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We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of
a cumulene are positioned along the primary axis so they can participate only in transverse and longitudinal
motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional
stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta,
which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than
the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass.
For the same reason the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while
the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with
asymmetry of zero point atomic vibrations. Molecular systems for experimental evaluation of the predictions
are proposed.
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I. INTRODUCTION

Highly efficient and fast vibrational energy transport
on a molecular scale has been a subject of theoretical and
experimental investigations in recent decades. The pos-
sible applications in biochemistry, organic chemistry and
nanotechnology include development of efficient cooling
in microscopic and nanoscopic molecular systems, such as
nanowires1 and optical limiters, designing efficient energy
transport schematics for energy signaling2, as well as op-
timizing and even promoting chemical reactions by con-
centrating the excess energy at the reaction center3,4. It
is suggested that quantum vibrational excitations can be
manipulated similarly to electrons and photons, thus en-
abling controlled heat transport. Moreover, delocalized
excitations (phonons) can be used to carry and process
quantum information5–7. The highest transport speed
was found in alkanes (1.44 km/s)8.

Possible candidates capable to maintain fast and
efficient energy transport are oligomers because of
their periodic structure9. In such systems vibra-
tional states can be substantially delocalized because
of the strong interaction of equivalent site states,
so that ballistic energy transport takes place as a
free-propagating wavepacket. The ballistic constant-
speed transport has been observed in bridged azulene-
anthracene compounds10, polyethylene glycol oligomers2,
alkanes8,9,11, and perfluoroalkanes12,13 and the theory de-
scribing this transport and its possible breakdown due to
decoherence has been suggested1,14–16.

Phonon wavepackets in carbon based polymer chains
can propagate with the group velocity as high as 10 km/s
because of a high strength of covalent bonds17,18. Yet
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the maximum energy of singly excited vibrations does
not exceed ca. 3000 cm−1, as the motion is associated
with displacements of rather heavy nuclei. Thus, the bal-
listically transferred energy is much smaller than a typi-
cal bond energy exceeding 1 eV (∼ 105 cm−1). Involve-
ment of multi-phonon transport to increase the amount
of transferred energy is expected to enhance the energy
relaxation/dissipation. Much larger energy can be car-
ried by excitons, delocalized electronic states19. However
molecular excitons are usually strongly coupled to the en-
vironment resulting in incoherent energy transport (see
e. g. exciton transport in DNA20,21).

Here we propose to exploit the special vibrational
modes of entirely electronic nature capable of efficient
delivering energies in the eV range. Such modes can ex-
ist in molecules having all atoms aligned along the single
axis (see Figure 1) and they are formed by propagat-
ing torsional oscillations of electronic nature. Nuclei do
not participate in these oscillations because their rotation
about the axis they located on is degenerate.

Considering a linear molecule as an elastic rod, four
gapless phonon branches are expected based on symme-
try, including longitudinal, two transverse, and one tor-
sional modes22,23. The longitudinal and torsional oscilla-
tions of frequency ω and wavevector q are characterized
by an acoustic spectrum ω = cq with a relatively high
speed of sound, c. As oppose to an elastic rod, for a
molecular chain with all atoms located on the same axis,
there is no nuclear contribution to the torsional vibra-
tions, since the chain is completely linear. Nevertheless,
the system can possess a remarkable torsional stiffness
due to anisotropic arrangement of its electronic clouds.
Such situation is found in cumulenes, featuring a chain of
carbon atoms coupled to each other by double bonds24,
where the anisotropy results from the π-bond anisotropy
between carbon atoms (see Figures 1(a), 2). Similar con-
ditions can be realized in transition metals where atoms
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(a)cumelene

(b)polyyne

FIG. 1. Carbyne modifications: (a) cumulene molecule with
orthogonal double bonds; (b) polyyne molecule with alternat-
ing single and triple bonds

FIG. 2. Cumulene molecule torsionally strained along pri-
mary axis

can form chain bridges between junctions25–27.
The torsional sound should exist in such system and

we expect it to be of a purely electronic nature because
nuclei are positioned along the primary axis and cannot
participate in the torsional motion. Since electrons are
much lighter than atoms it is natural to expect the speed
and a single quantum energy to be much higher than
those for nuclei vibrations.

In the present study we performed a first principle in-
vestigation of the electronic torsional waves in cumulene
chains. We found that the speed of sound in cumulenes
to be as high as 1000 km/s and a maximum energy of the
quantum as high as 10 eV. Because this type of motion
is not related to the atomic vibrations and differs from
Langmuir waves in plasma, the corresponding quantum
quasi-particle is neither a phonon nor a plasmon. To
avoid confusion we will call a quantum of torsional elec-
tronic oscillations a torsiton. The effect of zero point
vibrations leading to the torsiton spectral gap of the or-
der of 0.03 eV is estimated. The possible ways to observe
torsitons experimentally are discussed.

We consider the torsional oscillations of a cumulene in
a dielectric environment, so the electronic excitations can
be neglected. Although the metallic behavior of cumu-
lene was predicted theoretically24,28 it is not confirmed

experimentally29,30 so the nature of electronic excitations
remains unclear. Here we ignore electronic excitations
assuming that there is the significant spectral gap (cf.
Ref.29).

II. THE SYSTEM

A linear cumulene chain is a compound containing a
sequence of n carbon atoms with (n − 1) double bonds
between them R=C=(C=)n−2C=R31. Quantum chem-
istry calculations were performed for the simplest termi-
nation of cumulene chain by two hydrogen atoms on each
side; an example of cumulene molecule H2C=(C=)3CH2

is shown schematically in Figure 1(a). One can see that
orthogonal π-bonds between carbon atoms can provide
rigidity with respect to twisting with remarkable tor-
sional stiffness, while much smaller stiffness is expected in
another carbyne modification, polyyne, which is a chain
of carbon atoms with alternating single and triple bonds
between them (see Figure 1(b)). For cumulene molecules
the shortened notation H2CnH2 (without bond type spec-
ification) will be used.

III. ELECTRONIC TORSIONAL MODE

To estimate the speed of sound for electronic torsional
wave we consider a model of elastic rod (torsion spring)
which can be described by the Lagrangian

Le =
1

2

zr∫

zl

dz

{
je

(
dθ

dt

)2

− κ
(
∂θ

∂z

)2
}

(1)

where dynamical variable θ(z, t) is a twisting angle of the
rod along z-axis as a function of coordinate along prime
axis and time; two neighboring cross-sections at points z
and z + dz will rotate with respect to each other with a
relative angle dθ = (∂θ/∂z) dz32. Here zl,r = ∓L/2, L -
molecule length, κ stands for torsional stiffness and je is
an average linear density of electronic moment of inertia
with respect to z-axis.

We estimate parameters of interest as je = 1.73 me · Å
(0.95 · 10−3 u·Å) and torsional stiffness κ = 10.6 eV·Å as
described in the next two sections. Our estimate for the
torsional stiffness is consistent with the previous estimate
of 10.3 eV·Å reported in Ref.24.

With the angle θ(z, t) and the related angular velocity
dθ/dt considered as dynamical variables Eq. (1) leads to
the Euler equation

je
∂2θ

∂t2
= κ

∂2θ

∂z2
(2)

which is a wave equation with the dispersion relation
ω(q) = q

√
κ/je and the speed of torsiton wave

c =
dω

dq
=

√
κ

je
' 1.0 · 106 m/s (3)
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using je evaluated below. This velocity exceeds the typ-
ical phonon propagation velocity in polymers by two or
three orders of magnitude. Next we also estimate the
maximum energy transfered by the electronic torsional
mode.

The dispersion relation for longitudinal vibration in
a uniform chain with nearest neighbor coupling and
the lattice period a has the standard form ω(q) =
ω∗ sin(aq/2)33.

It should be a good approximation for the torsional
mode under consideration because the interaction re-
sponsible for the torsional stiffness is due to short range
covalent bonding. In the long wavelength limit q −→ 0
we estimate maximum energy of the torsiton as

~ω∗ = 2
~c
a
' 10.5 eV (4)

(the lattice period in cumulenes is given by a = 1.28 Å34).
This result corresponds to the nearest neighbor effective
coupling ~ω∗/4 ∼ 2.6 eV, which is about the π-bond
strength of 2.74 eV in C=C bonds.

We can also roughly estimate the torsiton mean free
path order of magnitude. In Ref.13 the decoherence rate
has been estimated analyzing the switch between ballistic
and diffusive transport in perflouroalkanes. It is found
to be W = 2 ps−1, so the phonon decoherence time has
been estimated as T ∼ 1/W ∼ 0.5 ps. Assuming similar
decoherence time for the torsiton, one can estimate its
mean free path as l0 = cT ∼ 0.5 µm.

Thus we found the electronic torsional sound wave ve-
locity and energy unprecedentedly high compared to typ-
ical phonon parameters which makes this system very
attractive for energy transport applications. The energy
transferred by a single quantum is sufficiently large for
chemical applications: bond making-bond breaking, en-
ergy release, and energy transfer to reaction center.

Below we derive our estimate for electronic moment of
inertia and for torsional stiffness, discuss the limitations
of our result due to zero point atomic vibrations and
propose the way to observe the ultrafast energy transport
due to electronic torsional sound.

IV. ELECTRONIC MOMENT OF INERTIA

The linear density of electronic moment of inertia is
defined as

je(z) =

∫∫
ρ(x, y, z)

(
x2 + y2

)
dxdy (5)

where ρ is the electronic density. We calculated the lin-
ear density of electronic moment of inertia for cumulene
molecule using density functional theory with B3LYP hy-
brid functional and standard 6-31(d, p) basis set, as
implemented in a Gaussian 09 software package35. The
electron density as a function of coordinates is extracted
with the uniform grid of 0.1 Bohr radius (0.0529 Å),
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FIG. 3. Linear density of the electronic inertia moment je(z)
as a function of coordinate along primary axis z (blue solid
line). The corresponding molecule H2C11H2 is represented
below. One can see that je(z) is a smooth function with low
deviations from the average (magenta dash-line), except of
the boundaries. The effective length L is defined as a distance
between second left and second right carbon atoms.

the symmetric limits in X-Y plane (the plane perpen-
dicular to the prime axis) were chosen ±6.5 Bohr radius
(±3.44 Å). Either doubling of the limits or decrease of the
grid by the same factor change the result by less than 1%.

To estimate the accuracy of the numerical result we
tested the same approach on the hydrogen atom. The
theoretical value of the moment of inertia of hydrogen
electron cloud in the ground state can be calculated using
the electron wave-function36 as J0 = 2mea

2
0, where me

is electron mass and a0 is the Bohr radius. The result of
numerical calculations obtained using the same method
as for cumulene is Jnum = 1.90mea

2
0, which is within 5%

accuracy.

In Figure 3 we show dependence je(z) obtained from
DFT-calculations for H2C11H2. One can see that je(z) is
a smooth function weakly deviating from its average Je/L
(∼ 5%), so for simplicity coordinate dependent moment
of inertia density je(z) can be replaced with the constant
je ' Je/L ' 1.73 me · Å (0.95 · 10−3 u·Å). As shown
in Figure 3, we define molecular length L as a distance
between the second left and second right carbon atoms,
where je(z) is still not affected by boundaries.

V. TORSIONAL STIFFNESS CALCULATION

Combining the proposed model with the first principles
calculations of the hydrogen atom torsional vibrational
mode associated with the relative torsional oscillations
of pair of hydrogen atoms (“whiskers”, see Figure 2), we
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introduce Lagrangian

L =
Jl
2

(
dΦl
dt

)2

+
Jr
2

(
dΦr
dt

)2

−
+L/2∫

−L/2

dz
κ

2

(
∂θ

∂z

)2

(6)

where Φl(t), Φr(t) are the angles of the “whiskers” de-
viation from equilibrium on the left and right side, Jl =
Jr = J/2 are moments of inertia of the whiskers, J is
the entire atomic moment of inertia along primary axis,
defined by 4 hydrogen atoms. θ(z, t) is the same as in
Eq. (1) with boundary conditions θ(∓L/2) = Φl,r.

In this model the potential energy is originated from
the torsional strain of the electronic spring and kinetic en-
ergy is entirely defined by the motion of hydrogen atoms,
so long as the kinetic energy of electrons is neglected. The
latter assumption is justified as long as Je � J (0.028 vs
3.43 u·Å for n = 25).

The torsional energy has a minimum at constant tor-
sional angle gradient (∂θ/∂z) = (Φr − Φl)/L suggesting
that electrons adiabatically follow atomic motion. For
the only hydrogen torsional oscillator mode one can as-
sume antisymmetric condition −Φl = Φ = Φr. Then the
Euler equation for Lagrangian (6) is

d2Φ

dt2
= − 4κ

JL
Φ (7)

This equation describes the harmonic oscillator with the
frequency defined as

ω2
τ =

4κ

J

1

L
(8)

Using the same DFT calculation, from harmonic vibra-
tional analysis one can find ωτ of H2CnH2 for different
n. In Figure 4 we represented the related frequency ωτ
for n = 5, 6, 8, 10, 12, 16, 24, 25. Since the choice of length
L includes some arbitrariness (our choice is illustrated in
Figure 3), the correct fit should include some length pa-
rameter B ∼ a, so that ω2

τ = A/(B+L). Using optimum
fitting analysis we found B = 4.22 Å and the torsional

stiffness is given by κ = AJ/4 ' 2.89 · 106 cm−2·u·Å3 '
10.6 eV·Å (u stands for the atomic mass unit), while
atomic moment of inertia J is defined by end groups only
and does not depend on n. These estimates were used
to evaluate the speed of torsitons. Below we analyze the
effect of zero-point atomic vibrations on their spectrum.

VI. EFFECT OF ZERO-POINT ATOMIC VIBRATIONS

In our description of the electronic torsional mode we
implicitly used Born-Oppenheimer approximation, con-
sidering electronic motion in an axially symmetric field
of motionless nuclei, positioned along the z-axis. This
axial symmetry is reflected by the symmetry of the La-
grangian in Eq. (1) with respect to the change of the
function θ(z) by arbitrarily constant.
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FIG. 4. Frequency of the torsional mode ωt as a function of
cumulene molecule length calculated using A = 3.37 cm−2·Å,
B = 4.22 Å. Atomic moment of inertia J = 3.43 u·Å2. From
Eq. (8) κ = 2.89 ·106 cm−2·u·Å3. In addition, torsional mode
frequency for polyyne H3C−(C≡C−)mCH3, m = 3, 11, are
shown (green squares); one can see that its torsional stiffness
is small and does not follow Eq. (8)

In reality, the nuclei participate in zero-point vibra-
tions in the ground state, which does not possess an ax-
ial symmetry because this ground state is adjusted to
the electronic ground state where this symmetry is bro-
ken (see Figure 2). Indeed, to find this ground state,
one needs to consider interacting nuclei in the field of
electronic cloud with already calculated anisotropic elec-
tronic density.

Thus, the potential energy depends on the angle θ even
in the absence of torsion and the energy minimum is re-
alized at some angle θ0 which we can set to zero. The
potential energy can be expanded over the small displace-
ment from this minimum as αθ2/2. This term incorpo-
rated to the Lagrangian in Eq. (1) as −αθ2/(2L) leads
to the gap in the spectrum of torsional waves. Correcting
Eq. (2) by −αθ/(jeL) term in the right hand side, we
obtain a new dispersion relation

ω2(q) =
κ

je
q2 +

α

jeL
(9)

Since ω(0) 6= 0 the mode is not exactly acoustic due to

the gap ∆ω =
√
α/jeL.

To estimate the parameter α consider the change of

classical energy δE(θ) =
〈
Ĥ(θ)− Ĥ(0)

〉
g
, where Ĥ is

the atomic chain quantum Hamiltonian and 〈. . . 〉g is an
average over the ground state of carbon atoms consider-
ing their zero-point vibrations.

All the normal modes of carbon atoms in the molecule,
which don’t include motion of hydrogen atoms with re-
spect to the adjacent carbon atoms, can be either lon-
gitudinal or transverse. For D2d symmetry point group
with coordinate system defined above there are only two
possible second order invariants: z2 and x2 + y237, so
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the transverse modes of the harmonic Hamiltonian of
the atomic chain are expected to be double-degenerate
and the corresponding eigenfunctions possess axial sym-
metry. Practically, this degeneracy is observed in DFT-
calculated IR spectra of H2CnH2 for odd n, while for
even n all energy levels are split, because such molecules
belong to D2h symmetry group. Indeed, the splitting
is entirely an effect of sides, because in even n molecules
the side CH2 groups lie in the same plane (while in odd n
they are orthogonal), so X-Z and Y-Z plane become dis-
tinguishable, while for an infinite chain this effect would
disappear.

The break of axial symmetry takes place in the third
order anharmonic interaction. To express potential en-
ergy in normal modes representation introduce notations
uxi

and uyi for transverse modes with energy ~ωxi
=

~ωyi = ~ωi and uzk for k − th longitudinal mode. Thus
the third order anharmonic energy is expressed by

V̂3 =
∑

ijk

{
Vxiyjzuxiuyj+

Vxixjzk

2

(
uxi

uxj
+ uyiuyj

)}
uzk (10)

where it is assumed that Vxixjz = Vyiyjz for any i, j.

With V̂3 as a perturbation, a meaningful correction to
the ground state in the first order of perturbation theory
is given by

|ψ0〉 = |0〉 − 1

~
√

8

∑

ijk

Vxiyjzk

ωi + ωj + ωzk

∣∣1xi 1yj1zk
〉

(11)

The rotation of electronic cloud about the z-axis by an
angle θ changes the energy in diabatic approximation by

δĤ(θ) = −2
∑

ijk

Vxiyjzkuxi
uyjuzk sin2 θ (12)

Assuming for the small displacement from the minimum
sin θ ' θ, one can find δE(θ) = 〈ψ0| δĤ(θ) |ψ0〉 = αθ2/2,
with α given by

α =
1

2~
∑

k

{∑

i

V 2
xiyizk

2ωxi
+ ωzk

+
∑

i<j

2V 2
xiyjzk

ωxi
+ ωyj + ωzk

}

(13)
Using anharmonic frequency analysis of H2C5H2

35,38

we calculated third-order anharmonicity constants. To
exclude effect of hydrogen atoms we considered the only
transverse and longitudinal normal modes with the near-
est integer of reduced mass greater or equal 2 atomic
units. Applying Eq. (13) we found α = 3.2 cm−1, so
that the energy gap can be estimated using Eq. (9) as
∆ε ' 130 cm−1.

To answer a question how crucial is the described effect
for the acoustic mode, one can find the length L of a
cumulene chain where this energy becomes comparable
to the minimum torsiton energy, which can be estimated
as

~ωmin ' ~cqmin = ~c
π

L
(14)

FIG. 5. A schematic experiment set up on remote chem-
istry initiation. The compound features two surface-anchored
end-groups connected by a cumulene chain. Laser initiated
bond breaking at the initiation (left) end-group can result in
generation of a strong torque at the chain which will propa-
gate as a wave-packet along the chain and can result in bond
breaking at another end group, the target.

Thus the length required to make the gap value of the
same order as ~ωmin is L∗ ' ~πc/∆ε ' 128 nm, that is
much larger than the real molecule length39.

Axial symmetry can be violated also by the forth-order
anharmonic interaction, however its contribution into the
energy gap does not change qualitatively the presented
estimate.

VII. EXPERIMENT SUGGESTIONS

As shown above, the electronic torsional mode features
an unprecedented speed of 1000 km/s = 1 nm/fs and
can transfer energy up to 10 eV, which is comparable
to the energies of the strongest chemical bonds (C=C,
N≡N, etc.). Such high transferred energy brings an op-
portunity of performing chemistry at distances, includ-
ing chemical bond breaking reactions. Figure 5 shows
a schematic of the compound suitable for the proof of
principle experiment on remote chemistry initiation. The
compound features two surface-anchored end-groups con-
nected by a cumulene chain. Laser initiated bond break-
ing at the initiation (left) end-group can result in genera-
tion of a strong torque at the chain which will propagate
as a wave-packet along the chain and can result in bond
breaking at another end group, the target. The energy
released by the initiation end-group can be tuned by se-
lecting convenient functional groups. Spectroscopic ob-
servation of the transported energy can aim at detecting
the formation of the products at the target or detection
of the excess energy at the target. In the latter case a
longer cumulene chain is required as for the chain length
of 50 carbon atoms the transport time is only ca. 5 fs.
Compounds with such long chains have been synthesized
for polyynes40 and we hope that this should be possible
for cumulenes as well.

VIII. CONCLUSION

In this article we considered electronic torsional waves
in cumulene chains (torsitons) which are torsional sound
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waves of entirely electronic nature. We evaluated the
speed of torsiton propagation as high as 1000 km/s.
Single torsiton can carry energy up to 10 eV. Similar
waves should exist in other atomic chain with anisotropic
bonds including recently discovered transition metal lin-
ear chains. While the largest band energy computed for
cumulenes at 10 eV, the computations neglected elec-
tronic excitation, which will likely be contributing at
such high energies. It will be interesting to see how the
ground electronic state torsitons are perturbed by elec-
tronic excitations at higher torsiton band energies and
how the quasi-particles of two types, torsitons and ex-
citons, interact. Nevertheless, the presented band cal-
culations are expected to be free of electronic excitation
effects at smaller energies. Importantly, the transport
speed supported by the lower half of the torsiton band
is similar to that of the full band (with small corrections
due to the torsiton-vibron coupling).
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