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Abstract—The method of simulated annealing is adapted
to the temperature-emissivity separation (TES) problem. A
patch of surface at the bottom of the atmosphere is assumed
to be a greybody emitter with spectral emissivity ǫ(k) de-
scribable by a mixture of spectral endmembers. We prove
that a simulated annealing search conducted according to
a suitable schedule converges to a solution maximizing the
A-Posteriori probability that spectral radiance detected at
the top of the atmosphere originates from a patch with stip-
ulated T and ǫ(k). Any such solution will be nonunique. The
average of a large number of simulated annealing solutions,
however, converges almost surely to a unique Maximum A-
Posteriori solution for T and ǫ(k).

The limitation to a stipulated set of endmember emissiv-
ities may be relaxed by allowing the number of endmem-
bers to grow without bound, and to be generic continuous
functions of wavenumber with bounded first derivatives with
respect to wavenumber.

Keywords—Remote Sensing; Temperature-Emissivity Sep-
aration; Surface Temperature Estimation.

I. INTRODUCTION

TH e temperature-emissivity separation (TES) problem
bedevils any attempt to extract spectral information

from remote sensing in the thermal infrared. A variety of
methods has been proposed for handling the temperature-
emissivity separation (TES) problem [1], [2]. In most of
them, simultaneous LST and band emissivity retrieval de-
pends upon specifying an emissivity value in one or more
reference bands. The MODIS Land Surface Tempera-
ture (LST) algorithm [3] seeks a pair of reference chan-
nels in a part of the thermal spectrum in which the emis-
sivity of natural surfaces displays very limited variation,
and may therefore be regarded as known with good con-
fidence. Multiband emissvities inferred on this basis are
called ”relative” emissivities [4]. Other algorithms of this
nature include the reference channel method [5], emissivity
normalization [6], temperature-independent spectral index
method [7], [8] and spectral ratios [9]. The study by Li et
al. [4] shows that all of these relative emissivity retrieval
algorithms are closely related, and argues that they may
be expected to show comparable performance. The anal-
ysis of Multispectral Thermal Imager (MTI) data [10] de-
pends on collection of radiance from a surface with looks

at nadir and 60 degrees off-nadir, assuming a known an-
gular dependence of emissivity, in order to balance equa-
tions and unknowns. The generalized split-window LST
algorithm [11] likewise uses dual looks in a regression-law
based approach. The ”grey body emissivity” approach [12]
exploits the slow variation of emissivity with wavelength
for certain natural targets, while the physics-based MODIS
LST algorithm [13] exploits observations taken at day and
at night, on the assumption that band emissivites do not
change over periods of a few weeks. A study with the Air-
borne Hyperspectral Scanner [14] compares multiple TES
approaches.
We shall investigate a simulated annealing approach to

the TES problem. The approach is an extension of ear-
lier work on Bayesian TES [15], [16]. Simulated annealing
cannot give a unique solution to this problem, but we shall
prove that the average of a large number of simulated an-
nealing TES solutions converges almost surely to a unique
TES estimate.
This paper will concentrate on the mathematical basis

of the algorithm and a proof of its convergence. A study
of its performance will form the subject of a subsequent
paper.

II. BACKGROUND

Simulated annealing has traditionally been regarded as
a preferred method of global solution for combinatorial op-
timization problems such as Traveling Salesman. In this
paper, we adapt the Metropolis algorithm [17], [18], [19] to
an optimization problem that lacks a unique global optimal
solution: Temperature-emissivity separation. The under-
determined temperature-emissivity separation (TES) prob-
lem, notoriously [1]-[14], has a continuous infinity of solu-
tions that yield the identical optimum value for any cost
or payoff function one cares to choose.
A key part of any simulated annealing algorithm is the

choice of an annealing schedule that causes the posterior
probabilities to transition from nearly uniform to very tight
in such a way as to evade the risk of the MAP search from
converging to a local, rather than a global, optimum. The
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look and feel of the justification for this approach is ergodic.
In what follows we shall mostly concern ourself with the

existence of a solution to the simulated annealing TES
problem, and shall simply assume that a suitable anneal-
ing schedule has been supplied. Factors that enter into the
choice of annealing schedule are described in [18], [19]. Se-
lection of the annealing schedule and sample TES retrievals
will be the subject of a subsequent paper.

III. Simulated Annealing and the

temperature-emissivity separation problem

A. Metropolis Algorithm Search for Maximum A-

Posteriori Solution

Suppose that we have in our possession prior knowledge
that a target patch that forms part of the lower boundary
of the atmosphere is composed of an intimate mixture of
m+1 spectral endmembers {ǫi(k)} at temperature T . For
later convenience, we shall require that spectral emissivi-
ties be bounded continuous functions of wavenumber with
bounded first derivative with respect to wavenumber. The
label k may, depending upon context, refer to wavenum-
ber, or to a finite number of wavenumber-averaged spectral
bands. Except in Section III-B.2, we shall assume the band
interpretation.
The spectral mixture amounts to a mapping into a geo-

metric m-simplex whose vertices have spectral endmembers
at a stipulated temperature T for coefficients. Suppose we
have m + 1 distinct points y0,y1, · · ·ym in Rm chosen so
that the vectors y1 − y0,y2 − y0 · · ·ym − y0 are linearly
independent. Then the set

Km ≡
m
∑

i=0

λiyi (1)

with

λi ≥ 0, ∀ i (2)

and
m
∑

i=0

λi = 1 (3)

is an m-simplex. [20] A spectral mixture with stipulated
weights λi corresponds to the vector 1

x =

m
∑

i=0

λiyi ∈ Rm. (4)

The interior of Km is the subset of Km for which λi > 0,
that is the closure of its interior. The polyhedron of Km,
denoted |Km|, is the set comprised of the points of x ∈ Km

1Should the target patch contain an isothermal checkerboard mix-
ture of end members, the weight λi is to be interpreted as the fraction
of the total surface area of the patch occupied by the i-th subre-

gion λi = Ai
∑

j=1,n
Aj

. The product λiǫi(k) is thus a normalized

emissivity-area product for that subregion. We defer the case of end-
members with differing temperatures to a later date. We believe it,
however, to be a straightforward extension of the reasoning in this
paper.

considered as a subset of Rm, and is a convex compact
subset of Rm.
In the casem+1 = 3, a familiar example of a 2-simplex is

the ternary diagram used to classify phreatic igneous rocks.
The double three-component diagram used in the QAPF
classification [21] scheme is a union of two 2-simplices, and
is an example of a simplicial complex.
For present purposes, the ith pure endmember for the

nth trial is assigned to the ith vertex of Km

yi ⇔ ǫi(k), 0 ≤ i ≤ m (5)

with the spectral mixture corresponding to a point in the
polyhedron of Km,
It is necessary to account for surface temperature in a

somewhat different way. Let the minimum and maximum
physically admissible surface temperatures be Tmin and
Tmax, respectively. Then the temperature of our target
patch is given by

T = (1− λm+1)Tmin + λm+1Tmax (6)

with
0 ≤ λm+1 ≤ 1. (7)

Corresponding to x introduced already, we have from Eq.
(6)

xm+1 ∈ I1, (8)

the unit interval, with

xm+1 ⇔ Tn (9)

The quantity that appears in the forward model for the
nth trial is

〈ǫ(k)Bk(Tn)〉 =
m
∑

i=1

λiǫi(k)Bk(Tn). (10)

Bk(Tn) is the (band-integrated, as needed) Planck func-
tion at temperature Tn. The parametrization of the choice
{Tn, ǫ(k)} in terms of the vector x is a mapping into the
topological product

Hm+1 ≡ I1 ⊗ |Km| (11)

of I1 and |Km|. The set Hm+1 is not a simplex, nor is it
necessarily a simplicial complex. It is, however, a convex
polytope, and is the convex hull of its vertices xi, 0 ≤ i ≤
m+ 1. 2

We score trial mixtures by that we most wish to maxi-
mize: The posterior probability for the observed spectral
radiance to originate from a surface patch with temper-
ature T and spectral emissivity ǫ(k). A standard argu-
ment [15], [16] gives the posterior probability in terms of a
MAXENT estimator

P (I | T, ǫ, σ) = exp

[

− (I − IFM )2

2σ2(Ta)

]

dI

σ(Ta)
(12)

2Although we will not need it in what follows, Hm+1 can be de-
composed into either a simplicial complex or a union of simplices.
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in terms of a forward model

IFM = f

(

m
∑

i=1

λiǫi(k)Bk(Tn)

)

⇔ f(x) (13)

that is some function of the nth trial, in each spectral bin
k. We note that while the equation of transfer is linear,
the dependence of its solution IFM upon ǫi(k)Bk(Tn) need
not be. The assumed noise variance σ2 is shown as hav-
ing a formal dependence upon a parameter, the ”annealing
temperature” Ta, which governs the annealing schedule for
the search for a Maximum A-Posteriori solution. The joint
posterior probability in J spectral bands is proportional to

P ({Ik} | T, ǫ, σ) =
J
∏

k=1

exp

[

− (Ik − IFM (k))2

2σ2(Ta)

]

dI

σ(Ta)

(14)
If radiance Ik in each of J bands originating from a patch

on the Earth’s surface has been detected at the top of the
atmosphere (TOA), the posterior probability that the sur-
face patch is at a temperature T given prior knowledge K
is given by Bayes’ theorem as

P (T, ǫi(k) | {Ik},K) = P (T, ǫ(k) | K)
P ({Ik} | T, ǫi(k),K)

P ({Ik} | K)
.

(15)
The noise variance is assumed known and the functional
dependence of probabilities upon σi is omitted. The prior
probability P ({Ii} | K) for the radiances {Ik} has no de-
pendence upon T and for our purposes may be absorbed
into an overall normalization. [22] Equation (15) is evalu-
ated with aid of the prior probability for the surface to be
at temperature T and have spectral emissivity ǫ(k), given
available knowledge K [15],

P (T, ǫ(k) | K) dT ∝
∏

k

dǫ(k)
dT

T
. (16)

P (T, ǫi(k) | {Ii},K) is the conditional probability for the
hypothesis that the surface temperature is T , and the spec-
tral emissivity ǫk, given observed radiances {Ii} and prior
knowledge K.
Each trial is thus scored according to the joint posterior

probability for observed spectral radiance Ii to result from
surface temperature T and spectral emissivity ǫk,

pn = P (Tn, ǫ(k) | {Ii},K) ≡ pn(x) (17)

where x stands for {x, xm+1}. Thus, in going from the
(n − 1)th to the nth trial, the nth candidate mixture is
selected by Monte Carlo draw and pn for the new trial is
compared to pn−1 for the last one. The probability that it
is accepted is [17], [19]

P =

{

1 if pn/pn−1 ≥ 1
P (Ta) otherwise

(18)

where the probability P (Ta) of taking a downward step in
pn is determined by the annealing schedule. The depen-
dence of P (Ta) on the annealing schedule is symbolized by

the annealing ”temperature” Ta which is taken to decrease
systematically during the MAP search. The actual form
P (Ta) takes in practical calculations is determined empir-
ically.

B. Convergence

B.1 Spectral mixtures comprising a finite number of end-
members

We now examine the question of convergence. Corre-
sponding to the sequence of m-simplices Km as the number
of trials n increases without bound is a sequence of trials
{Tn, ǫi(k)} with associated loci {x} ∈ Hm+1.
As a closed bounded subset of Rm+1, Hm+1 is a com-

pactum. Therefore, as n → ∞, the sequence of trials x
contains a convergent subsequence, whatever the value of
m. Correspondingly, the sequence of posterior probabil-
ities likewise has a convergent subsequence that, by con-
struction, tends to the maximum value of the posterior
probability, i.e., to a MAP solution for T and ǫ(k).
Consider the map x′ = Φ(x) given by

Φ(x) =

{

x′ if pn(x
′)− pn(x) ≥ 0

x otherwise.
(19)

The mapping Eq. (19) gives the action of the Metropolis
algorithm according to Eq. (18) at sufficiently late times
in the annealing schedule that a transition to a state of
decreased posterior probability occurs rarely; in the limit,
almost never. We have noted that at a sufficiently late
point in the annealing schedule, trials that decrease the
posterior probability Eq. (17) will become infrequent. We
may elide any such trials without affecting the convergence
of the subsequence, which then takes the form

xn+1 = Φ(xn) (20)

For all n greater than some M , convergence of the subse-
quence implies the Cauchy condition

d(xn, xn+1) = d(xn,Φ(xn)) < ǫ, (21)

(with the Euclidean norm supplying a suitable metric for
finite m) so that

x → Φ(x). (22)

The mapping Eq. (19) generates a sequence of trials x
for which pn is nondecreasing. By Zorn’s Lemma, the set
comprised of all admissible trials x has at least one element
with a maximal value of pn. We note that maximizing pn
also maximizes the information-theoretic entropy by Eq.
(12). According to the usual statement of the Second Law,
the state of maximum entropy is one of thermodynamic
equillibrium. We may therefore, in a nod to Refs. [17] and
([25] both, call the limit Eq. (22) an equillibrium point.
We note that, in the limit, Eq. (22) amounts to a fixed

point of Eq. (19). Ordinary fixed-point theorems are in-
applicable to Eq. (19) because it is neither continuous nor
semicontinuous: It can map an open set ∈ Hm+1 to a sin-
gleton x′. We can, however, adapt a celebrated construc-
tion introduced by Nash [25] to prove the existence of a
fixed point of an equivalent self-mapping.



4

In fact, we shall prove a somewhat stronger result. Con-
sider

φα = max(0, pn(xα)− pn(x)). (23)

for stipulated x. The function φ is continuous in the mix-
ture xα. Define the mapping N : x → x′ by

x′ =
x+

∑

α φαxα

1 +
∑

α φα

, (24)

where the index α is taken to run over members of any
finite set of admissible trials xα in the execution of the
Metropolis algorithm. (One may think of the collection
of all sequences xα in ensemble-theoretic terms.) Suppose
that x′ is a fixed point under Eq. (24). In Eq. (24) some
values of α correspond to choices for {Ti, ǫi(k)} for which
the posterior probability does not increase:

pn(xα)− pn(x) ≤ 0. (25)

For these values of α,

φα = 0. (26)

If the choice x is fixed under the mapping N in Eq. (24),
then the contribution to x′ from any xβ must not decrease;
therefore, φβ = 0, ∀β, lest the denominator in Φ exceed
unity. Put another way, no other choice of {Ti, ǫi(k)} can
increase the posterior probability. But that is the definition
of an equillibrium point.
If, on the other hand, an equillibrium point x maximizes

the posterior probability Eq. (17), every φα vanishes, so
that x is a fixed point.
Equation (24) is continuous and maps points x into a

convex compactum ⊂ Rm+1. A fixed point

x = N(x) (27)

exists according to the Brouwer fixed-point theorem that,
by construction, maximizes the a-posteriori probability of
x.
The mapping Eq. (19) generates a sequence of trials x

for which pn is nondecreasing and gives the maximal value
of pn in the limit, while Eq. (27) demonstrates the exis-
tence of a trial x∗ for which pn cannot be made greater. In
view of the ensemble-theoretic freedom to choose xα, we
may identify the limit in Eq. (22) with the fixed point in
Eq. (27). Therefore, a convergent subsequence of annealing
trials exists that tends to an equilibrium point. Moreover,
Eq. (27) demonstrates that the annealing search can, in
principle, find x∗ in a finite number of trials. We conclude
that, granted a suitable annealing schedule, there exists at
least one convergent sequence of trials that tends to MAP
surface temperature and spectral emissivity estimates con-
sistent with observed spectral radiances Ik.

B.2 Arbitrary spectral emissivities

The search algorithm just described assumes that the
emissivity ǫ(k) is describable by a mixture of a finite set

of spectral end members. While the spectral mixture char-
acterization of ǫ(k) is of interest in its own right, it may
be considered a stronger hypothesis than is strictly desir-
able. In particular, it seems intuitively reasonable that the
simulated annealing approach to TES should work just as
well-and admit a simpler algorithmic realization-by using
trials with randomly chosen spectral emissivities, rather
than by seeking a spectral mixture from a predetermined
set of endmembers.
In fact, it is possible to reduce the case of search using

arbitrary ǫ(k) for trials to an extension of the analysis in the
preceding section by allowing the number of endmembers
m to grow without limit for each trial n. Instead of self-
mappings into a single polytope with fixedm, we consider a
sequence ofHmn+1 asmn → ∞, for each n in the annealing
schedule.
The connection between arbitrary ǫ(k) and a spectral

mixture with whose endmembers are allowed to grow with-
out limit is easily seen. If we chose xi, 0 ≤ i ≤ mj from a
set of randomly chosen endmembers ǫi(k), it is clear that
any random ǫ(k) can be constructed as a spectral mixture
of other random endmembers. By induction: A single end-
member ǫ1(k) trivially reproduces an arbitrary ǫ(k) if it is
chosen so ǫ1(k) = ǫ(k). Suppose that any ǫ(k) equals a
spectral mixture of j suitably chosen random ǫi(k). Then,
by the inductive hypothesis for j = 2, it is possible to repli-
cate any other ǫ(k) by a mixture of some spectral emissivity
of j endmembers and a (j + 1)st random endmember.
We proceed by constructing the polytope for an arbitrary

number of spectral endmembers. The polyhedron of the m-
simplex Km with unit diameter may be circumscribed by
an m-sphere of radius [23]

r ≤
√

m

2(m+ 1)
. (28)

|Km| is thus a subset of the topological product of n replicas
of the unit interval [0, 1]

|Km| ⊂ Im ≡ [0, 1]⊗ [0, 1] · · · [0, 1] (29)

Every m-simplex is thus contained within the topological
product of a countable infinity of replicas of the unit inter-
val [0, 1] [24]

|Km| ⊂ I∞ ≡ [0, 1]⊗ [0, 1] · · · , (30)

as is every convex polytope

Hm+1 ⊂ I∞. (31)

All the polyhedra |Km| and polytopes Hm+1 are compact,
and by Tychonoff’s theorem, the set I∞ which circum-
scribes every |Km| and Hm+1 is likewise sequentially com-
pact.
I∞ is homeomorphic to the Hilbert cube. The Hilbert

cube

H ≡ [0, 1]⊗ [0,
1

2
] · · · [0, 1

n
] · · · (32)
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is a subset of a Hilbert space with the l2 norm.3 I∞is there-
fore a complete space: The sequence of trials, by sequential
compactness of the Hilbert cube, and sets homeomorphic
to it, possesses a convergent subsequence whose limit is, by
completeness of I∞, an element of that space. The limit
of the convergent subsequence of m-polyhedra is likewise
contained within I∞.

The treatment of convergence in Section III-B.1 requires
modification when the number of spectral endmembers is
allowed to grow without limit. At each n, the self-mapping
N and function φ(x) are applied to Hmn+1 as before to
give existence of an equilibrium fixed point. The simplex
dimension mn is allowed to grow without bound, however.
The resulting sequence of equilibrium points ∈ Hmn+1 pos-
sesses a convergent subsequence ⊂ Hmn+1 for each value
of n.

With that caveat, as n → ∞ the sequence {xn} con-
verges to a MAP estimate of T and an arbitrary ǫ(k) by
the same reasoning used in the previous section. In con-
sequence, the limiting equilibrium point of the convergent
sequence Φ(xn) = xn as mn → ∞ will tend to an estimate
of the MAP value for {T, ǫi(k)} for any admissible ǫ(k).
We conclude that a suitable simulated annealing search
will converge to an arbitrary spectral emissivity that gives
a MAP estimate of {T, ǫi(k)}.

C. Uniqueness

Whatever the dimensionality of the spectral endmem-
ber parameterization of emissivity, sequential compactness
guarantees existence of a convergent subsequence of trials.
In practice, we must expect that there will be more than
one such sequence. The nonuniqueness of solutions to the
TES problem suggests that there will be a continuous in-
finity of possible trials {Tn, ǫi(k)} that yield any stipulated
value for the posterior probability. In any realizable search
strategy, however, we need only contend with a countable
set of convergent subsequences. Amongst these there will
be one for which the posterior probability is greatest.4 This
will be the closest approach to the Maximum A-Posteriori
solution achieved by simulated annealing. In the nature
of things, more than one convergent subsequence may be
expected to exist that yields this same maximal estimate,
with the same asymptotic annealing temperature T∞

a . We
ignore all subsequences except these maximal ones.

In References [15] and [16] expectation values for T and
{ǫ(k)} over the the posterior probability Eqn. (15) were
shown to give good estimates for physical surface temper-
atures and emissivities. We claim that the mean of a large
number of subsequences that converge to the limiting MAP
value will tend to the expectation values for T and {ǫ(k)}
with respect to Eqn. (15).

The MAXENT estimator is constructed from the poste-
rior probability of noise power in a spectral bin. For the
sake of simplicity we assume identical noise power in each

3For any finite dimensional subspace of H however, we may still
take the Euclidean norm when choosing a metric.

4One may appeal to Zorn’s lemma again at this point, if desired.

bin.5 A fully annealed MAP estimate may be thought of
as an individual Bernoulli trial drawn from the likelihood
function for {Tn, ǫi(k)}. By construction, all such trials
are independent and identically distributed with bounded
expectation values.6

Let

T =
1

N

N
∑

i=1

Ti (33)

and

ǫ(k) =
1

N

N
∑

i=1

ǫi(k) (34)

be the means of MAP surface temperature and spectral
emissivity taken over over N convergent subsequences.
Suppose the covariance matrix Σ of the trials to be nonsin-
gular. We invoke the multivariate Central Limit Theorem
to conclude the mean values converge weakly to the multi-
variate Gaussian distribution:

√
N











T − 〈T 〉
ǫ(1)− 〈ǫ(1)〉

...

ǫ(m)− 〈ǫ(m)〉











❀ Nm(0,Σ). (35)

Reliance on the mixing hypothesis in the form given by Eq.
(10), however, brings with it the concern that the relevant
covariance matrix might be singular. In that event, the
strong law of large numbers [30], [31] ensures

T
a.s.→ 〈T 〉 (36)

and
ǫ(k)

a.s.→ 〈ǫ(k)〉, (37)

but without giving estimated variances of the mean values,
such as come with Eq. (35).
To the extent that the estimator used in the simulated

annealing search is zero-mean error, we conclude the esti-
mates yield accurate values for the physical values of T and
{ǫ(k)}. As the spectral weights x, lying as they do between
zero and unity, possess bounded moments, this conclusion
applies to the limiting mean values of {Tn, {xn

m}} as well.

D. Arbitrarily fine spectral resolution

It is worth considering briefly the limiting case of infinite
spectral resolution for ǫ(k). In this section only, k refers
to wavenumber. We shall admit as endmembers any con-
tinuous function ǫi(k) on a compact interval [k1, k2] ∈ R,
with

0 ≤ ǫi(k) ≤ 1, (38)

and bounded first derivative
∥

∥

∥

∥

dǫi(k)

dk

∥

∥

∥

∥

sup

< W (39)

5This assumption is inessential and may be relaxed.
6Moments over Eqn. (15) are bounded despite bad behavior of the

Jeffreys prior at T=0, because of the rapid decay of the exponentials
away from the MAP solution, as L′Hôpital′s rule demonstrates.
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on that interval.
Consider

fmn
(k) = ǫ(k)−

mn
∑

j=0

λjǫj(k), (40)

where, as before, asmn increases without bound, an admix-
ture of arbitrary ǫj(k) is included in the spectral mixture.
A standard argument shows that Eqs. (38) and (39) im-
ply the spectral emissivities and Eq. (40) are all members
of an equicontinuous set. By the Arzelà-Ascoli lemma, as
mn → ∞ there is a subsequence of trial emissivity spectra

ǫt(k) =

mn
∑

j=0

λjǫj(k) (41)

for which an M exists such that for mn > M and for any
positive δ

|fmn
(k)| < δ (42)

uniformly on [k1, k2]. Thus, any physically admissible spec-
tral emissivity ǫ(k) may be approximated arbitrarily well
by a suitable spectral mixture of an unlimited number of
end members.
We may regard the spectral mixture x as an upper func-

tion on [0, 1] and take for a norm the Lebesgue measure in
the limit mn → ∞, with associated metric

d(x, y) =

∫

dµ(x− y). (43)

A mixture x then becomes a vector in a Banach space. As
n → ∞ the sequence of limiting fixed points under the self-
mapping Φ has a convergent subsequence xn which, again,
satisfies the Cauchy condition

d(xn, xn+1) < ǫ (44)

The argument from the Cauchy property of the conver-
gent subsequence of xn to the conclusion that the sub-
sequence converges to a MAP equilibrium point likewise
follows much as before. As n → ∞

0 < p(xn+1)− p(xn) < ǫ, (45)

so that the convergent subsequence of annealing trials,
again, tends to an equilibrium point.

IV. DISCUSSION

In Section III-B we proved convergence of simulated an-
nealing searches for candidate MAP TES solutions. In Sec-
tion III-C we argued that the average of a large number
of these candidate MAP solutions converges almost surely
to a unique estimate of surface temperature and spectral
emissivity that, given a forward model leading to an unbi-
assed estimator for T and {ǫk}, closely approximates the
true values of these quantities.
The motivation for seeking the Nash equilibrium analogy

came from the realization that spectral mixing theory [27],
[28], [29] amounts to the use of mappings into a simplex,

and that iterative choice of weights in the TES problem ac-
cording to an annealing schedule amounts to a self-mapping
into a convex polytope. The analogy with spectral mixing
theory, however, is incomplete: Spectral unmixing, in ei-
ther its reflective or thermal variants, generally appends
and extra end member called ”virtual dark ” or ”virtual
cold”, used to accommodate the effect of contamination
from noise and sensor artifacts. One may see the value of
an extra end member by recalling that the highest order
components in a principle components decomposition of a
multivariate dataset tends to be dominated by noise and
artifacts that do not correlate with the physical content of
lower-order components. The role of a virtual garbage end
member will be discussed in Part Two.

A special case of great interest is the situation in which
one seeks evidence that spectral radiance sensed at the
top of the atmosphere (TOA) contains evidence for the
presence of a specific spectral component. This problem
may be addressed by use of spectral mixtures comprised
of the desired spectral component together with generic
continuous end members whose number is allowed to grow
without bound. The analysis of Section III-B.2, however,
cannot simply be modified by appending an endmember
corresponding to the desired emissivity spectrum, as any
completely random choice of ǫ(k) may well be correlated
with the stipulated spectrum and so introduce a spurious
admixture of that endmember into the analysis. On the
other hand, in a physical mixture of spectral endmembers
such correlations might in fact occur naturally. Without
going into details, we offer some thoughts on this problem.

One way to proceed is to randomly select ǫi(k) for the
background in such a way that the otherwise arbitrary
background emissivity spectra all lie in the null space of
the stipulated endmember. The choice of background ǫ(k)
is thus made in much the same way as an empirical orthog-
onal basis set is selected.

Depending on the intended application, another way to
handle this problem might be to find some way of marginal-
izing on the set of arbitrary background ǫ(k) in the calcula-
tion of the posterior probability Eq. (17). If performed by
the same sort of stochastic sampling typical of simulated
annealing, this calculation would resemble a numerical ap-
proximation to the Feynman-Kac formula.[32]; in essence,
a Monte Carlo path integral calculation.

V. CONCLUDING REMARKS

The practical utility of the mathematical development
in this paper may be questioned. We address briefly two
possible concerns.

While convergence of the algorithm has been proved
to our satisfaction, we have no equally satisfactory esti-
mates of the rate of convergence, with the consequence
that the choice of annealing schedule remains a matter of
trial-and-error. In response to this concern, the availabil-
ity of massively parallel computation made possible by the
ready availability of cheap GPU arrays means that mas-
sive processing requirements need not preclude the use of
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a resource-hungry algorithm if that algorithm can provide
performance not attainable by other approaches. Part Two
of this study will address these issues.
Another legitimate concern is that the spectral emissivity

of natural ground covers in the wild will seldom be known
to the level of accuracy found in Ref. [26]. While true in
general, this concern has not dissuaded other researchers
from relying upon spectral unmixing.
The simulated annealing approach to TES by spectral

unmixing does, however, offer something that other TES
algorithms do not: By construction, it gives (in the limit)
the unique best estimate in a Maximum A-Posteriori sense,
for the remote determination of surface temperature and
spectral emissivity of a patch of ground that is known to
be comprised of a spectral mixture of a stipulated set of
spectral end members.
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