered in this limit actually as perturbation 
for a free electron in a super strong magnetic field. The motion of an electron parallel 
to the magnetic field is governed in the adiabatic approximation [13] by a 1D quasi-
Coulomb potential with a parameter, dependent on the magnetic field strength. The 
detailed calculations of the hydrogen energy levels carried out by	Rösner et al. [14] also 
retain the separation of the magnetic field strength domains due to decomposing the 
electronic wave function in terms of either spherical (for weak fields) or cylindrical 
harmonics (for strong fields). A powerful method to obtain comprehensive results on 



 

 

low-lying energy levels in the intermediate regime, in particular for the hydrogen atom, 
is provided by mesh methods [15]. Accurate calculations for arbitrary field strengths 
were carried out in refs. [16, 17] by the 2D mesh Hartree-Fock (HF) method. 
Investigations on the ground state as well as a number of excited states of helium, 
including the correlation energy, have recently been performed via a quantum Monte 
Carlo approach [18]. 
    For atoms with several electrons the problem of the mixed symmetries is even more 
intricate than for hydrogen because different electrons feel very different Coulomb 
forces, i.e. possess different single-particle energies, and the domain of the intermediate 
fields, therefore, appears to be the sum of the intermediate domains for the separate 
electrons. Accurate ground state energies of atoms up to nuclear charge	ܼ = 10 in the 
high-field regime were first determined by Ivanov and Schmelcher [19] who solved the 
2D-HF equations on a flexible mesh.  
    There exist several investigations on the helium atom in the literature. Using a full 
configuration-interaction approach, which is based on a nonlinearly optimized 
anisotropic Gaussian basis set of one-particle functions, W. Becken and P. Schmelcher 
[20] calculated the total energies of the ground state and the first four excitations in 
each subspace as well as their one-electron ionization energies for the magnetic 
quantum number ܯ	 = 	−1 and for both even and odd z -parity as well as singlet and 
triplet spin symmetry. Additionally they presented energies for electromagnetic 
transitions within the ܯ	 = 	−1 subspace and between the ܯ	 = 	−1 subspace and 
the ܯ	 = 	0 subspace. Also, W. Becken and P. Schmelcher investigated in ref. [21] the 
electromagnetic-transition probabilities for the helium atom embedded in a strong 
magnetic field in the complete regime ܤ = 0	~	100 a.u. Furthermore, for the magnetic 
quantum numbers ܯ	= 	0,−1,−2, −3 in the magnetic field regime B =100 ~10000 
a.u., positive and negative z parity, singlet and triplet symmetry were carried out in refs. 
[22, 23]. A considerable number of higher angular-momentum states of the helium atom 
embedded in a magnetic field ܤ	 = 0	~	100 a.u. was investigated. Spin singlet and 
triplet states with positive- and negative-z parity were considered for the magnetic 
quantum number ܯ = ±	2 and positive-z parity states were studied for ܯ	 =
	±3. Many of the excitations within these symmetries was also investigated in [24], 
where total energies, ionization energies as well as transition wave lengths were 
discussed in detail as function of the field strength. Employing a 2D mesh HF method 
Ivanov and Schmelcher [25-27] gave results of the ground and a few excited states of 
the carbon, beryllium and boron atom as well as  Beା ion and Bା ion in external uniform 
magnetic fields for field strengths ranging from zero up to 	2.35 × 10ଽ	T with different 
spin projections S = −1,−2,−3, S = 0,−1,−2 and S = −1 2,−3 2⁄ ,−5 2⁄⁄ , 
respectively. Also, the authors in [28] investigated the effects of a magnetic field with 
low to intermediate strength on several spectroscopic properties of the sodium atom, 
where ionisation energies, transition wave lengths and their dipole oscillator strengths 
were presented. Moreover, Ivanov and Schmelcher [29] presented precise HF results 
for several states in weak fields and quite satisfactory results for the intermediate 
region, where they applied a fully numerical 2D HF method to the problem of the Li 
atom in magnetic fields of arbitrary strength. This method enables one to perform 
calculations for various states and with approximately equal precision for weak, 
intermediate and super strong magnetic fields. Their main focus was the ground state 



 

 

of the Li atom and its ionization energies. To this end several electronic configurations 
of the Li atom and two configurations of the Liା ion are studied. 
    In ref. [30] Boblest et al. used the combination of a two-dimensional HF and a 
diffusion quantum Monte Carlo method in the presence of magnetic field strength to 
calculate ground state energy of lithium like ions up to 	ܼ = 10. Furthermore, the work 
of Jones et al. [31] for this atom is an interesting one, it contains calculations for the 
ground state and a few low-lying states of the Li atom at weak and intermediate fields. 
    In the present paper we have applied the variational Monte Carlo (VMC) method to 
study the three-electron system, by using three accurate trial wave functions. This 
method enables us performing calculations with approximately equal precision for 
weak and intermediate magnetic fields. Our main focus is the ground state of the lithium 
atom and its ions up to ܼ = 10. For this purpose, and extending to our previous works 
[32-34], in the present paper we have used the VMC method to compute the total 
energies and the corresponding standard deviations for the lithium atom with respect to 
the magnetic field strength. Our calculations were extended also to include the lithium 
ions up to ܼ	 = 10. 
 
2. The Method of the Calculations 
The VMC method is based on a combination of two ideas namely the variational 
principle and the Monte Carlo evaluation of integrals using importance sampling based 
on the Metropolis algorithm [35]. The VMC method is the simplest of the quantum 
Monte Carlo algorithms, and it is used to compute quantum expectation values of an 
operator with a given trial wave function	்ߖ.  
    In the VMC method, the ground state of a Hamiltonian ܪ	is approximated by some 
trial wave function │்ߖ〉. A number of parameters are introduced into│்ߖ〉 and these 
parameters are varied to minimize the expectation value ܧఅమ = ⟨்ߖ|ܪ|்ߖ⟩ ⁄⟨்ߖ|்ߖ⟩  
in order to bring the trial wave function as close as possible to the actual ground state 
 〉. Wave functions of interacting systems are non-separable, and the integrationߖ│
needed to evaluate ܧఅమ is therefore a difficult task. Although it is possible to write these 
wave functions as linear combinations of separable terms, this tactic is viable only for 
a limited number of particles, since the length of such an expansion grows very quickly 
as the system size increases. The VMC method employs a stochastic integration that 
can treat the non-separable wave functions directly. The expectation value ܧఅమ [36] is 
written as 
అమܧ                   = ∫ |అ(ࡾ)|మ

ൻ்ߖห்ߖൿ
[ுఅ](ࡾ)
అ(ࡾ)

݀ଷேࡾ ≈ ெܧ =
ଵ
Ɲ
∑ [ுఅ](ࡾ)
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Ɲ
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where ࡾ = ൫ࡾଵ, ,ଶࡾ ,ଷࡾ …  Ɲ൯ is a 3Ɲ-dimensional vector encompassing theࡾ,
coordinates of all the Ɲ particles in the system and the sum runs over Ɲ such vectors 
(ࡾ)ߩ sampled from the multivariate probability density {ࡾ} = |అ(ࡾ)|మ

ൻ்ߖห்ߖൿ
. The summand 

(ࡾ)ܧ =
[ுఅ](ࡾ)
అ(ࡾ)

 is usually referred to as the local energy. We assume spin independent 
Hamiltonians, and therefore spin variables do not explicitly enter the evaluation of the 
expectation value (2.1). The trial wave function is supposed to be as close as possible 
to the true ground state wave function of the system, or more generally to an exact 
eigenstate of the Hamiltonian, if one is interested in studying also the properties of 
excited states. To calculate the integrals in Eq. (2.1) we firstly construct a trial wave 
function	Ψ்

ఈ(ࡾ) depending on a set of ߙ-variational parameters 
,ଵߙ)	=	ߙ ,ଶߙ  .ே) and then vary the parameters to obtain the minimum energyߙ…………



 

 

    In determining the expectation value of the local energy, 〈ܧ〉, it is not necessary to 
carry out analytic integrations; and, since only differentiation of the trial wave function 
is required to evaluate the local energy, the trial wave function may take any desired 
functional form.  
    The variational energy ܧெ  is a stochastic variable, and an appropriate 
characterization of the random error ܧெ −  అమ is thus an integral part of the VMCܧ
method. When the sampled local energies ܧ(ࡾ) are sufficiently well behaved [37], 
this error can be represented by the variance of ܧெ . The weighted average	ܧ(ࡾ) is 
evaluated at each point of the set of points {ࡾ}. After a sufficient number of evaluations 
the VMC estimate of ܧெ  will be 
 
ெܧ  = 	 2ܶߖ〈ܧ〉 = ݈݅݉

ே→∞
݈݅݉
ெ→∞

ଵ
ே
ଵ
ெ
∑ ∑ ெܧ

ୀଵ
ே
ୀଵ ൫ࡾ൯,																																		                 (2.2)  

 
where, ܯ is the ensemble size of random numbers {ࡾଵ, ,ଵࡾ …… . . ,  ெ}, which may beࡾ
generated by using a variety of methods [36] and	ܰ	is the number of ensembles. These 
ensembles so generated must reflect the distribution function itself. A given ensemble 
is chosen according to the Metropolis algorithm [35] and using random numbers. These 
random numbers may be generated by using a variety of methods [38]. When evaluating 
the energy of the system it is important to calculate the standard deviation [36] 

ߪ                                                  = ඨ
〈ாಽ
మ〉

ܶߖ
2ି〈ாಽ〉మ2ܶߖ

ெ(ேିଵ)
                                                  (2.3) 

of this energy. Since 〈ܧ〉అమ  will be exact when an exact trial wave function is used, 
then the standard deviation of the local energy will be zero for this case [39]. Thus in 
the Monte Carlo method, the minimum of 〈ܧ〉అమ should coincide with a minimum in 
the standard deviation. 
 
3. The Hamiltonian of the System 
Our goal in this paper is to solve the Schrödinger equation for a lithium atom in an 
external magnetic field in order to calculate the ground-state energy eigenvalues as 
functions of the magnetic-field parameter. We first construct the Hamiltonian operator 
for the three-particle system in the absence of the external field. For this purpose we 
make use of the assumption of an infinitely heavy nucleus in the (unrestricted) HF 
approximation. The solution is established in Hylleraas coordinates [40] (with the z-
axis oriented along the magnetic field). Hence, the non-relativistic Hamiltonian for the 
Lithium atom, in the absence of the field, under the Born-Oppenheimer approximation 
of zero order, that is, with the Li nucleus assumed to be of infinite mass, is (in Hartree-
atomic units) [41] 
 
ܪ                              = −∑ ቀଵ

ଶ
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where	∇ is the 3-vector of the momentum of the ݅	th electron, ܼ	is the nuclear charge 
(here, ܼ =  are	ݎ th electron and the Li nucleus, and	 is the distance between the ݅ݎ ,(3
the interelectron distances.  
    In our calculations we used the form of	ܪ	in Hylleraas Coordinates [40] as follows: 
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    According to the assumption that the nuclear mass is infinite and the magnetic field 
is oriented along the z-axis, the non-relativistic Hamiltonian	ℋfor the Li atom in the 
presence of the magnetic field (in atomic units (a. u.)) takes the form  
 
                               ℋ = 	ܪ + ቂఊ

మఘమ

଼
+ ఊ(ାଶௌೋ)

ଶ
ቃ.																																																											(3.3) 

 
where ߩଶ = ଵଶݔ) + (ଵଶݕ + ଶଶݔ) + (ଶଶݕ + ଷଶݔ) +  is the magnetic field parameter, S is theߛ ,(ଷଶݕ
z-component of the total spin, L is the z-component of the total angular momentum, 
ఊమఘమ

଼
 is the diamagnetic term, ఊ

ଶ
L is the Zeeman term,− 

భ
− 

మ
− 

య
are the attractive 

Coulomb interactions with the nucleus and ߛS represents the spin Zeeman term. 
 
4. The Trial Wave Functions 
In the VMC method, the accuracy of the trial wave function determines directly the 
accuracy in the energy obtained in the calculation. The choice of trial wave function 
 is critical in VMC calculation. How to choose it is however a highly non-trivial (ࡾ)்ߖ
task. The trial wave function must approximate an exact eigenstate in order that 
accurate results are to be obtained. Also, the trial wave function improves the 
importance sampling and reduces the cost of obtaining a certain statistical accuracy. A 
good trial wave function should exhibit much of the same features as does the exact 
wave function. One possible guideline in choosing the trial wave function is the use of 
the constraints about the behavior of the wave function when the distance between one 
electron and the nucleus or two electron approaches zero. These constraints are called 
“cusp conditions” and are related to the derivative of the wave function. More details 
about the trial wave function can be found in [42]. 
    Usually the correlated wave function, ߰ , used in the VMC method is built in the form 
of product of a symmetric correlation factor, ݂ , which includes the dynamic correlation 
among the electrons, times a model wave function, that provides the correct properties 
of the exact wave function such as the spin and the angular momentum of the atom, and 
is antisymmetric in the electronic coordinates. Physical relevance arguments are 
followed to choose the trial wave function (see, e.g., Turbiner [43]). In particular, we 
construct wave functions that allow us to reproduce both the Coulomb singularities in 
  and the correct asymptotic behavior of large distances. As a result, the waveݎ  and inݎ
function of the	2ௌభ మ⁄  Li ground state is written in the particular form 
 
                                           ߰ = ,ଵ࢘)∅]ܣ ,ଶ࢘  ଷ)],                                                         (4.1)࢘
 
with trial functions, which were examined, consisting of exponentials in all the relative 
coordinates, in some cases, multiplied by pre-exponential factors dependent linearly on 
the interparticle distances, in the form 
 
    ϕ(࢘ଵ, ,ଶ࢘ (ଷ࢘ = ,ଵݎ)݂ ,ଶݎ ,ଷݎ ,	ଵଶݎ ,ଵଷݎ )݁ିఈభభିఈమమିఈయయିఈభమభమିఈభయభయିఈమయమయ	ଶଷݎ .  (4.2) 
 
In Eq. (4.2) the pre-exponential factor is a linear function of its arguments, whereas ߙ 
and ߙ are nonlinear parameters. ܣ is the three-particle antisymmetrizer 
 
ܣ	                           = ܫ − ଵܲଶ − ଵܲଷ − ଶܲଷ + ଶܲଷଵ + ଷܲଵଶ.                                        (4.3) 
 
Here, ܲ represents the permutation ݅ ↔ ݆, and ܲ  stands for the permutation of 123 
into ݆݅݇. In total, the function ߰ of Eq. (4.1) is characterized by six parameters, plus 
any parameters that may occur in the pre-exponential factor f. 



 

 

    In our calculations we have used two accurate wave functions	Φଵand Φଶ [44], for 
solving the Schrödinger equation to obtain the energies of the lithium atom, which take 
the form:  
 
Φଵ = (1 + ଷݎଵߚ + ଵଷ)݁ିఈభభିఈమమିఈయయିఈభమభమିఈభయభయିఈమయమయݎଵߛ                                  (4.4) 
 
Φଶ = ݁ିఈభభିఈమమିఈయయିఈభమభమିఈభయభయିఈమయమయ                                                                         (4.5) 
 
Moreover, we have obtained the energies of the lithium ions up to ܼ = 10 by using an 
accurate wave function ϕଷ which were put forward in calculating energies in the 
absence of the magnetic field [44]. This function takes the form: 
 
            Φଷ = (1 +  ଷ)݁ିఈభభିఈమమିఈయయିఈభమభమିఈభయభయିఈమయమయ                               (4.6)ݎଵߚ
 
In our calculations we took the values of the variational parameters in	Φଵ, Φଶ and Φଷ 
from Ref [44]. 
 
5. Results 
The Monte Carlo method described here has been employed for calculating the ground 
state energies of the lithium atom in the magnetic field regime between 0 a.u. and 100 
a.u. as well as the lithium like ions up to  ܼ = 10. All energies are obtained in atomic 
units (݉ = ݁ = ℏ = 1), i.e. in Hartrees (Ha), such that (1 Ha = 1 atomic unit), with set 
of 1 × 10 Monte Carlo integration points in order to make the statistical error as low 
as possible. With increasing field strength this state undergoes two transitions involving 
three different electronic configurations. For weak fields up to	ߛ = 0.17633 the 
ground-state arises from the field-free 1ݏଶ2ݏ	configuration. For intermediate fields 
(0.17633 < ߛ < 2.071814) the ground state is constituted by the 1ݏଶ2ିଵ 
configuration and for ߛ > 2.071814 the ground state configuration is 1ି2ݏଵ3݀ିଶ. 
The change of the ground state configuration takes place at	ߛ = 2.071814. It is clear 
that the state 1ݏଶ2ݏ	of the lithium atom is the ground state only for relatively weak 
fields. 
    For each separate configuration, the effect of the increasing field strength consists in 
compressing the electronic distribution towards the z axis. For the	1ି2ݏଵ3݀ିଶ 
configuration, for which all single electron binding energies increase unlimited for	ߛ →
∞, a shrinking process of this distribution in the z direction is also visible. For the 
 ଵ configuration this effect is not distinct for the relevant field strengths. For theିଶ2ݏ1
 state the opposite effect can be observed: the 2s electronic charge distribution	ݏଶ2ݏ1
along the z-axis expands slightly in weak magnetic fields.  
    For the ground state, the Hamiltonian integrals of Li	are easily done when the wave 
function is given by Eq. (4.4). Guevara et al. [44] used this trial wave function to 
calculate energies for the ground-state of the lithium atom in the absence of magnetic 
field. They could obtained very accurate results compared to the corresponding exact 
values. 
    In the presence of a magnetic field an atom and its physics is subject to a variety of 
changes. For instance, the conserved quantum numbers are reduced to the total angular 
momentum ݖ-projection M, the total ݖ-parity Π, the total spin ݖ-projection ܵ and the 
total spin ܵଶ. Since the wave functions and energies of the states strongly depend on 
the magnetic field strength, the ground state energy and configuration are also affected 
by the magnetic field. 
 
 



 

 

5.1 The ground state of the lithium atom 
The only work on the Li atom in a magnetic field with which we can compare our 
results is Ref. [31]. In this reference a HF calculations were performed for weak and 
intermediate magnetic field strengths. For the lithium atom (ܼ = 3), we have calculated 
the total energies of the ground state as functions of the magnetic field. The energy of 
the ground state of the lithium atom in the absence of magnetic field is -7.432748 (Ha), 
which is closer to -7.43275 (Ha) obtained by Jones et al. [31]. 
    The Monte Carlo process described here has been employed for the ground state of 
the lithium atom. Our calculations for the ground-state of lithium atom are based on 
using two accurate trial wave functions	Φଵ and Φଶ. In Table-1 we present our results 
for the behavior of the total energy at different values for the magnetic field strength	ߛ. 
We end our results in Table-1 with a comparison with the findings of Ivanov and Jones 
[29, 31]. Our energy values coincide with those of ref. [31] for weak fields	0 < ߛ <
0.17633	and lie substantially low in the intermediate regime. 
    It is seen from Table-1 that the energy of the lithium atom in the absence of magnetic 
field is -7.432748 (Ha), which is closer to the value -7.4327 (Ha) obtained by Jones et 
al. [31]. Since Ivanov et al.'s results [29] are rounded, one cannot come to a conclusion 
that their values for field strengths	ߛ = 1.8, 3.0, 5.4, 10, 50 and ߛ = 100 are lower than 
our results with respect to the trial wave function	Φଵ.  
    Figure-1 shows the variation of the ground state total energy with respect to the 
magnetic field strength	ߛ	from	ߛ = 0		to	ߛ = 100		using the trial wave function Φଵ. It 
is obvious that the total energy increases monotonically with increasing the magnetic 
field strength because we can expect from the quantum mechanical perturbation theory 
that the energy of the atom increased with increasing ߛ when  ߛ is small, the behavior 
of E in the present method is more reasonable. Furthermore, Figure-2 shows the 
variation of the ground state total energy with respect to the magnetic field 
strength	ߛ	from ߛ = 0	to	ߛ = 100	by using the second trial wave function Φଶ. 
    As can be seen from Table-1, the ground state total energy is raised from -7.432748 
(Ha) at	ߛ = 0 to 71.83664(Ha) at ߛ = 100	a.u. with respect to the trial wave 
function	Φଵ. Furthermore, the total energy is raised from -7.37567 (Ha) at	ߛ = 0 to 
71.75645 (Ha) at ߛ = 100	a.u. with respect to the trial wave function	Φଶ. This state is 
the most tightly bound state for all field strengths because the electrons in this state are 
much closer to the nucleus than in other states. 

Table-1 Total energies of the ground state of the Li atom, in Ha, obtained by using the 
two wave functions of Eq. (4.4) and Eq. (4.5) in the regime of field strength	ߛ =
0,… ,100. The standard deviations, ߪ, of our results are also given. 
 

 Present work Other works ߛ
 (Φଵ)ܧ
 ߪ

 (Φଶ)ܧ
 ߪ

 [ଷଵ]ܧ [ଶଽ]ܧ

0.0000 -7.432748 
7 × 10ିହ 

-7.37567	
9 × 10ିହ 

-7.43275 -7.4327 

0.0010 -7.433196	
5 × 10ିହ 

-7.37596	
5 × 10ିହ 

-7.43326  

0.0018 -7.433624 
4 × 10ିହ 

-7.37624	
4 × 10ିହ 

-7.43365 -7.4337 

0.0020 -7.433893 
2 × 10ିହ 

-7.37753 
7 × 10ିହ 

-7.43375  

0.0050 -7.435158 -7.37784	 -7.43522  



 

 

5 × 10ିସ 5 × 10ିହ 
0.0090 -7.437062 

3 × 10ିସ 
-7.37876	
4 × 10ିହ 

-7.43713 -7.4371 

0.0100 -7.437693 
7 × 10ିସ 

-7.37913	
2 × 10ିହ 

-7.43760  

0.0180 -7.441323 
5 × 10ିସ 

-7.38143	
5 × 10ିସ 

-7.44125 -7.4412 

0.0200 -7.442008 
4 × 10ିସ 

-7.38208	
3 × 10ିସ 

-7.44214  

0.0500 -7.453947 
7 × 10ିସ 

-7.38347	
5 × 10ିସ 

-7.45398  

0.0540 -7.455361	
5 × 10ିସ 

-7.395361	
5 × 10ିସ 

-7.45537 -7.4553 

0.1000 -7.468596 
6 × 10ିସ 

-7.39578	
4 × 10ିସ 

-7.46857  

0.1260 -7.473900 
5 × 10ିସ 

-7.396743	
7 × 10ିସ 

-7.47408 -7.4739 

0.17633 -7.481644 
3 × 10ିସ 

-7.397582	
5 × 10ିସ 

-7.48162  

0.1800 -7.482021 
5 × 10ିସ 

-7.398864	
6 × 10ିସ 

-7.48204 -7.4814 

0.2000 -7.484008 
3 × 10ିସ 

-7.399250	
5 × 10ିସ 

-7.48400  

0.5000 -7.47740 	
5 × 10ିସ 

-7.398655 	
5 × 10ିସ 

-7.47741  

0.5400 -7.473516 	
8 × 10ିସ 

-7.398572	
7 × 10ିସ 

-7.47351 -7.4731 

0.9000 -7.421701 
5 × 10ିସ 

-7.386485	
6 × 10ିସ 

-7.42504 -7.4240 

1.0000 -7.406423 
3 × 10ିସ 

-7.387954	
3 × 10ିସ 

-7.40879  

1.2600 -7.358321 
4 × 10ିସ 

-7.278541	
6 × 10ିସ 

-7.36226 -7.3609 

1.8000 -7.248103 
3 × 10ିସ 

-7.178943	
5 × 10ିସ 

-7.24603 -7.2446 

2.0000 -7.195834 
2 × 10ିସ 

-7.09543	
3 × 10ିସ 

-7.19621  

2.071814 -7.176851 
3 × 10ିସ 

-7.076534	
4 × 10ିସ 

-7.17745  

2.5000 -7.047236 
3 × 10ିସ 

-7.023864	
4 × 10ିସ 

-7.05619  

3.0000 -6.896353 
4 × 10ିସ 

-6.546783	
5 × 10ିସ 

-6.89559  

3.6000 -6.676372 
5 × 10ିସ 

-6.579452	
5 × 10ିସ 

-6.67874 -6.6640 

5.0000 -6.087652 
1 × 10ିସ 

-6.016542	
3 × 10ିସ 

-6.08811  

5.4000 -5.902153 
6 × 10ିସ 

-5.863524	
7 × 10ିସ 

-5.90113 -5.8772 

7.0000 -5.087145  -5.077438	 -5.08909  



 

 

 
 
 

 

 

 

 

 

 

[29]: Total energies obtained from Ref [29]; [31]: total energies obtained from Ref [31]. 
 
 

     
 
Figure-1 The ground state-total energy versus the magnetic         Figure-2 The ground state total energy versus the magnetic 
field strength	ߛ/a.u. from	ߛ = 0	to ߛ = 100 using the trial       field strength	ߛ/a.u. from ߛ = 0	to	ߛ = 100	using the trial wave 
wave function	Φଵ.                                                                           function Φଶ.  
 
5.2 The ground state of the lithium like ions up to ࢆ =  
We have calculated the total energies of the lithium like ions up to ܼ = 10 as functions 
of the magnetic field by using the trial wave function	ϕଷ. In Table-2 we present the 
total energy of the lithium like ions. In most cases of Table-2, the obtained results are 
in good agreement with the exact values. Also, the associated standard deviations have 
very small values, which vary between 10ିହand 10ିସ, this is due to the large number 
of MC points. It is clear from Table-2 that our result for the lithium atom (ܼ = 3) is        
-7.69085, which is more accurate than the others. 
    Figure-3 shows the behavior of the total energies obtained for the variational wave 
function of the form given in Eq. (4.6) versus lithium like ions up to ܼ = 10. All 
energies are obtained in Ha. We end these presentations with a comparison between our 
results and the results of Boblest and Schimeczek [30] in Table-2. 
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2 × 10ିସ 4 × 10ିସ 
10. -3.358745 

4 × 10ିସ 
-3.13743	
6 × 10ିସ 

-3.35777  

20. 3.406354 
6 × 10ିସ 

3.36473 
7 × 10ିସ 

3.49120 
 

 

50. 27.78853 
6 × 10ିସ 

27.55477 
9 × 10ିସ 

27.6916 
 

 

100. 71.83664 
5 × 10ିସ 

71.75645 
6 × 10ିସ 

71.807 
 

 



 

 

Table-2 Magnetic field strengths 	ߛ and energy values E (in Ha) with the ground state-
configuration change for lithium-like ions. The standard deviations,ߪ, of our results 
are also given. 
 
 
 

 

 

 

 

 

 

 

                             

 

 

 

 

                                       [30]:Total energies obtained from Ref [30]. 
 

 
 
                           Figure-3 Total energies of the Lithium like ions versus Z, up to ܼ = 10. 
 
6. Conclusions 
We have applied the VMC method to a magnetized Li atom in order to calculate the 
ground state energy in the magnetic field regime ߛ	 = 	0	~	100 a.u. by using simple 
and compact few-parameter trial wave functions. Moreover, we calculated the total 
energies for the lithium likeions up to ܼ	 = 	10 in a magnetic field. The used functions 
Φଵ, Φ2 and Φଷ are the most accurate among several existing few-parameter trial wave 
functions for the lithium atom and its ions up to ܼ	 = 	10, respectively. Moreover, our 
results for the total energies with respect to the magnetic field provide high accuracy 
results of the ground state energy in the magnetic field regime ߛ	 = 0 ~ 100 a.u. and 
are in good agreement with the most recent accurate values. The energies were plotted 
as function of the magnetic field strengths 	ߛ to show graphically the effect of 	ߛ on the 
total energy.  
    Our results on the total energies are illustrated in figures 1, 2 and 3. These figures 
show in particular the ground state energies for the different regimes of the field 
strength. Finally, we conclude that the presented analysis represents a starting step in 
the mathematical treatment of this quantum-mechanical problem, since for example we 
are in need to examine other forms for the pre-factor term f which take into 
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Z ߛ E (Ha) 
 Our work  ߪ	      

E[ଷ](Ha) 

3 0.12212 -7.69085 
 1 × 10ିସ 

-7.6905 

4 0.14229 -15.0576 
 4 × 10ିହ 

-15.0670 

5 0.15510 -24.9326 
 4 × 10ିହ 

-24.9386 

6 0.16404 -37.3084 
 3 × 10ିହ 

-37.309 

7 0.17059 -52.1764 
 6 × 10ିହ 

-52.184 

8 0.17556 -69.545 
 4 × 10ିହ 

-69.551 

9 0.17947 -89.114 
 7 × 10ି 

-89.418 

10 0.18266 -111.653 
 6 × 10ି 

-111.783 



 

 

considerations the influence of all the electron relative coordinates in the trial wave 
function. Also, we need to examine other forms of the trial wave functions in the 
application of the variational Monte Carlo method in such problems. 
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