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It has been shown recently that a specific class of path-dependent stochastic processes, which
reduce their sample space as they unfold, lead to exact scaling laws in frequency and rank dis-
tributions. Such Sample Space Reducing processes (SSRP) offer an alternative new mechanism to
understand the emergence of scaling in countless processes. The corresponding power law exponents
were shown to be related to noise levels in the process. Here we show that the emergence of scaling
is not limited to the simplest SSRPs, but holds for a huge domain of stochastic processes that are
characterized by non-uniform prior distributions. We demonstrate mathematically that in the ab-
sence of noise the scaling exponents converge to −1 (Zipf’s law) for almost all prior distributions.
As a consequence it becomes possible to fully understand targeted diffusion on weighted directed
networks and its associated scaling laws in node visit distributions. The presence of cycles can be
properly interpreted as playing the same role as noise in SSRPs and, accordingly, determine the
scaling exponents. The result that Zipf’s law emerges as a generic feature of diffusion on networks,
regardless of its details, and that the exponent of visiting times is related to the amount of cycles
in a network could be relevant for a series of applications in traffic-, transport- and supply chain
management.

PACS numbers: 89.75.Da, 05.40.-a, 05.10.Ln, 87.18.Sn, 05.40.Fb

I. INTRODUCTION

Many stochastic processes, natural or man-made, are
explicitly path-dependent. Famous examples include bi-
ological evolution [1–3] or technological innovation [4, 5].
Formally, path-dependence means that the probabilities
to reach certain states of the system (or the transition
rates from one state to another) at a given time depend
on the history of the process up to this time. This statisti-
cal time-dependence can induce dramatic deformations of
phase-space, in the sense that certain regions will hardly
be revisited again, while others will be visited much more
frequently. This makes a large number of path-dependent
complex systems, and processes that are associated with
them, non-ergodic. They are typically mathematically
intractable with a few famous exceptions, including the
Pitman-Yor or ‘Chinese Restaurant’ process [6, 7], recur-
rent random sequences proposed by S. Ulam and M. Kac
[8–10], Pólya urns [7, 11, 12], and the recently introduced
sample space reducing processes (SSRPs) [13].

SSRPs are processes that reduce their sample space as
they progress over time. In their simplest form they can
be depicted by the following process. Imagine a staircase
like the one shown in figure 1a. Each state i of the system
corresponds to one particular stair. A ball is initially
(t = 0) placed at the topmost stair N , and can jump
randomly to any of the N − 1 lower stairs in the next
timestep with a probability 1/(N − 1). Assume that at
time t = 1 the ball landed at stair i. Since it can only
jump to stairs i′ that are below i, the probability to jump
to stair i′ < i is 1/(i − 1). The process continues until

eventually stair 1 is reached; it then halts.
Remarkably, the statistics over a large number of rep-

etitions of SSRPs yields an exact Zipf’s law in the rank-
frequency distribution of the visits of states [13], a fact
that links path-dependence with scaling phenomena in
an intuitive way. SSRPs add an alternative and indepen-
dent route to understand the origin of scaling (Zipf’s law
in particular) to the well known classical ways [14, 15],
criticality [16], self-organised criticality [17, 18], multi-
plicative processes with constraints [19–21], and prefer-
ential attachment models [22, 23]. Beyond their trans-
parent mathematical tractability, SSRPs seem to have
a wide applicability, including diffusion on complete di-
rected acyclical graphs [13], quantitative linguistics [24],
record statistics [25, 26], and fragmentation processes
[27].

SSRPs can be seen as very specific non-standard sam-
pling processes, with a directional bias or a symmetry
breaking mechanism. In the same pictorial view as above
a standard sampling processes can be depicted as a ball
bouncing randomly left and right (without a directional
bias as in the SSRP) over a set of states, see figure 1b.
The ball samples the states with a uniform prior prob-
ability, meaning that all states are sampled with equal
probability. A situation with non-uniform priors is shown
in figure 1c where the different widths of boxes represent
the probability to hit a particular state. In a standard
sampling process exactly this non-uniform prior distribu-
tion will be recovered.

So far, SSRPs have been studied for the simplest case
only, where the potential outcomes or states are sampled
from an underlying uniform prior distribution [13]. In
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FIG. 1: (a) Pictorial view of a SSRP with uniform priors. A ball bounces downwards only with random step sizes. After many
iterations of the process, the visiting probabilities of states i approach ∼ i−1 (Zipf’s law). (b) Random process where a ball
bounces random distances to the left or right over equally-sized boxes (uniform priors). Visiting probabilities p(i) are uniform.
(c) Random process as in (b) but with non-uniform prior probabilities of states (width of boxes). The visiting probabilities
follow the prior probabilities. (d) SSRP with non-uniform prior probabilities. Visiting distributions follow the attractor to a
Zipf’s distribution. This is true for a wide class of prior probabilities. (e) SSRP realized by a diffusion process on a directed
acyclic network towards a target node (orange). The visiting probability of nodes follows a Zipf’s distribution, independent of
the network topology.

this paper we demonstrate that a much wider class of
SSRPs leads to exact scaling laws. In particular we will
show that SSRPs lead to Zipf’s law irrespective of the un-
derlying prior distributions. This is schematically shown
in figure 1d, where the prior distribution is non-uniform,
and states are sampled with a SSRP. The resulting dis-
tribution function will no longer follow the prior distribu-
tion as in figure 1c, but produces Zipf’s law. We provide
show in detail how SSRPs depend on their prior distribu-
tions. Zipf’s law turns out to be an attractor distribution
that holds for practically any SSRP, irrespective of the
details of the stochastic system at hand, i.e. irrespective
of their prior distributions. This extreme robustness with
respect to details of transition rates between states within
a system offers a simple understanding of the ubiquity of
Zipf’s law. Phenomena that show a high robustness of
Zipf’s law with respect to changes on the detailed proper-
ties of the system have been reported before [25, 26, 28].

As an important example we demonstrate these math-
ematical facts in the context of diffusion processes on Di-
rected Acyclic Graphs (DAG). Here Zipf’s distributions of
node visiting frequencies appear generically, regardless of
the weight- or degree distribution of the network. We call
diffusion processes on DAG structures targeted diffusion,
since, in this type network, diffusion is targeted towards
a set of target or sink nodes, see figure 1e. The targeted
diffusion results we present here are in line with recent
findings reported in [29].

II. SSRPS WITH ARBITRARY PRIORS

We start the formal study of the statistics of SSRPs for
the noiseless case which implies – in the staircase picture
– that upward jumps are not allowed (sampling with a

bias). We then study how the statistics of SSRPs behaves
when noise is introduced. In this case the probability of
upward jumps is no longer zero.

A. Noiseless SSRPs

Think of the N possible states of a given system as
stairs with different widths and imagine a ball bouncing
downstairs with random step sizes. The probability of
the downward bouncing ball to hit stair i is proportional
to its width q(i), see figure 1d. Given these prior prob-
abilities q(i), the transition probability from stair j to
stair i is

p(i|j) =

{
q(i)

g(j−1) if i < j

0 otherwise,
(1)

with g(j − 1) =
∑
`<j q(`). Prior probabilities are nor-

malised,
∑
i q(i) = 1. We denote such a SSRP by ψ. One

can safely assume the existence of a stationary visiting
distribution, p, arising from many repetitions of process
ψ and satisfying the following relation:

p(i) =
∑

i<j≤N

p(i|j)p(j) . (2)

Using equation (1), and forming the difference

p(i+ 1)

q(i+ 1)
− p(i)

q(i)
= −p(i+ 1)

g(i)
, (3)

and by re-arranging terms we find that

p(i+ 1)g(i+ 1)

q(i+ 1)
=
p(i)g(i)

q(i)
, (4)
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FIG. 2: Probability distributions arising from numerical real-
izations of SSRPs over 104 states without noise (a), and with a
noise level of λ = 0.5, (b). Colors correspond to various prior
probabilities: polynomial, q(i) ∼ iα, with α = −0.5 (blue cir-
cles), α = 1 (red circles) and α = 2 (green circles) in both pan-
els. The exponential case, q(i) ∼ ei (grey squares) is shown in
panel (a) only. Dashed black lines show the theoretical results
without noise from equation (6) (a), and with noise from equa-
tion (17) (b). Clearly, Zipf’s law (p(i) ∼ i−1) emerges for the
different polynomial prior probabilities, whereas for the expo-
nential prior probability the expected uniform distribution is
obtained (a). All simulations were done with 107 repetitions
(a) and 105 repetitions (b).

where we use the fact that g(i)+q(i+1) = g(i+1). Note
that this is true for all values of i, and in particular

p(i)g(i)

q(i)
=
p(1)g(1)

q(1)
= p(1) , (5)

since g(1) = q(1). We arrive at the final result

p(i) =
q(i)

g(i)
p(1) with

1

p(1)
=
∑
j≤N

q(j)

g(j)
. (6)

p(i) is the probability that we observe the ball ball
bouncing downwards at stair i. Equation (6) shows
that the path-dependence of the SSRP ψ deforms the
prior probabilities of the states of a given system,

q(i)→ p(i) = q(i)
g(i) . We can now discuss various concrete

prior distributions. Note that equation (6) is exact and
does not dependent on system size.

Polynomial priors and the ubiquity of Zipf ’s law:
Given power law priors, q(i) ∼ iα with α > −1, one
can compute g up to a normalisation constant

g(i) =
∑
j≤i

jα =
iα+1

α+ 1
+O(iα) , (7)

which, when used in equation (6), asymptotically gives

p(i) ∼ p(1)

i
, (8)

i.e., Zipf’s law. More generally, this result is true for
polynomial priors, q(j) ∼

∑
i≤m aij

α(i), where the

degree of the polynomial α(m) = max{α(i)} is larger
than −1, in the limit of large systems. Numerical
simulations show perfect agreement with the theoretical
prediction for various values of α, see figure 2a (circles,
triangles, red squares).

Fast decaying priors: The situation changes drastically
for exponents α < −1. For sufficiently fast decaying
priors we have

g(i) ∼
∫ i

1

q(x)dx ∼ g(1) = q(1) . (9)

The fast decay makes the contribution to g from large i’s
negligible. Under these circumstances equation (6) can
be approximated for sufficiently large i’s, as p(i) ∼ q(i).
We encounter the remarkable situation that for fast
decaying priors the SSRP, even though it is history
dependent, follows the prior distribution. In this case
the SSRP resembles a standard sampling process.

Exponential priors: For exponential priors, q(i) ∼ eβi,
with β > 0, we find according to equation (6) that p(i) =
1/N , i.e., a uniform distribution. To see this note that,
up to a normalisation constant, g(i) is a geometric series,

g(i) =

i∑
j=1

eβj = eβ
eβi − 1

eβ − 1
.

Substituting it into equation (6), one finds the exact re-
lation

p(i) = p(1)
1− e−β

1− e−βi
, (10)

which can be safely approximated, for i� 1, by

p(i)→ p(1)

(
1− 1

eβ

)
. (11)

We observe that this is a constant independent of i. Ac-
cordingly, after normalisation, we will have p(i) ∼ 1/N .
Note that exponential priors describe a somewhat patho-
logical situation. Given that a state i is occupied at
time t, the probability to visit state i − 1 is huge com-
pared to all the other remaining states, so that practi-
cally all states will be sampled in a descending sequence:
i→ i− 1→ i− 2→ i− 3→ · · · 1, which obviously leads
to a uniform p. Again, numerical simulations show per-
fect agreement with the prediction, as shown in figure 2a
(grey squares). Switching from polynomial to exponen-
tial priors, we switch the attractor from the Zipf’s regime
to the uniform distribution.

B. Noisy SSRPs

Noisy SSRPs are mixtures of a SSRP ψ and stochas-
tic transitions between states that are not history-
dependent. Following the previous scheme of the stair-
case picture, the noisy variant of the SSRP, denoted by
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ψλ, starts at N and jumps to any stair i < N , accord-
ing to the prior probabilities q(i). At i the process now
has two options: (i) with probability λ the process con-
tinues the SSRP and jumps to any j < i, or, (ii) with
probability 1− λ jumps to any point j < N , following a
standard process of sampling without memory. 1 − λ is
the noise strength. The process stops when stair 1 is hit.
The transition probabilities for ψλ read,

p(i|j) =

{
λ q(i)
g(j−1) + (1− λ)q(i) if i < j

(1− λ)q(i) otherwise .
(12)

Note that the noise allows moves from j to i, even if i > j.
Proceeding exactly as before we get

pλ(i+ 1)

q(i+ 1)

(
1 + λ

q(i+ 1)

g(i)

)
=
pλ(i)

q(i)
, (13)

where pλ(i) depicts the probability to visit state i in a
noisy SSRP with parameter λ. As a consequence we ob-
tain:

pλ(i) = pλ(1)
q(i)

q(1)

∏
1<j≤i

(
1 + λ

q(j)

g(j − 1)

)−1

. (14)

The product term can be safely approximated by

∏
1<j≤i

(· · · )−1
= exp

− ∑
1<j≤i

log

(
1 + λ

q(j)

g(j − 1)

)
≈ exp

− ∑
1<j≤i

λ
q(j)

g(j − 1)


≈ exp

[
−λ log

(
g(i)

q(1)

)]
=

(
g(i)

q(1)

)−λ
, (15)

where we used q(j) ∼ dg/dx|j and log(1 + x) ∼ x for

small x, assuming that x = λ q(j)
g(j−1) � 1. Finally, we get

pλ(i) ∼ pλ(1)

q(1)1−λ

(
q(i)

g(i)λ

)
, (16)

where pλ(1)/q(1)1−λ acts as the normalisation constant.
λ plays the role of a scaling exponent. For λ → 1 (no
noise), pλ recovers the standard SSRP ψ of equation (1).
For λ = 0, we recover the case of standard random sam-
pling, p → q. It is worth noting that continuous SSRP
display the same scaling behaviour (see Appendix A).
The particular case of q(i) = 1/N that was studied in
[13], shows that λ turns out to be the scaling exponent
of the distribution pλ(i) ∼ 1/iλ. Note that these are
not frequency- but rank distributions. They are related,
however. The range of exponents λ ∈ (0, 1] in rank, rep-
resents the respective range of exponents α ∈ [2,∞) in

frequency, see e.g. [14] and Appendix B. For polynomial
priors, q(i) ∼ iα (α > −1), one finds

pλ(i) ∼ iα(1−λ)−λ . (17)

The excellent agreement of these predictions with numer-
ical experiments is shown in figure 2b. Finally, for expo-
nential priors q(i) ∼ eβi (β > 0) the visiting probability
of for the noisy SSRP ψλ becomes p(i) ∼ e(1−λ)βi, see
Tab. I. Clearly, the presence of noise recovers the prior
probabilities in a fuzzy way, depending on the noise lev-
els. The following table sumarizes the various scenarios
for the distribution functions p(i) for the different prior
distributions q(i) and noise levels.

TABLE I: Distribution functions p(i) of SSRPs for the various
prior distributions q(i). SSRP distributions with a noise level
of (1− λ) are indicated by pλ(i).

prior (sub-) logarithmic polynomial exponential
q(i) iα (α < −1) iα (α > −1) eβi

p(i) iα i−1 1
N

pλ(i) noise iα iα(1−λ)−λ e(1−λ)βi

III. DIFFUSION ON WEIGHTED, DIRECTED,
ACYCLIC GRAPHS

The above results have immediate and remarkable con-
sequences for the diffusion on DAGs [30] or, more gener-
ally, on networks with target-, sink- or absorbing nodes.
We call this process targeted diffusion. In particular, the
results derived above allow us to understand the origin
of Zipf’s law of node visiting times for practically all
weighted DAGs, regardless of their degree- and weight
distributions. We first demonstrate this fact with simula-
tion experiments on weighted DAGs and then, in section
III B we analytically derive the corresponding equations
of targeted diffusion for the large class of sparse random
DAGs, that explain that Zipf’s law must occur in node
visiting frequencies. In appendix B proofs are given for
the cases of exponential and scale free networks.

We start with the observation that SSRPs with uni-
form priors can be seen as a diffusion processes on a
fully connected DAG, where nodes correspond one-to-
one to the stairs of the above examples. This results in
a Zipf’s law of node visiting frequencies [13]. However,
such fully connected networks are extremely unlikely to
occur in reality. To create much more realistic struc-
tures, we generate arbitrary random DAGs following e.g.
references [30, 31]. Start with any undirected connected
graph G(V,E), with V the set of nodes, E the set of
edges, and P (k) the degree distribution, see figure 3a.
Next, label each node in any desired way that allows an
ordering, for example with numbers 1, ..., N , see figure
3b. The labelling induces an order that determines the
directionality of links in the graph: if nodes i and j are
connected, we draw an arrow from i to j, if i > j, or
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FIG. 3: Building a DAG. (a) Start with any undirected, con-
nected graph. (b) Place a unique label 1, ..., N on each node
of the graph. (c) draw an arrow from i to j, if i > j, or from
j to i, if i < j. The strict ordering induced by the labelling
prevents the emergence of cycles [30, 31]. Such a graph will
have at least, one target or a sink node, in the depicted case
this is node i = 1. A diffusion process of this graph, where
random walkers are randomly placed on the graph and follow
the arrows at every timestep, is called targeted diffusion with
target node i = 1.

from j to i, if i < j, as seen in figure 3c. We denote
the resulting DAG by GD(V,ED). The order induced by
the labelling mimics the order (or symmetry breaking)
that underlies any SSRPs. By definition, there exists, at
least, one target node, ”1”.

Noise can be introduced to this DAG construction as
follows: if node i and j are connected in G and i > j
one can assign an arrow from i to j (as before) with
probability λ, or place the arrow in a random direction
with probability 1 − λ. This will create cycles that play
the role of noise in the targeted diffusion process. This
network is no longer a pure DAG since it contains cycles.

A. Targeted diffusion on specific networks

A diffusion process on GD is now carried out by placing
random walkers on the nodes randomly, and letting them
take steps following the arrows in the network. They dif-
fuse according to the weights in the network until they
hit a target node and are then removed. We record the
number of visits to all nodes and sort them according
to the number of visits, obtaining a rank distribution of
visits1. We show the results from numerical experiments
of 107 random walkers on various DAGs in figure 4. In
Figs. 4a and 4b we plot the rank distribution of visits to
nodes for weighted Erdős-Rényi (ER) DAG networks. A
weight wik is randomly assigned to each link eik ∈ E from
a given weight distribution p(w). Weights either follow a
Poisson distribution, figure 4a, or a power-law distribu-
tion, figure 4b. In both cases Zipf’s law is obtained in the

1 Rank ordering is not necessary whatsoever to see the clear agree-
ment with the theoretical predictions. Almost identical results
are seen when we order nodes according to their numerical or-
dering.
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FIG. 4: Node visiting rank distributions from diffusion on
weighted DAGs, built over Erdős-Rényi graphs (see DAG con-
struction) with p = 1/2, and N = 100 nodes (a) and (b).
The weight distribution wik follows (a) a Poisson distribution
with average µ = 6, and (b) a power-law p(w) ∝ w−1.5 that
is shown in the inset. In both cases the predicted Zipf’s law
is present (black dashed line), even though the networks are
small. In (a) the DAG condition is violated (red squares) by
assigning random directions to a fraction of 1− λ links. This
allows for the presence of cycles, which play the role of noise
in a SSRP. A power law with the exponent λ is observed in
the corresponding rank distribution, perfectly in line with the
theoretical predictions (dashed black lines). (c) A targeted
diffusion experiment on a DAG that is based on the cita-
tion network of HEP ArXiv repository, containing 104 nodes
belonging to the 104 most cited papers. (d) The results of
the same experiment on an exponential network of the same
size is given. The inset shows the respective degree distribu-
tions. Despite the huge topological difference between these
two graphs, the rank distribution of visits to nodes is clearly
of Zipf’s type for almost four decades in both cases.

rank distribution of node visits. For the same network
we introduce noise with λ = 0.5 and carry out the same
diffusion experiment. The observed slope corresponds
nicely with the predicted value of λ, as shown in figure
4a (red squares) for the Poisson weights.

We computed rank distributions of node visits from
diffusion on more general network topologies. In figure
4c we show the rank distribution of node visits where the
substrate network is the citation network of High Energy
Physics in the ArXiv repository [33, 34], and the order
is induced by the degree of nodes. Figure 4d shows the
rank distribution of node visits from diffusion on an ex-
ponential DAG, that is generated by non-preferential at-
tachment [35], where the order of nodes is again induced
according to the degree. Both networks show Zipf’s law
in the rank distribution of node visits. This is remarkable
since both networks are drastically different in topologi-
cal terms.
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B. Analytical results for targeted diffusion on
random DAGs

For diffusion on random DAGs it is possible to ob-
tain analytic results that are identical to equation (1),
showing that Zipf’s law is generally present in targeted
diffusion.

We first focus on the definition of the prior probabil-
ities in the context of diffusion on undirected networks.
As stated above, q(i) is the probability that state i is vis-
ited in a random sampling process, see Figs. 1b and 1c.
In the network context this corresponds to the probabil-
ity that node i is visited by a random walker. Assume
that we have an undirected random graph G(V,E) and
that the N nodes are labelled 1, ...N . The probability
that a random walker arrives at node i from a randomly
chosen link of E, the network-prior probability of node
i, is easily identified as

qG(i) ≡ ki
2|E|

, (18)

where |E| is the number of links in the graph; the factor
2 appears because a link contains 2 endpoints. If σG ≡
{k1, ..., kN} denotes the undirected degree sequence qG,
is a simple rescaling of σG, i.e., qG = 1

2|E|σG. Using the

same notation as before, the cumulative network-prior
probability distribution is gG(i) ≡

∑
`≤i qG(`).

From equation (18) and by assuming that in sparse
graphs the probability of self-loops vanishes, i.e., p(eii)→
0, one can compute the probability that a link eij exists
in G, [32]

p(eij ∈ E) =
k(i)k(j)∑
`≤N k(`)

= 2|E|qG(i)qG(j) , (19)

where the second step is possible since
∑
`≤N k(`) = 2|E|.

With this result, the out-degree of node labelled i in the
graph GD can be approximated by

kout
i =

∑
j<i

p(eij ∈ E)

= 2|E|
∑
j<i

qG(i)qG(j)

= 2|E|qG(i)
∑
j<i

qG(j)

= 2|E|qG(i)gG(i− 1) . (20)

Note that to compute kout
i we only need take into account

the (undirected) links which connect i to nodes with a
lower label j < i, according to the labelling used for the
DAG construction outlined above.

We can now compute the probability that a random
walker jumps from node i to node j on the DAG GD,

pG(j|i) =

{
p(j|i, eij ∈ E)p(eij ∈ E) if i > j
0 otherwise .

(21)

This is the network analogue of equation (1). Here
p(j|i, eij ∈ E) is the probability that the random walker
jumps from i to j given that i > j and the link eij exists
in G. Clearly, this probability is

p(j|i, eij ∈ E) =
1

kout
i

= (2|E|qG(i)gG(i− 1))
−1
, (22)

Using Eqs. (19) and (22) in equation (21) we get

pG(j|i) =

{
qG(j)
gG(i−1) ; if i > j

0 otherwise ,
(23)

which has the same form as equation (1). Note that this
expression only depends on qG, i.e. the degrees of nodes
in the undirected (!) graph G. The solution of equation
(23) is obtained in exactly the same way as before for
equation (1), and the node visiting probability of targeted
diffusion on random DAGs is

p(i) ∝ qG(i)

gG(i)
, (24)

which is the network analog of equation (6).
We finally show the results for a DAG that is based

on an ER graph. For an ER graph, by definition, the
probability for a link to exist is a constant r ∈ (0, 1], and
p(eij ∈ E) = r. Again we label all nodes by 1, ..., N and
build a DAG GDER as described above. It is not difficult
to see that the out-degree of node i is kout(i) = (i− 1)r,
and, using this directly in equation (21), we get

pG(j|i) =

{
1
i−1 if i > j
0 otherwise ,

(25)

which is the standard equation for a SSRP with uniform
prior probabilities q, [13]. This means that for the ER
graph qG(i) is a constant and gG(i) ∼ i. Using this in
equation (24), we find that the node visiting probability
is exactly Zipf’s law, with respect to the ordering used
to build the DAG,

p(i) ∝ i−1 . (26)

Note that this result is independent of r and, therefore,
of the average degree of the graph.

IV. DISCUSSION

We have shown that if a system, whose states are char-
acterized by prior probabilities q, is sampled through a
SSRP, the corresponding sampling space gets deformed,
in a way that Zipf’s law emerges as a dominant attrac-
tor. This is true for a huge class of reasonable prior
probabilities, and might be the fundamental origin of
the ubiquitous presence of Zipf’s law in nature. On the
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theoretical side we provide a direct link between non-
ergodicity as it typically occurs in path-dependent pro-
cesses and power laws in corresponding statistics. For-
mally, SSRPs define a microscopic dynamics that results
in a deformation of the phase space. It has been pointed
out that the emergence of non-extensive properties may
be related to generic deformations of the phase space
[36–38]. Consequently, SSRPs offer a entirely new play-
ground to connect microscopic and macroscopic dynam-
ics in non-equilibrium systems. Our results could help
to understand the astonishing resilience of some scaling
patterns which are associated with Zipf’s law, such as the
recent universality in body-mass scaling found in ecosys-
tems [39].

We discussed one fascinating direct application of this
process: the origin of scaling laws in node visit frequen-
cies in targeted diffusion on networks. We demonstrated

both theoretically and by simulations that the immense
robustness of these scaling laws in targeted diffusion –
and Zipf’s law in particular – arises generically, regard-
less of its topological details, or weight distributions. The
corresponding exponents are related to the amount of cy-
cles in a network. This finding should be relevant for a
series of applications of targeted diffusion on networks
where a target has to be found and reached, such as in
traffic-, transport- or supply chain management. We con-
jecture that these findings and variations will apply for
search processes in general.
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Appendix A: Continuous SSRPs

Consider the interval Ω = (0, N ]. The prior probability
density q is defined from a differentiable function f : Ω→
R+ as

q(x) =

{
f(x) if x ∈ [1, N ]
f(1) otherwise .

(A1)

Since this represents a probability density∫ N

0

q(x)dx = 1 .

The region (0, 1) where q(x) = f(1) acts as a trapping
region of finite measure. As we shall see, the particu-
lar choice of the length of such trapping region has no
consequences for the global statistical patters, as long as
it is finite. We will refer to this trapping region as Ω1.
In addition, for any x ∈ Ω \ Ω1 we define the interval
Ωx = (0, x), which is the sampling space from point x.
These sampling spaces are now continuous but still can
be ordered by inclusion, meaning that if x, y ∈ Ω and
x > y, then Ωy ⊂ Ωx.

1. Noiseless continuous SSRPs

With the example of the staircase in mind, we can de-
scribe a SSRP ψ over a continuous sampling space, see
figure (5). We start in the extreme of the interval, x = N ,
and we choose any point of Ω following the probability
density q. Suppose we land in x < N . Then, at time
t = 1 we choose at random some point x′ ∈ Ωx following
a probability density proportional to q. We run the pro-
cess until a point z ∈ Ω1 is reached. Then the process
stops. The SSRP ψ can be described by the transition
probabilities between the elements of x, y ∈ Ω such that
y > 1 as follows,

p(x|y) =

{
q(x)/g(y) iff x < y
0 otherwise ,

(A2)

where g(y) is the cumulative density distribution evalu-
ated at point y,

g(y) =

∫
Ωy

q(x)dx =

∫ y

1

q(x)dx+ f(1) . (A3)

We are interested in the probability density p which
governs the frequency of visits along Ω after the sampling
process ψ. To this end, we start with the following self-
consistent relation for p,

p(x) =

∫ N

x

p(x|y)p(y)dy . (A4)

Recall that the integration limits
∫ N
x

represent the fact
that a particular state x can only be reached from a state

http://konect.uni-koblenz.de/networks/cit-HepPh
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FIG. 5: Continuous SSRPs: A ball bouncing to the left on
a continuous interval Ω = [0, N ]. At each time step it lands
at a given point of Ω according to a prior probability density
q(x)dx. The process stops when the ball falls into a region of
finite measure, represented here as the interval [0, 1].

y > x. By differentiating this integral equation we ob-
tain:

dp

dx
=

d

dx

(∫ N

x

p(x|y)p(y)dy

)
. (A5)

In agreement to equation (A2), p(x|y) = q(x)/g(y) if
y > 1 and y > x. Equation (A5) can be expanded using
the Leibniz rule:

dp(x)

dx
=

∫ N

x

dp(x|y)

dx
p(y)dy − q(x)

g(x)
p(x)

=
1

q(x)

dq(x)

dx

∫ N

x

q(x)

g(y)
p(y)dy − q(x)

g(x)
p(x)

=
1

q(x)

dq(x)

dx
p(x)− q(x)

g(x)
p(x) . (A6)

This leads to a differential equation governing the dy-
namics of SSRPs under arbitrary prior probabilities q,

dp(x)

dx
=

(
1

q(x)

dq(x)

dx
− q(x)

g(x)

)
p(x) . (A7)

The above equation can be easily integrated in the inter-
val (1, N ]. Observing that equation (A7) can be rewritten
as

dp(x)

p(x)
=

[
d

dx
log

(
q(x)

g(x)

)]
dx , (A8)

One finds:

log p(x) = log

(
q(x)

g(x)

)
+ κ , (A9)

κ being an integration constant to be determined by nor-
malisation. The above equation has as a general solution
for points x ∈ (1, N ]

p(x) =
1

Z

q(x)

g(x)
, (A10)

where Z is the normalisation constant

Z =

∫ N

0

q(y)

g(y)
dy . (A11)

This demonstrates how the prior probabilities q are de-
formed when sampled through the SSRP ψ in the region
x ∈ (1, N ]. This is the analogous to equation (6) of the
main text.

2. Continuous SSRPs with noise

Suppose the interval Ω = (0, N ] and let us define a
probability density q on Ω as in equation (A1). The
noisy SSRP ψλ starts at x = N and jumps to any point
in x′ ∈ Ω, according to the prior probabilities q. From
x′ the system has two options: (i) with probability λ the
process jumps to any x′′ ∈ Ωx′ , i.e., ψλ continues the
SSRP we described above or, (ii) with probability 1− λ,
ψλ jumps to any point x′′ ∈ Ω, following a standard
sampling process. The process stops when it jumps to a
member of the sink set, namely to a x ≤ 1. The transition
probabilities now read (∀y > 1),

p(x|y) =

{
λq(x)/g(y) + (1− λ)q(x) iff x < y
(1− λ)q(x) otherwise ,

(A12)

Note that the noise enables the process to move from y
to x, in spite x > y. As we did in equation (A4), we can
find a consistency relation for the probability density pλ
of visiting a given point of Ω along a noisy SSRP,

pλ(x) = λ

∫ N

x

p(x|y)p(y)dy + (1− λ)q(x). (A13)

If we take the derivative

dpλ(x)

dx
= λ

d

dx

(∫ N

x

p(x|y)pλ(y)dy

)
+ (1− λ)

dq(x)

dx

= λ
dq(x)

dx

∫ N

x

pλ(y)

g(y)
dy − λq(x)

g(x)
pλ(x) +

+(1− λ)
dq(x)

dx

=
λ

q(x)

dq

dx

∫ N

x

q(x)

g(y)
pλ(y)dy − λq(x)

g(x)
pλ(x) +

+(1− λ)
dq(x)

dx

=
1

q(x)

dq(x)

dx
(pλ(x)− (1− λ)q(x))− λq(x)

g(x)
pλ(x) +

+(1− λ)
dq(x)

dx

=
1

q(x)

dq(x)

dx
pλ(x)− λq(x)

g(x)
pλ(x) ,

where the fourth step is performed taking the definition
of pλ(x) given in equation (A13). We therefore have the
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following differential equation for pλ(x),

dpλ(x)

dx
=

(
1

q(x)

dq(x)

dx
− λq(x)

g(x)

)
pλ(x) , (A14)

which can be rewritten as

dpλ(x)

pλ(x)
=

d

dx
log

(
q(x)

gλ(x)

)
dx .

Integrating it overall x ∈ (1, N ], we obtain

pλ(x) =
1

Zλ

q(x)

gλ(x)
, (A15)

which again demonstrates how the noisy SSRP deforms
the underlying prior probabilities q, Zλ being the nor-
malisation constant. Interestingly, if λ < 1, i.e., if we
consider a noisy SSRP, λ has the role of a scaling ex-
ponent. We observe that we recover the standard SSRP
ψ described above in equation (A2) if λ → 1 (no noise)
and the Bernouilli process following the prior probabili-
ties q if we have total noise, as expected. The results for
the continuous SSRPs are similar to the discrete case;
compare equation (A15) and equation (16).

Appendix B: Targeted diffusion on networks with
different topologies

In the following we find the mapping between the de-
gree distribution P (k) and the undirected ordered de-
gree sequence. Once we know the degree sequence, we
can compute the network prior probabilities qG thanks
to equation (18). Then, we apply directly equation (24),
which gives us the general form of statistics of node visits
for targeted diffusion.

Without any loss of generality we assume that there
is a labelling of the nodes of the graph G, such that the
undirected degree sequence σG, given by

σG ≡ {k1, ..., kN} , (B1)

is ordered, meaning that

k1 ≥ k2 ≥ ... ≥ kN . (B2)

In the following we will assume that the degree dis-
tribution P (k) is known and that we want to infer the
formal shape of σG, if any. In general, a formal map-
ping from P (k) to σG is hard or even impossible to find.
However, it can be approximated. Let us assume that
there exists a function f(i) = ki that gives the degree
of the i-th node of the ordered degree sequence of the
undirected graph G. Suppose, for the sake of notational
simplicity, that ki = k. Clearly, f−1(k) = i. From this
we infer that there are approximately i− 1 nodes whose
degree is higher than k. The probability of finding a ran-
domly chosen node whose degree is higher than k, P<(k),
is P<(k) =

∑
k′>k P (k′). The number of nodes with de-

gree larger than k will thus be approached by NP<(k).

Under the assumption that the number of nodes is large
one can argue that

f−1(k) ∼ N
∫ ∞
k

P (k′)dk′ . (B3)

The identification of f from the knowledge of P (k)
provides the functional shape of the ordered degree se-
quence and, consequently, the network-prior probability
distribution.

Exponential networks: Exponential networks have a
degree distribution given by

P (k) ∝ exp(−χk) , (B4)

with χ > 0. The direct application of equation (B3)
reads

f−1(k) ∼ N exp(−χk) , (B5)

leading to

f(i) ∼ χ−1 log

(
N

i

)
. (B6)

Since we assumed that ki = f(i), and knowing, from
equation (18), that q(i) = ki/2|E|, the network-prior
probabilities for exponential networks, qexp, are given by

qexp(i) ∝ 1

χ
log

(
N

i

)
. (B7)

For large graphs we can approximate gG(i) by

gG(i) =
∑
`≤i

qexp(`) ∼
∫ i

1

log

(
N

x

)
dx

∼ i log

(
N

i
+ 1

)
+O(logN) , (B8)

and equation (24) asymptotically becomes

p(i) ∝
log
(
N
i

)
i log

(
N
i + 1

) → 1

i
. (B9)

Targeted diffusion on exponential DAG networks there-
fore leads to Zipf’s law in node visiting frequencies.

Scale-free networks: Scale-free networks have a degree
distribution P (k) ∼ k−α. For α > 2, which is the most
common case, one has

f−1(k) ∼ Nk1−α , (B10)

which implies

f(i) ∼ i−β , (B11)

with −β = (1−α)−1. Therefore, the network-prior prob-
abilities for scale-free networks, qSF , are given by

qSF (i) ∝ i−β . (B12)
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As a consequence the cumulative network-prior distribu-
tion, gSG, is (approximating the sum with an integral)

gSF (i) ∼ i−β+1 . (B13)

Using equation (24), this leads to

p(i) ∼ i−β

i−β+1
→ 1

i
. (B14)

Again Zipf’s law appears in the node visiting probabili-
ties.
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