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Student Difficulties with Quantum Mechanics Formalism
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Abstract. We discuss student difficulties in distinguishing between the physical space and Hilbert space and difficulties
related to the Time-independent Schroedinger equation andmeasurements in quantum mechanics. These difficulties were
identified by administering written surveys and by conducting individual interviews with students.
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INTRODUCTION

Here, we describe the difficulties with the formalism
of quantum mechanics identified by administering writ-
ten surveys to eighty-nine advanced undergraduates and
more than two hundred graduate students from seven dif-
ferent universities. In the written surveys, students were
asked to explain their reasoning. We also conducted in-
dividual interviews using a think aloud protocol with a
subset of students to better understand the rationale for
their responses. During the semi-structured interviews,
students were asked to verbalize their thought processes
while they answered qualitative questions posed to them.
Students were not interrupted unless they remained quiet
for a while. In the end, we asked them for clarifications
of the issues they had not made clear earlier. Below we
discuss some of the difficulties with the formalism.

Difficulty Distinguishing between the
Physical Space and Hilbert Space

In quantum theory, one must interpret the outcome of
real experiments performed in three dimensional (3D)
space by making connection with an abstract Hilbert
space (state space) in which the wavefunction lies. The
physical observables that one measures in the laboratory
correspond to Hermitian operators in the Hilbert space
whose eigenstates span the space. Knowing the initial
wavefunction and the Hamiltonian of the system allows
one to determine the time-evolution of the wavefunction
unambiguously and the measurement postulate can be
used to determine the possible outcomes of individual
measurements and ensemble averages (expectation val-
ues).

It is difficult for many students to distinguish between
vectors in the 3D laboratory space and Hilbert space. For
example,Sx, Sy andSz denote the orthogonal components
of the spin angular momentum vector of an electron in
the 3D space, each of which is a physical observable that
can be measured in the laboratory. However, the Hilbert

space corresponding to the spin degree of freedom for a
spin-1/2 particle is two dimensional (2D). In this Hilbert
space,̂Sx, Ŝy andŜz are operators whose eigenstates span
the 2D space. The eigenstates ofŜx are vectors which
span the 2D space and are orthogonal to each other (but
not orthogonal to the eigenstate ofŜy or Ŝz). Also, Ŝx,
Ŝy andŜz are operators andnot orthogonal components
of a vector in the 2D space. If the electron is in a mag-
netic field with the gradient in thez direction in the lab-
oratory (3D space) as in a Stern-Gerlach experiment, the
magnetic field is a vector in 3D space but not in the 2D
space. It does not make sense to compare vectors in the
3D space with vectors in the 2D space as in statements
such as “the magnetic field gradient is perpendicular to
the eigenstates of̂Sx". Unfortunately, these distinctions
are difficult for students to make and such difficulties
were frequently observed in response to the survey ques-
tions and during individual interviews. This difficulty is
discussed below in the context of a two part question re-
lated to the Stern-Gerlach experiment:

Question: Notation:| ↑z〉 and | ↓z〉 represent the or-
thonormal eigenstates ofŜz (z component of the spin of
the electron). SGA is an abbreviation for a Stern-Gerlach
apparatus. The electron is in the SGA for an infinitesimal
time. Ignore the Lorentz force on the electron.

(a) A beam of electrons propagating along they di-
rection (into the page) in spin state(| ↑z〉+ | ↓z〉)/

√
2 is

sent through an SGA with a vertical magnetic field gradi-
ent in the−zdirection. Sketch the electron cloud pattern
that you expect to see on a distant phosphor screen in the
x-z plane. Explain your reasoning.

(b) A beam of electrons propagating along they direc-
tion (into the page) in spin state| ↑z〉 is sent through an
SGA with a horizontal magnetic field gradient in the−x
direction. Sketch the electron cloud pattern that you ex-
pect to see on a distant phosphor screen in the x-z plane.
Explain your reasoning.

In question (a), students have to realize that the mag-
netic field gradient in the -z direction would exert a force
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on the electron due to its spin angular momentum and
one should observe two spots on the phosphor screen due
to the splitting of the beam along the z direction corre-
sponding to electron spin component in| ↑z〉 and | ↓z〉
states. All responses in which students noted that there
will be a splitting along the z direction were considered
correct even if they did not explain their reasoning. Only
41% of the students provided the correct response. Many
students thought that there will only be a single spot on
the phosphor screen as in these typical survey responses:

• SGA will pick up the electrons with spin down since
the gradient is in -z direction. The screen will show
electron cloud only in−z part.

• All of the electrons that come out of the SGA will be
spin down with expectation value−h̄/2 because the
field gradient is in−z direction.

• Magnetic field is going to align the spin in that
direction so most of the electrons will align along -z
direction. We may still have a few in the +z direction
but the probability will be very small.

In the interviews, students were often confused about
the origin of the force on the particles and whether there
should be a force on the particles at all as they pass
through the SGA.

Question (b) is more challenging than (a) because stu-
dents have to realize that the eigenstate ofŜz, | ↑z〉 can
be written as a linear superposition of the eigenstates of
Ŝx, i.e., | ↑z〉 = (| ↑x〉+ | ↓x〉)/

√
2. Therefore, the mag-

netic field gradient in the−x direction will split the beam
along the x direction corresponding to the electron spin
components in| ↑x〉 and| ↓x〉 states and cause two spots
on the phosphor screen. Only 23% of the students pro-
vided the correct response. The most common difficulty
was assuming that since the spin state is| ↑z〉, there
should not be any splitting as in the examples below:

• Magnetic field gradient cannot affect the electron
because it is perpendicular to the wavefunction.

• Electrons are undeflected or rather the beam is not
split since~B is perpendicular to spin state.

• The direction of the spin state of the beam of elec-
trons is y, and the magnetic field gradient is in the
−x direction. The two directions have an angle900,
so the magnetic field gradient gives no force to elec-
trons.

• With the electrons in only one measurable state, they
will experience a force only in one direction upon
interaction with~B.

Thus, many students explained their reasoning by
claiming that since the magnetic field gradient is in the
−x direction but the spin state is along thez direction,
they are orthogonal to each other, and therefore, there
cannot be any splitting of the beam. Student responses

suggest that they were incorrectly connecting the direc-
tion of magnetic field in the 3D space with the “direc-
tion" of state vectors in the Hilbert space. Several stu-
dents in (b) drew a monotonically increasing function.
One interviewed student drew a diagram of a molecu-
lar orbital with four lobes and said “this question asks
about the electron cloud pattern due to spin...I am won-
dering what the spin part of the wavefunction looks like."
Then he added, “I am totally blanking on what the plot
of | ↑z〉 looks like otherwise I would have done better on
this question". From responses such as these it appears
that the abstract nature of spin poses special problems in
teaching quantum physics.

Compared to question (a), many more students in (b)
thought that there will be only one spot on the screen,
but there was no consensus on the direction of deflection
despite the fact that students were asked to ignore the
Lorentz force. Some students drew the spot at the origin,
some showed deflections along the positive or negative x
direction, some along the positive or negative z direction.
They often provided interesting reasons for their choices.
Some students who drew two spots were confused about
the direction in which the magnetic field gradient will
cause the splitting of the beam. Thirteen percent of the
students (including questions (a) and (b)) drew the split-
ting of the beam in the wrong direction (along the x axis
in (a) and along the z axis in (b)). One interviewed stu-
dent who drew it in the wrong direction said, “I remem-
ber doing this recently and I know there is some splitting
but I don’t remember in which direction it will be."

Students were posed another question involving~S· n̂
wheren̂ is a general unit vector pointing in an arbitrary
direction in the physical three dimensional space. This
dot product is a scalar product between two vectors in
the physical space. Students were given that for spin 1/2,
a stateχ goes toχ ′ via χ ′ = ei(~S·n̂)φ/h̄χ whereei(~S·n̂)φ/h̄

effects a rotation through angleφ about the axis ˆn. They
were asked to construct a 2× 2 matrix representing ro-
tation byφ = π about thex axis and show that it con-
vertsχ+ to χ− (χ± are the eigenstates of ˆsx with eigen-
values±h̄/2). Written responses and interviews suggest
that one major difficulty was that many students were
confused about whether~S· n̂ (which can be written as
sxnx+ syny+ sznz) is a dot product in the physical space
or Hilbert space. Students were not clear about the fact
that in a Hilbert space, the possible states of the system
are the vectors and the inner products of these states are
the scalar products. Similar confusion between physical
space and Hilbert space were observed in the context of
questions posed in surveys and interviews about a one-
dimensional infinite square well. The physical space for
this problem is one-dimensional (e.g., in a quantum wire)
but the Hilbert space is infinite dimensional.



Difficulties Related to Time-independent
Schroedinger Equation and Measurement

One of the questions on the survey asks students to
consider the following statement: “By definition, the
Hamiltonian acting on any allowed state of the system
ψ will give the same state back, i.e.,Hψ = Eψ , whereE
is the energy of the system." Students were asked to ex-
plain why they agree or disagree with this statement. We
wanted students to disagree with the statement and note
that it is only true ifψ is a stationary state. In general,
ψ = ∑∞

n=1Cnφn, whereφn are the stationary states and
Cn = 〈φn|ψ〉. Then,Ĥψ = ∑∞

n=1CnEnφn 6= Eψ . For this
question, just writing down “disagree" was not enough
for the response to be counted correct. Students had to
provide the correct reasoning. Only 29% of the students
provided the correct response with correct reasoning.
Thirty-nine percent of students wrote (incorrectly) that
the statement is unconditionally correct. Typically, these
students were reasonably confident of their responses as
can be seen from these examples:

• Agree, this is a fundamental postulate of quantum
mechanics which is proved to be highly exact until
present.

• Agree. Hamiltonian does not alter the state of the
system.

• Agree. Hamiltonians give back physical observ-
ables energy. It is an observable and real.

In response to this question, 10% of students agreed
with the statement as long as the Hamiltonian is not
time-dependent. They often claimed (incorrectly) that if
Ĥ is not time-dependent, the energy for the system is
conserved sôHψ = Eψ must be true. The following are
typical examples:

• Agree, if the potential energy does not depend on
time.

• Agree but only if the energy is conserved for this
system.

• Agree because energy is a constant of motion.
• Agree if it is a closed system since H is a linear

operator and gives the same state back multiplied
by the energy.

While the energy is conserved if the Hamiltonian is
time-independent,̂Hψ =Eψ need not be true. For exam-
ple, if the system is in a linear superposition of stationary
states,Ĥψ 6= Eψ although the energy is conserved.

Eleven percent (11%) of the students answering this
question believed (incorrectly) that any statement involv-
ing a Hamiltonian operator acting on a state is a state-
ment about the measurement of energy. Some of these
students who (incorrectly) claimed that̂Hψ = Eψ is
a statement about energy measurement agreed with the

statement while others disagreed. Those who disagreed
often claimed that̂Hψ = Enφn because as soon asĤ acts
on ψ , the wavefunction will collapse into one of the sta-
tionary statesφn and the corresponding energyEn will
be obtained. The examples below are typical of students
with this misconception:

• Agree. If you make a measurement of energy by
applying H to a state of an electron in hydrogen
atom you will get the energy.

• Disagree. Hamiltonian acting on a state (measure-
ment of energy) will return an energy eigenstate.

• Disagree. Quantum measurements will perturb the
system so that it jumps into an eigenstate after
measurement.

• Disagree. If it is a mixed state, the measurement of
energy will force it to end up with some base state.

• Disagree. WhenΨ is a superposition state and̂H
acts onΨ, thenΨ evolutes to one of theΨn so we
haveĤΨ = EnΨn.

Interviews and written reasonings suggest that these
students believed that the measurement of a physical
observable in a particular state is achieved by acting with
the corresponding operator on the state. The incorrect
notions expressed above are over-generalizations of the
fact thatafter the measurement of energy, the system is
in a stationary state sôHφn = Enφn.

Individual interviews related to this question suggest
that some students believed that whenever an operator
Q̂ corresponding to a physical observableQ acts onany
stateψ , it will yield the corresponding eigenvalueλ and
the same state back, i.e.,Q̂ψ = λ ψ . Some of these stu-
dents were over-generalizing their “Ĥψ = Eψ" reason-
ing and attributingQ̂ψ = λ ψ to the measurement of an
observableQ. Before over-generalizing to any physical
observables, these students often agreed with theĤψ =
Eψ statement with arguments such as “the Hamiltonian
is the quantum mechanical operator which corresponds
to the physical observable energy" or “ifH did not give
back the same state it would not be a hermitian operator
and therefore would not correspond to an observable".
Of course,Q̂ψ 6= λ ψ unlessψ is an eigenstate of̂Q and
in generalψ = ∑∞

n=1Dnψn, whereψn are the eigenstates
of Q̂ andDn = 〈ψn|ψ〉. Then,Q̂ψ = ∑∞

n=1Dnλnψn (for
observable with a discrete eigenvalue spectrum).

Many students believed that even when answering
questions related to the probability of different possi-
ble outcomes for the measurement of an observable
other than energy, the wavefunction should be expanded
in terms of the energy eigenfunctions and the absolute
square of the expansion coefficients will give the proba-
bility of measuring different values of that observable. In
contrast, the wave function should be expanded in terms
of the eigenfunctions of the operator corresponding to



the physical observable to be measured and the absolute
square of the expansion coefficients then will give the
probability of measuring different possible values of that
observable. Student’s belief that the energy eigenfunc-
tions are always the “preferred" basis vectors is not sur-
prising because quantum mechanics courses often exclu-
sively focus on solving time-independent Schroedinger
equation to find the energy eigenfunctions and eigenval-
ues. Also, for questions related to the time-development
of the wavefunction one must expand the wavefunction
in terms of the energy eigenfunctions.

Moreover, students often believed that successive
measurements of continuous variables,e.g., position,
produce “somewhat" deterministic outcomes whereas
successive measurements of discrete variables,e.g., spin,
can produce very different outcomes. In an interview, one
student began with a correct statement: “if you measure
(an observable) Q, the system will collapse into an eigen-
state of that operator. Then, if you wait for a while the
measurement will be different". But then he added incor-
rectly: “if Q has a continuous spectrum then the system
would gently evolve and the next measurement won’t be
very different from the first one. But if the spectrum of
eigenvalues is discrete then you will get very different an-
swers even if you did the next measurement after a very
short time". When the student was asked to elaborate, he
said: “For example, imagine measuring the position of
an electron. It is a continuous function so the time de-
pendence is gentle and after a few seconds you can only
go from A to its neighboring point. [Pointing to an x vs.
t graph that he sketches on the paper]...you cannot go
from this place to this without going through this inter-
mediate space". When asked to elaborate on the discrete
spectrum case, he said: “...think of discrete variables like
spin...they can give you very different values in a short
time because the system must flip from up to down. I
find it a little strange that such [large] changes can hap-
pen almost instantaneously. But that’s what quantum me-
chanics predicts..." This type of response may also be
due to the difficulty in reconciling classical and quantum
mechanical ideas; in classical mechanics the position of
a particle is deterministic and can be unambiguously pre-
dicted for all times from the knowledge of the initial con-
ditions and potential energy.

Confusion between the Probability of
Measuring Position and〈x〉

Born’s probabilistic interpretation of the wavefunction
can also be confusing for students. In one question, stu-
dents were told that immediately after the measurement
of energy which yields the first excited state, a measure-
ment of the electron position is performed. They were
asked to describe qualitatively the possible values of po-
sition they could measure and the probability of measur-

ing them. We hoped that students would note that one
can measure position values betweenx = 0 andx = a
(except atx= 0,a/2,a where the wavefunction is zero),
and according to Born’s interpretation,|φ2(x)|2dx gives
the probability of finding the particle in a narrow range
betweenx andx+dx. Only 38% of the students provided
the correct response. Partial responses were considered
correct for tallying purposes if students wrote anything
that was correct related to the above wavefunction,e.g.,
“The probability of finding the electron is highest ata/4
and 3a/4.", “The probability of finding the electron is
non-zero only in the well", etc.

Eleven percent of the students tried to find the ex-
pectation value of position〈x〉 instead of the probability
of finding the electron at a given position. They wrote
the expectation value of position in terms of an inte-
gral involving the wavefunction. Many of them explic-
itly wrote that Probability= (2/a)

∫ a
0 x sin2(2πx/a)dx

and believed that instead of〈x〉 they were calculating the
probability of measuring the position of electron. During
the interview, one student said (and wrote on paper) that
the probability is

∫
x |Ψ|2dx. When the interviewer asked

why |Ψ|2 should be multiplied withx and if there is any
significance of|Ψ|2dx alone without multiplying it byx,
the student said, “|Ψ|2 gives the probability of the wave-
function being at a given position and if you multiply it
by x you get the probability ofmeasuring(student’s em-
phasis) the positionx". When the student was asked ques-
tions about the meaning of the “wavefunction being at a
given position", and the purpose of the integral and its
limits, the student was unsure. He said that the reason he
wrote the integral is becausex |Ψ|2dxwithout an integral
looked strange to him. Similar confusion about probabil-
ity in classical physics situations have been found [1].

CONCLUSION

Instructional strategies that focus on improving student
understanding of these concepts should take into ac-
count these difficulties [2–4]. We are currently develop-
ing and assessing Quantum Interactive Learning Tutori-
als (QuILT) suitable for use in advanced undergraduate
quantum mechanics courses [5].
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