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Abstract

We analyze the electric power load in the Czech Republic (CR) which exhibits
a seasonality as well as other oscillations typical for European countries. More-
over, we detect 1/f noise property of electrical power load with extra additional
peaks that allows to separate it into a deterministic and stochastic part. We
then focus on the analysis of the stochastic part using improved Multi-fractal
Detrended Fluctuation Analysis method (MFDFA) to investigate power load
datasets with a minute resolution. Extracting the noise part of the signal by
using Fourier transform allows us to apply this method to obtain the fluctu-
ation function and to estimate the generalized Hurst exponent together with
the correlated Hurst exponent, its improvement for the non-Gaussian datasets.
The results exhibit a strong presence of persistent behaviour and the dataset is
characterized by a non-Gaussian skewed distribution. There are also indications
for the presence of the probability distribution that has heavier tail than the
Gaussian distribution.
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1. Introduction

The responsibility for the safe and reliable operation is one of the basic
duties of the national Transmission System Operator (TSO). The gradual liber-
alization of the European electricity market led to a necessity of the integration
of mutually uncoordinated transmission systems. The enhancements of these
transmission systems are very intensive in terms of both the time as well as
capital investments and due to this the current energy networks are reaching
their technical limits. That is mostly obvious in case of a massive increase of
the offshore wind power plant installations located in the distant parts, hun-
dreds of kilometers far from the end consumer. The electricity, which cannot
pass through the under-dimensioned transmission lines or so called congestions,
flows through the surrounding system which must accommodate these unsched-
uled flows. Unfortunately, the market with electricity and its mechanisms do
not reflect this fact. In our work, we analyze high frequency data of electricity
consumption in the Czech Republic and we also determine the degree of the
uncertainty of the behavior of the consumers.

The analysis of the electricity prices and loads has been discussed by R.
Weron [1]. He stated that the electricity loads, which are non-stationary time
series, are combinations of both the trends and the periodic cycles with a random
component. It is known from literature that electricity loads are correlated with
the weather (e.g., the temperature, see |1, 12,13]) as well as with socio-economical
changes and processes.

The first method (R/S method) for a non-stationary time series analysis was
invented by H.E. Hurst [4]. Since its introduction the method has been tested on
various datasets and also implemented very effectively on computer |5, |6, [7, §].
The method estimates the Hurst exponent of dataset that is related to the
exponent of the autocorrelation function from the theory of fractional Brownian
motion [9, [10]. A modern alternative of the Hurst exponent estimation for
series with local trends is the Detrended Fluctuation Analysis (DFA) which was
introduced in |11, [12] and used for economy datasets [13], heart rate dynamics
[14, 115], DNA sequences |16, [12, [11], long-time weather records |17], electricity
prices time series |6, [7] and wind speed records [18]. Recently, the DFA was
improved to quantify the fluctuation function of datasets using different metrics
[19, 20]. The MFDFA is able to estimate the exponent of the autocorrelation
function and also the exponent of the probability distribution function. In recent
years, there has been a considerable focus on the investigation of multifractal
cross-correlation between a pair of synchronized datasets [21].

There is a broad literature of modelling and forecasting methods of both
price and/or load time series. It usually incorportes the Autoregressive Mov-
ing Average processes (ARMA), the Vector Autoregression (VAR), the Vector
Error Correction (VECM), machine learning, an adaptive neuro-fuzzy network
and a customers segmentation. Fixed mean, restricted variance and normally
distributed error term represent basic assumptions for finding the best linear
unbiased estimation, for a summary see Ref [22, 123, 24].

In this paper we study a dataset of electric power load in the Czech Republic
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Figure 1: The electric power load in Czech Republic between January 1%t 2008 and December
315% 2011 (top) and the stochastic part P5t°°" obtained by the filtration of the signal (bottom).

since 2008 till 2011 with a one-minute time step. We focus on the properties of
the fluctuation function where the first periodic part of the signal is filtered from
the dataset and then the MFDFA is used. Our main aim is to determine the
Hurst exponent which provides information about the autocorrelation function
as well as the probability distribution. We also validate the assumptions of the
normal (Gaussian) noise distribution and the short-range correlations.

The paper is organized as follows: In section 2 we describe the methodology
of data processing. We first describe the Fourier filtering method and then the
MFDFA. In section 3 we analyze the dataset using the methodology from section
2. Finally, in section 4, we draw the conclusions of our study.

2. Methodology

Human behavior datasets typically exhibit the oscillations with the periods
related to the units of calendar ﬂ, @] and the same applies to the electric
power load. The one-year and one-week oscillations are clearly visible in Fig.
[ but the presence of other frequencies is not so easily observable. To obtain
the information regarding the strength of the oscillations we employ the Power
spectrum which is shown in Fig. It depicts additional periods with the
lengths of one day and 12 hours beside the others. Moreover, since the periods
of the power loads do not follow harmonic functions, we can also observe peaks
at the positions of the integer multiples of a typical trend. The reconstruction
of the original load on the basis of these most significant trend components is
influenced by randomness which is represented by less significant components
of the Power spectrum.
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Figure 2: The power spectrum of the electric power load between 15¢ of January 2008 and 315¢
of December 2011 spanning 4 years in total showing the 1/f property with the extra peaks.
The blue points show one-year (Y), one-week (W), one-day (D) and 12 hour periods (12H).
In the inset of the plot, there is the dependence of the RMSE on S for the different exponents
of filtration (parameter «). The vertical black line shows the actual location of the parameter
[ used for the filtration procedure.

2.1. Motivation
In our study, we focus on the properties of the random art and we use the
15,

MFDFA which is popular among scientists , , , , , , , ] as
an effective tool for extracting the properties of a long-range memory within the
time series.

Since time series generally might be non-stationary, polynomial trends may
still govern them. The basic idea of the DFA is to strip off the trends and use
the residues for the further analysis. In the MFDFA, we are looking for typical
patterns, which govern the time series manifesting a self-affine property defined
by X (c-t) = cf - X (t). The generalized Hurst exponent H, determined by the
method, is the measure of the long term memory in the time series and it is
directly related to the non-integer fractal dimension D.

The disadvantage of this method is that the periodic trends disturb the esti-
mation of the Hurst exponent [@] and therefore, before we employ the method,
we have to filter out the oscillations from the signal.

We use the Fourier transform to execute the filtration. The MFDFA itself
then removes the polynomial trends. The resulting signal is decomposed as

P (t) _ Pstoch (t) + Pdeter (t) , (1)

where Pe" describes the periodic behavior of the system, while P**°°" stands
for the random part.



We used a regression model with dummy variables indicating holidays and
we perform the method described below. We observed negligible differencies
for the low orders of the MFDFA but the observable differences for the higher
orders of the MFDFA. However, the widths of the multifractal spectrums are
negligible in both cases.

2.2. Mathematical description

We execute our analysis in three steps. First, we perform the Fourier trans-
form to separate the signal into the stochastic and the deterministic part by the
Fourier transform. In the next step, we execute the MFDFA. Finally, in the last
step, we calculate the correlated Hurst exponent, which requires shuffling of the
original-time series. It is an improvement of the typically used generalized Hurst
exponent, exploited in cases, where we have an assumption of the non-normally
distributed time series.

2.2.1. Fourier transform filtering

We deal with a signal in the discrete time-steps P (t,,) where t, =t +n- At
and n € M = {1,...,N}. Since the Discrete Fourier Transform of the signal

2mi-n-m

is P(m) = \/—% > e €xp (—ZEE) P (ty,), and the related Power spectrum

S (m) = P (m)-P* (m), where 2* stands for conjugation). The Power spectrum,
see Fig. [ of the signal P (t,) exhibits a power law-like shape with extra
peaks and each coefficient of the Fourier transform is separated into two parts
according to the threshold - m™:
e discrete significant coefficients in the Power spectrum for certain frequen-
cies above the threshold forms |Pdeter (m) |;

o coefficients below the threshold forms Pstoch (m) ;

where a and [ are the parameters set with regard to the chosen RMSE level. We
also note that if Pdeter (m) # 0 then we define argﬁe\t” (m) = argm (m) =
arg P (m). Otherwise arg@" (m) is not defined. The Fourier transform of
the sub-signals peter (m) and Pstoch (m) then follow P (m) = Ppdeter (m) +
m (m), which is the Fourier transform of Eq. [0 By Executing the the
inverse Fourier transform P (t,) = ﬁ > near €xp (ZELY) P (m) we obtain a
deterministic part P (¢,,) from Ppeter (m) . The later part pstoch (m) is
transformed to P$%°°" (¢).

To measure the quality of the filter we use a root mean square error, see
inset of Fig. [2 defined as follows:

YNEE, (P )~ P ) o
. 2
N
Zi:l P (tz)
The level of the error was determined both to decrease the RMSE and to pre-

vent P*'°¢" from incorporating a periodic function that produces the artificial
behavior of the fluctuation function.

RMSE =




2.2.2. Multi-fractal Detrended Fluctuation Analysis

We employ the Multi-fractal Detrended Fluctuation Analysis (MFDFA) for
analyzing the filtered signal P$*°°" (t;). The method is employed as an effective
tool to avoid the artificial behaviour (see Ref. [27]) in the autocorrelation func-
tion or in the Power spectrum due to the oscillation of the electric power loads
and the presence of the peaks in the Power spectrum, see Fig.

Each element {z; = P*°°" (t;)} of the dataset is indexed by i € M. The
application of the MFDFA consists of five steps: ‘

Step 1. Integration of the dataset to produce the dataset X; = > 7_, ;.
The “double” integration of the dataset X ;= >.7_, X; is also performed.

Step 2. Division of the dataset X; into Ly = L%J overlapping segments X j,
with length s and j € {1,...,s}.

Step 3. Use of a standard (least-square) regression method of fixed order M
on each segment X ;; to obtain the local trend T} (x) in the region x € [1, s].

Step 4. Calculation of the sample variance for each of the L, segments of
the original dataset

V) =13 (k- T () 3)
j=1

Step 5. Averaging over all the segments of the original dataset to obtain the

multi-fractal fluctuation function

1
Ly 1,4 q .
(EXivim)"  ifa#0
exp (ﬁ é;l InV (k)) ifg=0
In the analysis we investigate the properties of the fluctuation function Fy (s)
on the window of the size s and on the measure ¢q. Generally, F, (s) grows with

increasing s for all ¢ (see Fig. [ or follow original literature |19, 120, 126, 12, |11,
14, 128)]), following the power law

Fy(s) = (4)

Fy(s) ~ MO (5)

The exponent H (g) is called the Hurst exponent, see Ref. [4]. Generally,
it is related to the long-term autocorrelation or the heavy-tailed distribution of
the governing process, see Ref. [19,[20]. We also note that +1 in Eq. Bl stands
due to the application of the double integration instead of the single integration
of dataset, for discussion, please, see Ref. [19].

We exploit a fractal spectrum to analyze whether the dataset is governed
by a single exponent or by a set of exponents. We define a scaling function by
formula:

7(q) =q-H(q) — 1. (6)

We define a fractal spectrum as the Legendre transform of 7 (¢) using the defi-
nition of a new variable = = Z—;:



f(m)=q 7T (7)

Generally, the fractal spectrum allows to distinguish mono- and multifractal
processes. The width of the fractal spectrum is defined by the formula Ax =
maxger T—minger 7. The value of 7 in peak of f (7) denoted by #™%* represents
the most frequent value of the exponent. As the width of the fractal spectrum
goes wider, the number of admitted exponents increases and the monofractality
shifts to the multifractality.

2.2.3. Shuffling of the stochastic part of the time series

Generally, if a stochastic process generates the time series following a non-
normal (non-Gaussian) distribution, the generalized Hurst exponent H (g) com-
bines the information about the autocorrelation function influenced by the prop-
erties of its probability distribution. We extract the correlation Hurst exponent
He°" (q) that separates the generalized Hurst exponents calculated using the
original time series and calculated using the shuffled ondl.

While executing the shuffling procedure, we destroy the autocorrelations
(if present) within the sample. Then we use a standard MFDFA described in
previous section to the calculate shuffled fluctuation function:

I (s) = Fy ({e}™) (s),

where T stands for the averaging samples of shuffling and {x; means shuf-
fling of the time serie x;. Finally, we estimate the generalized Hurst exponent
of the shuffled time serie H*""/ (¢). As it was noted in the previous paragraph,
the correlation Hurst exponent is then defined by following formula:

}shuf

H"(q) = H(q) — H"""*/(q). (8)

Analogically to the generalized Hurst exponent H (q) we can define the correla-
tion fractal spectrum f°°" («) related to H" (¢) by the formulas [ and [l

2.3. Implementation of the method

We used a multi-threaded implementation of the MFDFA with Zarja library
[29] A which can effectively run on multi-core cluster computers. We also com-
pared the results with the implementations used in [28&, [16, [14]. The filtration
of dataset was executed in the Python using the NumPy and SciPy modules
130, 131].
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Figure 3: The quantile diagram of the probability density function generated from Pt°¢" and

its counterpart generated from it by the regression model with dummy variables Pstoch,dummy

and their comparison with the normal distribution with the same mean p and variance o2.

In the insets, we show the comparison of the probability density functions of P5t°¢" with the
appropriate normal distribution (the normal plot at the bottom, the log-normal scale at the

top).

3. Analysis of dataset

8.1. Data description

Our dataset describes the electric power load of the Czech Republic which
is monitored by national Transmission System Operator (T'SO), CEPS a.s. It
was calculated with high frequency from the stored data using the formula:

M
P(t)=Y _T(ti)—E(t)+1(t)+P.(t), (9)
icl
where T (¢, 1) stands for i-th turbo-generator output of the total number M. The
turbo-generators are directly measured from their minimal value of 100 kW of
installed capacity. E (t) and I (t) are the exports and imports, respectively.
Generally, they are a kind of bottlenecks because there are only few direct

1To shuffle the dataset we utilized Fisher-Yates algorithm that is effective even in the case
of large dataset. In our case, we used the average of 100 samples of shuffling.
2Source code can be found at [http://zarja.sourceforge.neth


http://zarja.sourceforge.net

MF-DFA of electric load in Czech Republic

14
10 T T T T T
1018 b g=-10 +
02 b 93
11 a=-
10 O

103[

10! 102 10° 10* 10°
s [min]

Figure 4: The fluctuation function Fy (s) of the signal Pstoch gbtained using the MEDFA of
the order 4 for various ¢gs. We present ¢ € {—10, —5,—2,0,2, 5,10} from the bottom to the
top, respectively. Each plot is multiplied by factor 10 from its predecessor.

transmission lines between the Czech Republic and the neighboring countries.
Finally, P, (t) stands for the balance of the pumped-storage hydroelectricityﬁ.

The dataset is calculated in real time from various sources and the datalinks
are not generally completely error-proof. Each datapoint is thus accompanied
with the confidence flag indicating the credibility of the source. Some datapoints
are calculated, using Eq. [@] others are interpolated.

Our dataset consists of N = 2,103,840 datapoints and it spans 4 years since
2008 till 2011 with a one-minute time step. In our analysis, we neglect the
confidence flag and we use the electric power load measured in MW only.

3.2. Results of Fourier filtering

The electric power load dataset of the Czech Republic is depicted in Fig. [I1
where the Power spectrum S (w) exhibits the power law with extra significant
peaks, see Fig. Bl and therefore we first execute the Fourier filtering of the

dataset where we assume |Pstoch (m)| = 8- m™® with parameters a and 3 yet
to be determined. In our study we mainly choose o = 0.7 as an approximation of
the best fit of this exponent and in order to the prove robustness of the method,
we also plot the RMSFE for the two other values close to the chosen value of

3There are three of them - Dlouhé strané 600 MW, DaleSice 450 MW and Stéchovice with
48 MW of installed capacity.
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Figure 5: The correlation Hurst exponent H¢°" (¢) estimated using the MFDFA of orders
2—6. In the inset, we show the generalized Hurst exponent H (q) for the same MFDFA orders.
We used the dataset obtained by the regression model with dummy variables indicating the
holidays. The dataset without use of the method follows the analogous pattern.

the parameter «, see inset of Fig. The extensive test of the dependence of
the fractal spectra on the exponent « is shown in Fig.

Then we construct the dependence of the RMSFE on the parameter o and
we choose the break-point of this dependence as an « value. The RMSFE is
defined by Eq. Bland at 8 = 7-10® MW (we note that it is the equivalent of
S (m) ~ m~2%). The P**°°* does not exhibit large periodic fluctuations (see
the bottom part of Fig. [[) and the quantile diagram as well as the probability
density distribution around the mean behave close to the normal (Gaussian)
distribution (Fig. (). We note that the choice of 8 = 2-10° MW leads to both
the significant deviation from normal distribution in its center part as well as
to the increase of the periodicity in the stochastic part. The filtered signal is
shown at the bottom of Fig. [[l and it is then more analyzed.

8.8. Results of application of MFDFA

Firstly, we investigate the probability distribution function of the time series
Pstoch despite of the fact that there can still be temporary trends, see Fig. Bl
The comparison of the quantile diagram, the mean and the variance of Pstoc
with quantiles of the normal (Gaussian) distribution is presented in Fig. [
It clearly shows the deviations for the small values of the power load. In the
lower right inset in Fig. [3 the comparison of the histogram of P*°¢" with
the appropriate normal distribution exhibits a good approximation about the

10
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Figure 6: The multifractal spectrum f (m) of P5t°°" for various orders of the MFDFA method
and initial detreding with parameter « is shown on the top. In the middle we present the
correlation and shuffled multifractal spectrum, respectively.

average. In the upper left inset in Fig. Bl we can observe the deviations of
the small values of the power load from the normal distribution in the semi-
logarithmic scale.

In the next step, we perform the MFDFA to calculate the fluctuation func-
tion Fy (s) and we estimate the generalized Hurst exponent H (g), see the inset
of Fig. [Blin range [2 - 103,2 - 105]. The generalized Hurst exponent depends
on g we expect presence of multifractality. To get valuable information about
the autocorrelation function, we shuffle the dataset to calculate the fluctua-
tion function F;h“f (s). The ratio of the original fluctuation function Fj (s)
against the fluctuation function of the shuffled dataset FqSh“f (s) formulated as

Feor (s) = F;gj]fzs) follows the power law similarily as Fy, (s) see Fig. @l Then

the calculation of the correlation Hurst exponent H°" (s) is performed using
the formula [§ We show H;°" (s) in Fig. [5l and the exponent stands between

11
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Figure 7: The generalized Hurst exponents (top) and the multifractal spectrums (middle,
bottom) of the surrogate datasets which underwent phase randomization. The middle figure
show the multifractal spectrums for the surogate dataset and bottom one illustrates depen-
dence on the subset of the dataset (each color shows the different subset). The top and middle
figure plots dependence on the order of the method. The bottom subplot is for order 4 of the
method.

the values of 0.55 till 0.8 (in contradiction to the calculation of the generalized
Hurst exponent based on the normally distributed time series), showing a strong
persistence. Additionally we note that the estimation of the Hurst exponents is
stable with regard to the orders of the MFDFA.

In Fig. [0l the fractal spectrum f (), the correlation fractal spectrum f¢°” ()
and also the shuffled fractal spectrum f*"“/ (1) of the stochastic part P**°°" are
not concentrated at single m but they are broadly spread among the wide range
of ws. conclude that the processes are multifractal in the distribution as well as
in the correlation function. However, multifractality of the correlation function
is stronger An" = 0.3 in contrast to the multifractality of the distribution
function Ars"*f = 0.15 for the same order of the method.

3.4. Tests of stability of the results

The above mentioned results of the analysis may depend on additional fac-
tors. To address the factors we execute additional tests to show the invariance
of the conclusions.

12



8.4.1. Stability of results with respect to the filter

As a test of the stability of the results, we performed multiple calculations of
MFDFA for different values of the parameters o and 8. The generalized Hurst
exponent as well as the fractal spectrum depend on a particular value of o and
it is independent on the order of the method, see Fig. The change of the
order does not significantly imply the change of the width of the fractal spectra.
On the other hand, the shuffled fractal spectrum is independent on the value
of a and it is localized around % — the value of the Gaussian distribution. The

persistence of the time series is conserved in the proximity of a = 0.7, see the
middle of the Fig.

8.4.2. Surrogate data test
Generally, there are usually two reasons of the multifractality in time series:

e long range correlations of small and large fluctuations within the time
serie;

e heavy-tailed probability distribution function (not necessarily the Lévy
a-stable distribution, see Ref. |32]).

The long-range correlation property and the fat-tailed probability distribution
are investigated by shuffling and by a phase randomization. Shuffling destroys
the correlations within the time series but it preserves the probability distri-
bution. On the other hand, the phase randomization preserves the correlation
function but weakens both the non-Gaussian and non-linear properties of the
time serie. The procedures were firstly proposed in Ref. |33] and a review of its
use can be found in Ref. [34]. We note that this method was initially used in
the context of the MFDFA in Ref. [35].

We practically performed the test on 50 samples of the surrogate datasets
and we present the results in Fig. [l In the graph in the top we can see similar
results of H as in the inset in the Fig. In the middle graphs there is the
result comparable with the top graphs in the Fig. We obtained the width
of the fractal spectra Am = 0.3 and the location of the maximum is around
7 =2 1.2. We conclude that the multifractality is not caused by non-linearity
and beside that there are the indications of the presence of a distribution with
the tail heavier than the Gaussian distribution possess. From theory of the
stable distributions and the stochastic processes, Refs. [32, 136], the Gaussian
distribution possess H (2) = 3 and the Lévy a-stable distribution H (2) = X
where w is the exponent of the tail (for the Gaussian distribution we have
w = 2). We obtained for the shuffled multifractal spectra, where shuffling erases
the autocorrelations with in the time series, see the bottom of Fig. [6] wide peak
around 7*Mf = % Based on the assumption that the probability distribution is
stable we admit presence the Lévy a-stable distribution with the exponents w
close to the values of the Gaussian distribution. We also note that the result is
independent of the set up of the initial filtering method. Additionally the Lévy
a-stable distribution must be skewed due to indications in Fig. . We also tested

13



the influence of using a regression model with dummy variables for the decrease
of the effect of holidays. As you can see on Fig. [3 the result is not significant.

8.4.8. Problems of stationarity and deficient random generators

We applied the Augmented Durbin-Watson test on the Pstocn, and we rejected
the null hypothesis of non-stationarity at the 5% significance level.

As a test of the stability of the results we separated the original dataset into 8
sets with equal size and we executed the proposed method for each segment. The
results of the method are at the bottom of Fig. [[l where the curves representing
the surrogate fractal spectra show the overlap with the width of fractal spectra
A = 0.3 and 7™ = 1.3. These values are approximately equal to the
results of the complete dataset. Thus, we conclude, that the results of the
method are stable with the respect to the change of the scale.

4. Conclusions and Outlook

The main contribution of this paper is an analysis of the high-frequency
electric power loads dataset of the Czech Republic using the improved MFDFA
methodology. We discovered that the power spectrum of the signal exhibits 1/f
noise property with the additional peaks that are caused by a periodic behavior
of the electricity consumption. Based on that fact, we first separated the noise
from modulating signal and then we applied the MFDFA without dealing with
an artificial behavior of the fluctuation function, see Ref. [26]. After that we
exploited the MFDFA for the analysis of the dataset to obtain information about
the autocorrelation function. The major part of the power load is governed by
oscillations. Beside that we report a strong persistence of the power loads where
the distribution function exhibits non-Gaussian properties. The fractal spectra
of both the distribution as well as the autocorrelation function indicate the
presence of multifractality. We also performed a test using surrogate datasets
as well as a test of stationarity to validate the strength of our conclusions.
The analysis suggests the presence of the probability distribution with the tails
heavier than the Gaussian distribution.

Some of our results are in contradiction with the previously published work
analyzing electricity consumption and also with the assumptions of electric-
ity load prediction models [37, [I, 138, 139]. First, our analysis indicates that the
stochastic part of the signal is not normally distributed, second, the distribution
function is skewed and it may even have infinite moments of the probability dis-
tribution and third, the autocorrelation function is persistent. We also conclude
that the estimations of risks based on traditional forecasting methods using the
Gaussian distribution and short-range correlations are not usable due to both
the long-range autocorrelation and the probability distribution’s extremes. The
main part of the load constituting approximately 95% of the signal was filtered
out and it is systematically driven by external factors. Modeling by means of a
regime-switching model makes a good sense to us.

The Czech transmission system is sufficiently dimensioned to cope with elec-
tricity consumption fluctuations contained in the dataset we had at our disposal.

14



The problem that attracts actual attention of the TSO is dealing with the un-
expected flows from north to south of Europe through the Czech Republic, see
Ref. [40], which are caused by inhomogeneity of sources generating electricity
and consumption of electricity in Europe. The presented approach might also be
applied to solve a more complex problem, where in addition to the uncertainty
of the electricity consumption, we may also consider the uncertainty caused
by real power inflows and outflows (imported and exported electricity) or the
uncertainty due to differences between cross-border trading and real electricity
flows (obeying Kirchhoff’s laws). The level of uncertainty is expressed as a de-
viation from foreseeable behavior described by polynomial trends and periodic
oscillations.
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Parameters and symbols of the methodology

| Value | Symbol | Unit |

Electric load P MW

Stochastic part of electric load pstoch MW

Window size 5 min
Multifractal measure (parameter) q 1

Multifractal fluctuation function F, (s) MW
Generalized Hurst exponent H(q) 1
Hurst exponent H=H(2) 1
Correlation Hurst exponent Heor (q) 1
Hurst exponent of shuffled time serie | H*"/ (q) 1
Scaling exponent 7(q) 1
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