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Cognitive Issues in Learning Advanced Physics: An Example
from Quantum Mechanics
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Abstract. We are investigating cognitive issues in learning quantum mechanics in order to develop effective teaching and
learning tools. The analysis of cognitive issues is particularly important for bridging the gap between the quantitative and
conceptual aspects of quantum mechanics and for ensuring that the learning tools help students build a robust knowledge
structure. We discuss the cognitive aspects of quantum mechanics that are similar or different from those of introductory
physics and their implications for developing strategies to help students develop a good grasp of quantum mechanics.

Keywords: quantum mechanics
PACS: 01.40Fk,01.40.gb,01.40G-,1.30.Rr

CHALLENGES IN CLASSICAL VS.
QUANTUM MECHANICS

The laws of physics are framed in precise mathemati-
cal language. Mastering physics involves learning to do
abstract reasoning and making inferences using these ab-
stract laws of physics framed in mathematical forms. The
answers to simple questions related to motion can be very
sophisticated requiring a long chain of reasoning. It is not
surprising then that developing a solid grasp of physics
even at the introductory level can be challenging.

Learning quantum mechanics is even more challeng-
ing [1-12]. Unlike classical mechanics, we do not have
direct experience with the microscopic quantum world.
Also, quantum mechanics has an abstract theoretical
framework in which the most fundamental equation,
the Time-Dependent Schroedinger Equation (TDSE), de-
scribes the time evolution of the wave function or the
state of a quantum system according to the Hamiltonian
of the system. This wave function is in general complex
and does not directly represent a physical entity. How-
ever, the wave function at a given time can be exploited to
make inferences about the probability of measuring dif-
ferent physical observables associated with the system.
For example, the absolute square of the wave function in
position-space is the probability density. Since the TDSE
does not describe the evolution or motion of a physi-
cal entity, unlike Newton’s second law, the modeling of
the microscopic world in quantum mechanics is gener-
ally more abstract than the modeling of the macroscopic
world in classical mechanics.

Quantum theory provides a coherent framework for
reasoning about microscopic phenomena and has never
failed to explain observations if the Hamiltonian of the
system is modeled appropriately to account for the essen-
tial interactions. However, the conceptual framework of

quantum mechanics is often counter-intuitive to our ev-
eryday experiences. For example, according to the quan-
tum theory, the position, momentum, energy and other
observables for a quantum mechanical entity are in gen-
eral not well-defined. We can only predict the probabil-
ity of measuring different values based upon the wave
function when a measurement is performed. This proba-
bilistic interpretation of quantum mechanics, which even
Einstein found disconcerting, is challenging for students.

Moreover, according to the Copenhagen interpretation
of quantum mechanics, which is widely taught to stu-
dents, the measurement of a physical observable changes
the wave function if the initial wave function is not an
eigenfunction of the operator corresponding to the ob-
servable measured. Thus, the usual time evolution of the
system according to the TDSE is separated from what
happens during the measurement of an observable. Stu-
dents often have difficulty with this notion of an instanta-
neous change or “collapse" of the wave function during
the measurement. Our prior research [9] shows that many
students have common alternative conceptions about the
collapse of the wave function during the measurement,
e.g., many believe that the wave function gets stuck in the
collapsed state after the measurement or it must go back
to the original wave function if one waits long enough af-
ter the measurement. We found that when students were
given the possibility that the wave function may neither
stay stuck nor go back to the original wave function,
many students had difficulty understanding how anything
other than those two outcomes was possible. It was clear
from the discussions that the students had not internal-
ized that after the measurement, the wave function will
again evolve according to the TDSE starting from the
collapsed wave function [9].

In quantum theory, position and momentum are not in-
dependent variables that evolve in a deterministic manner
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but are operators in the Hilbert space in which the state
of the system is a vector. For a given state of the system,
the probabilities of measuring position or momentum in
a narrow range depend on each other. In particular, spec-
ifying the position-space wave function that can help us
determine the probability of measuring the position in
a narrow range specifies (via a Fourier transform) the
momentum-space wave function that tells us the prob-
ability of measuring the momentum in a narrow range.
The eigenstates of the position or momentum operators
span the Hilbert space so that any state of the system can
be written as a linear combination of a complete set of
position eigenstates or momentum eigenstates. The mea-
surement of position (or momentum) yields a position
(or momentum) eigenvalue with a certain probability de-
pending upon the state of the system. These concepts are
challenging for students [9].

In addition to the lack of direct exposure to micro-
scopic phenomena described by quantum theory and the
counter-intuitive nature of the theory, the mathematical
facility required in quantum mechanics can increase the
cognitive load and make learning quantum mechanics
even more challenging. The framework of quantum me-
chanics is based on linear algebra. In addition, a good
grasp of differential equations, special functions, com-
plex variables etc. is highly desired. If students are not
facile in mathematics, they may become overwhelmed
by the mathematical details and may not have the op-
portunity to focus on the conceptual framework of quan-
tum mechanics and build a coherent knowledge struc-
ture. Our earlier research [9] shows that a lack of math-
ematical facility can hinder conceptual learning. Simi-
larly, alternative conceptions about conceptual aspects of
quantum mechanics can lead to students making mathe-
matical errors that they would otherwise not make in a
linear algebra course [9].

Many of the alternative conceptions in the classical
world are over-generalizations of everyday experiences
to contexts where they are not applicable. For example,
the conception that motion implies force often originates
from the fact that one must initially apply a force to
an object at rest to get it moving. People naively over-
generalize such experiences to conclude that even an ob-
ject moving at a constant velocity must have a net force
acting on it. One may argue that quantum mechanics
may have an advantage here because the microscopic
world does not directly deal with observable phenom-
ena in every day experience so students are unlikely to
have alternative conceptions. Unfortunately, that is not
true and research shows that students have many al-
ternative conceptions about quantum mechanics [1-12].
These conceptions are often about the quantum mechan-
ical model itself and about exploiting this model to infer
what should happen in a given situation. Students often
over-generalize their intuitive notions from the classical

FIGURE 1. Bound and scattering states in the same plot

world to the quantum world which can lead to incorrect
inferences.

INVESTIGATION OF STUDENTS’
DIFFICULTIES WITH WAVE FUNCTION

As discussed earlier, the wave function is central to quan-
tum mechanics [1, 12]. Here, we discuss an investigation
of difficulties with the wave function that was carried out
by administering written surveys to more than two hun-
dred physics graduate students and advanced undergrad-
uate students enrolled in quantum mechanics courses and
by conducting individual interviews with a subset of stu-
dents. Students were given a potential energy diagram
for a one-dimensional finite square well of widtha and
depth−V0 between 0≤ x ≤ a. They were asked to draw
a qualitative sketch of (a) the ground state wave function,
(b) any one scattering state wave function and comment
on the shape of the wave function in each case in all the
three regionsx ≤ 0, 0≤ x ≤ a andx ≥ a. The individual
interviews were carried out using a think aloud proto-
col. During the semi-structured interviews, students were
asked to verbalize their thought processes while they an-
swered the questions. They were not interrupted unless
they remained quiet for a while. In the end, we asked
them for clarifications of the issues they did not make
clear. Here, we cite examples of students’ difficulties.

We note that students were provided separate spaces
for drawing the bound and scattering state wave func-
tions so that they do not confuse the vertical axis in the
potential energy diagram given with the vertical axis of
their sketch of the wave function. But instead of simply
showing the location ofx = 0 andx = a in their sketches,
many students redrew the potential energy diagram, situ-
ated their wave function in the potential energy well and
did not specify what the vertical axes of their plots were.

In response to the question, one interviewed student
claimed that it is impossible to draw the bound and scat-
tering state wave functions for a finite square well be-
cause one must find the solution of a transcedental equa-
tion which can only be solved numerically. When the
student was encouraged to make a qualitative sketch, he
drew two coordinate axes and then drew some parallel
curves and a straight line from the origin intercepting the



FIGURE 2. V=0 in regions I and III so the wave function has no slope and itis affected by the potential in region II so it dies

FIGURE 3. Higher in the well due to reflection

FIGURE 4. Exponential decay inside the well

curves. He claimed that all he can say without solving
the equation on the computer is that the intercepts will
give the wave function. While one must solve a transcen-
dental equation to find the finite number of bound states
for a finite square well, the student was asked to draw a
qualitative sketch of the wave function, something that
is taught even in a modern physics course. In particular,
students are taught that the bound state wave functions
for a finite square well look sinusoidal inside the well
with an exponential tail outside in the classically forbid-

FIGURE 5. Discontinuity in the wave functions

FIGURE 6. Cusp in the wave function

den region. It appeared that the student had memorized
a procedure but had not developed a qualitative “feel"
for what the bound and scattering state wave functions
should look like for a finite square well.

Figure 1 shows a sketch from a student who incor-
rectly believed that the bound and scattering states can
be part of the same wave function. He felt that the sinu-
soidal wave function inside the well was the bound state
and the part of the wave function outside the well was the



scattering state and corresponded to the "free particle".
Some interviewed students claimed that the shapes of the
various bound state wave functions for the finite square
well cannot be sinusoidal inside the well since only the
infinite square well allows sinusoidal bound states. One
student incorrectly claimed that the ground state of the
finite square well should be Gaussian in shape to ensure
that the wave function has no cusp and exponentially de-
cays to zero outside the well.

Figure 2 shows a sketch of the scattering state wave
function by a student who incorrectly claimed that the
wave function has no slope because the potential is zero
in regions I and III. While the probability density may
be uniform, the wave function cannot be constant in
those regions. The student also incorrectly believed that
that the constant value of the wave function is lower in
region III compared to region I since it is affected by the
potential in region II and dies. Figure 3 shows a sketch
of the scattering state by a student who incorrectly drew
the wave function to be higher in region II and claimed:
“higher because some of the wave is reflected at the
wall". Figure 4 shows sketches by three students all of
whom incorrectly believed that the wave function will
decay exponentially in region II. These students have
not learned what one should observe when the potential
energy is lower in the well in region II. Instead, they
plotted a decaying wave function from rote memory that
may correspond to a potential barrier. Moreover, similar
to a student’s sketch in Figure 3, the student who drew
Figure 4(a) incorrectly claimed: “typical particle wave
function but lowered by potential well" as though the
oscillations in regions I and III should be around different
references. These types of confusions are partly due to
the inability to distinguish between the vertical axis of
the potential well (which has the units of energy) with the
vertical axis when drawing the wave function. Also, in
Figure 4(c), the student drew the incoming and reflected
waves separately in region I but only drew the incoming
part to be continuous with the wave function in region II
which is incorrect. Figure 5 shows three students’ plots
in which the wave functions drawn have discontinuities
and Figure 6 shows a plot in which there is a cusp.

Interviews and written explanations suggest that many
students drew diagrams of the wave function from mem-
ory without thinking about the physical meaning of the
wave function. This may partly be due to the fact that
the wave function itself is not physical and cannot be
observed experimentally. Additional cognitive resources
are required to make sense of the wave function in order
to draw it correctly. For example, a discontinuity in the
wave function is not physical because the absolute square
of the wave function is related to the probability den-
sity for finding the particle and a discontinuity at a point
would imply that the probability of finding the particle
will depend on whether we approach that point from the

left or the right side. Similarly, the wave function cannot
have a cusp because it would imply that the expectation
value of the kinetic energy (related to the second deriva-
tive of the wave function) is infinite.

CONCLUSION AND OUTLOOK
While quantum mechanics may require reasoning at the
formal operational level in the Piagetian hierarchy of
cognitive levels [13], it is possible to design instruc-
tion that helps students develop intuition. The notion
of the “zone of proximal development" [14] (ZPD) at-
tributed to Vygotsky focuses on what a student can do on
his/her own vs. with the help of an instructional strategy
that accounts for his/her prior knowledge and skills and
builds on it. In quantum mechanics, we can exploit stu-
dents’ prior knowledge of probability and mathematical
skills. But the non-intuitive nature of quantum mechanics
and other issues discussed earlier imply that scaffolding,
which is at the heart of ZPD, is critical for helping stu-
dents learn concepts. Scaffolding can be used to stretch
students’ learning far beyond their initial knowledge by
carefully crafted instruction. We are taking into account
these issues and students’ prior knowledge to develop
Quantum Interactive Learning Tutorials (QuILTs) and
tools for peer-instruction [6, 10]. These learning tools
employ computer-based visualization tools and help stu-
dents take advantage of the visual representation of the
quantum mechanical concepts, e.g., wave function, in or-
der to develop intuition about quantum phenomena.
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