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The first nonperturbative version of the multireference driven similarity renormalization group (MR-DSRG)
theory [C. Li and F. A. Evangelista, J. Chem. Theory Comput. 11, 2097 (2015)] is introduced. The renor-
malization group structure of the MR-DSRG equations ensures numerical robustness and avoidance of the
intruder state problem, while the connected nature of the amplitude and energy equations guarantees size
consistency and extensivity. We approximate the MR-DSRG equations by keeping only one- and two-body
operators and using a linearized recursive commutator approximation of the Baker—Campbell-Hausdorff ex-
pansion [T. Yanai and G. K.-L. Chan, J. Chem. Phys. 124, 194106 (2006)]. The resulting MR-LDSRG(2)
equations contain only 39 terms and scales as O(N?NANZ) where Ny, Np, and N correspond to the number
of hole, particle, and total orbitals, respectively. Benchmark MR-LDSRG(2) computations on the hydrogen
fluoride and molecular nitrogen binding curves and the singlet-triplet splitting of p-benzyne yield results com-
parable in accuracy to those from multireference configuration interaction, Mukherjee multireference coupled

cluster theory, and internally-contracted multireference coupled cluster theory.

I. INTRODUCTION

Striking the right balance between the theoretical
treatment of static and dynamic electron correlation is
a crucial requirement for predictive theories of strongly
correlated electrons.! Consequently, the introduction
of the multi-configurational self-consistent-field (MC-
SCF) approach? was followed by the development of a
myriad of multireference (MR) theories that augment
this scheme with high-level treatments of dynamic cor-
relation. The majority of these genuine multirefer-
ence approaches are based on the framework of effec-
tive Hamiltonian theory®® and include widely adopted
methods such as second-order MR perturbation the-
ory (MRPT2)°1* and MR configuration interaction
(MRCTI).215718 Furthermore, numerous multireference
coupled cluster (MRCC) theories'® 3% and alternative
approaches9 4! have been developed. These approaches
strive to reproduce the success of single-reference coupled
cluster theory by combining a nonperturbative treat-
ment of dynamic correlation with the requirement of size
extensivity.3042

Nevertheless, it is well appreciated that the application
of multireference theories based on effective Hamiltoni-
ans presents several problems, which prevent them from
being as impactful as their single-reference analogues.
The most important issue is perhaps the intruder-state
problem,*3%* which occurs when excited configurations
(or determinants) become near-degenerate with the ref-
erence wave function. In MRPT2 approaches, intruder
states lead to diverging first-order excitation amplitudes
and characteristic poles in potential energy surfaces.*> 4"
Intruders are commonly treated by shifting the en-
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ergy denominators, regularizing the amplitudes,
modifying the zeroth-order Hamiltonian,?*? and in-
creasing the size of the active space.*® However, none
of these techniques have been satisfactorily generalized
to the case of nonperturbative theories (e.g., MRCC), in
which intruders usually result in convergence difficulties
that render these approaches inapplicable.?2:53

Effective Hamiltonian theory is also affected by the
problem of redundant wave function parameters.®*%°
For instance, in the internally-contracted MRCC (ic-
MRCC) approach,3132:54 the basis of excited configura-
tions contains linear-dependent components which, when
discarded, introduces dependencies on numerical thresh-
olds. A small numerical threshold induces numerical in-
stabilities, while a large threshold may lead to discon-
tinuous potential energy surfaces.?! Moreover, eliminat-
ing linearly dependent excitations requires the diagonal-
ization of higher-order reduced density matrices, which
limits the applicability of these methods to moderate
numbers of active orbitals.’® Solutions to this problem
are realized only recently by either employing strongly
contracted excitation operators'2°3°7 or imposing many-
body conditions.!9:34:58

To address the the intruder state and redundancy
problems of the effective Hamiltonian formalism, we have
recently begun to explore many-body theories based on
the similarity renormalization group (SRG).??7%2 The
SRG provides a systematic approach to integrate out
high-energy degrees of freedom such that divergences re-
sulting from small energy denominators are suppressed.
Inspired by the SRG, we have proposed a novel approach,
the driven SRG (DSRG),% which combines the main fea-
tures of the SRG with a computational approach closely
related to coupled cluster theory. Later, we introduced
a multireference DSRG (MR-DSRG) theory that gener-
alizes the DSRG to multiconfigurational references and
investigated a second-order approximation.®4



The most important difference between the MR-DSRG
and other multireference theories is the use of a continu-
ous unitary transformation of the Hamiltonian controlled
by an energy cutoff A. This transformation excludes exci-
tations with energy approximatively smaller than A, and
thus, it avoids divergences caused by small denomina-
tors (intruder states). The MR-DSRG makes also exten-
sive use of Mukherjee and Kutzelnigg’s algebra of second
quantized operators that are normal ordered with respect
to a multiconfigurational vacuum.%~"° Building upon
this algebra, the MR-DSRG equations are formulated in
Fock space”™"? as a set of many-body conditions.?:34:58
The use of many-body conditions leads to an equal num-
ber of equations and unknowns, and therefore, it guar-
antees that the MR-DSRG is free from the redundancy
problem.

Our initial work on the MR-DSRG examined the ac-
curacy and numerical robustness of a second-order ap-
proximation. The goal of this work is to go beyond
a perturbative treatment of dynamic electron correla-
tion and explore one of simplest MR-DSRG nonpertur-
bative schemes. The resulting model—designated as
MR-LDSRG(2)—retains all of the one- and two-body
components of the renormalized Hamiltonian and ex-
pands the MR-DSRG transformation in terms of a lin-
ear recursive commutator approximation.36:”3 The MR-
LDSRG(2) energy may be evaluated with a computa-
tional procedure that has a computational scaling analo-
gous to that of the coupled cluster approach with singles
and doubles (CCSD). In addition, the MR-LDSRG(2)
approach requires only the knowledge of the one-particle
density matrix and the two- and three-body density
cumulants®®:707 of the reference wave function.

We start from an overview of the MR-DSRG formula-
tion and introduce the MR-LDSRG(2) model in Sec. II.
Section III presents our pilot implementation and dis-
cusses the scaling of the MR-LDSRG(2) approach. Ap-
plications of the MR-LDSRG(2) to the singlet ground-
state potential energy curves of HF and Ns, and the
singlet-triplet splitting of p-benzyne are reported in
Sec. V, where computational details are given in Sec. IV.
Finally in Secs. VI and VII, we compare the MR-DSRG
ansatz to other methods based on internally contracted
formalism, and discuss some future developments of the
MR-DSRG theory.

Il. THEORY
A. Basic notation

We define the Fermi vacuum as a multideterminan-
tal wave function |¥y) with respect to which all second
quantized operators are normal ordered:

d
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In Eq. (1), the set of determinants {®*} form a complete
active space (CAS). The orbital space {¢?,p=1,...,N}
is thus partitioned into three subsets: core (C), active
(A), and virtual (V). For convenience, we also define
two composite spaces: hole (H = C U A) and particle
(P = AUYV). The orbital indices corresponding to these
spaces are listed in Table 1.

The bare Hamiltonian normal ordered with respect to
Py is given by:
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where Ey = (Uo| H|W¥o) is the reference energy and
f{agh} = {d];dl ---a;G;} stands for a string of normal-
ordered creation (a') and annihilation (&) operators. In
Eq. (2), we have introduced the matrix element of the
generalized Fock matrix f:

fE=nE4+> vy, (3)

where 78 = (Wglab|Wo), hi = (dp|h|dy), and vys =
(PpdqllPrds) are respectively the one-particle density ma-
trix element of the reference, the one-electron integrals,
and the antisymmetrized two-electron integrals. For con-
venience, we also assume to work with a semicanonical
orbital basis such that the core, active, and virtual blocks
of the generalized Fock matrix are diagonal.

TABLE 1. Definition of the orbital spaces employed in this
work.

Space  Symbol Dimension Indices Description
Core C N¢ m,mn Doubly occupied
Active A Na w, v, w, x,y, 2z Partially occupied
Virtual \% Nv e, f Unoccupied
Hole H Ny 1,7, k,1 H=CUA
Particle P Np a,b,c,d P=AuUVvV
General G N D,q,7, 8 G=HUV

B. MR-DSRG Theory

In the unitary MR-DSRG ansatz,%:%4 the bare Hamil-
tonian (H) is partially block-diagonalized by a unitary
transformation. The unitary operator that performs this
transformation is written in an exponential form, eAls)]
where A(s) is a s-dependent anti-Hermitian operator.
The flow variable s is defined in the range [0,00) and con-
trols the extent of the DSRG transformation. The DSRG
unitary transformation yields an effective (or renormal-
ized) Hamiltonian H (s) (see Refs. 63 and 64 for details),
which may be partitioned into a sum of diagonal HP (s)

and non-diagonal HN(s) components:77

H(s) = e~ AE) FreAls) = HP(s) + HN(s). (4)



The diagonal component contains only the pure ex-
citation and de-excitation diagrams and couples the
reference |To) to excited configurations of the form
{ast-} [Wo). 550

The MR-DSRG transformation [Eq. (4)] is determined
by the flow equation:

HY(s) = R(s), (5)

where f%(s) is the so-called source operator, a Hermitian
operator that drives the off-diagonal components of H (s)
to zero, that is lim,_,o, HN(s) = 0. The source opera-
tor R(s) is required to perform a renormalization trans-
formation, that is, to decouple only those excited con-
figurations that differ from the reference by an energy
larger than the cutoff A = s—1/2.63.77 These two require-
ments do not identify a unique form for R(s). Therefore,
in our work we use a source operator designed to re-
produce some of the features of the SRG approach (see
below).53 Once R(s) is specified, the MR-DSRG equa-
tion implicitly determines the anti-Hermitian operator
A(s) and the renormalized Hamiltonian [Eq. (4)]. As we
shall discuss more in detail in Sec. ITC, the DSRG equa-
tion should be understood as a collection of many-body
conditions,!?:34:%8 where the coefficients associated to the
same normal-ordered second-quantized operators on the
left and right side of Eq. (5) are set equal to each other.

The electronic energy for a given reference ¥q is com-
puted as the expectation value of the DSRG transformed
Hamiltonian H (s):

E(s) = (¥o|H(s)|¥y) . (6)

The relazed MR-DSRG energy is obtained using coeffi-
cients that diagonalize H (s) within the space of reference
determinants:

d
> (@, H (s)

Note that computing the relaxed MR-DSRG energy
requires the simultaneous solution of the MR-DSRG
equation [Eq. (5)] and the energy eigenvalue equation
[Eq. (7)]. In addition, we also consider the unrelazed
energy, which is obtained by evaluating E(s) using ref-
erence coefficients from a CAS configuration interaction
(CASCI) or CAS self-consistent field (CASSCF)™® com-
putation. Results from unrelaxed computations will be
denoted by the prefix “u” (for example, uMR-DSRG).

|®*) ¢\, = E(s)cy. (7)

C. The linearized MR-DSRG scheme with one- and
two-body operators [MR-LDSRG(2)]

The essence of the MR-DSRG framework is to
solve the DSRG equation [Eq. (5)] using a many-body
formalism.9:34:58:63 Ag in the case of configuration inter-
action and coupled cluster theory, the MR-DSRG equa-
tions can be systematically truncated to form a hier-
archy of increasingly accurate methods [MR-DSRG(n),

n = 2,3,...]. To this end, the anti-Hermitian operator
A(s) is written in terms of a cluster operator [T'(s)] as:

A(s) = T(s) = T(s), (®)

and the cluster operator T(s) is a sum of excitation op-
erators up to rank n:

n

T(s) =) Tuls), (9)
k=1

where each k-fold component [Ty (s)] is defined as:
, H P
Ti(s) = 2 Z Z to (s){ag)}. (10)
ije abe-

As shown in Eq. (10), Tk(s) incorporates strings of
k normal-ordered creation and annihilation operators
({dfjbj_‘_' ), and each operator associates to a tensor
[t% " (s)] that is antisymmetric with respect to distinct
permutations of upper and lower indices. Internal clus-
ter amplitudes that are labeled only by active orbital
indices are redundant since they only change the refer-
ence coefficients. Therefore, internal amplitudes are set
to zero, that is tyy...(s) = 0 for uv--- ,zy--- € A.

The left-hand-side of the DSRG equation [Eq. (5)] con-
tains the DSRG Hamiltonian H(s), which may be ex-
pressed as a series of commutators of H and fl(s) using
the Baker—Campbell-Hausdorff (BCH) formula:

A3 L AL AG) ] ()
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k nested commutators

The DSRG Hamiltonian is a general Hermitian many-
body operator and may be expressed in terms of normal-
ordered components of different rank:34357

N
H(s) = E(s) + Y Hy(s). (12)

k=1

In Eq. (12) the term Hy(s) collects all the k-body com-
ponents of H(s):

Hy(

(13)
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The source operator that appears on the right-hand-
side of Eq. (5) may be expanded in a similar way,

|
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where the coefficients rfb(s) are given by:
T?b(s) — [Hfzjb(s) + tz,',','_(S)Ag_'_'_]e_s(b‘g-'-")2, (16)

where AY" =€ +€;+---—€g—e—- - is a generalized
Mgller—Plesset denominator and €, = fF is the energy
of orbital ¢?. The source operator defined by Eq. (16)
reproduces the unitary transformation achieved by the
single-reference SRG expanded to second order.?? 61,63
It is important to note that the equation for the source
operator given in Eq. (16) is valid only in the semicanon-
ical basis.®*%0 As discussed in Appendix A, with some
extra effort it is possible to formulate an orbital invari-
ant version of the MR-DSRG theory that allows to use
natural or other types of noncanonical orbitals.

After inserting the Egs. (12)—(16) into the DSRG equa-
tion [Eq. (5)], we obtain the following set of many-body
conditions:

H(s) =1 (s), forij--- € Hoab--- € P, (17)

In this work we consider the MR-DSRG truncated to
one- and two-body operators, that is, we approximate the
cluster operator as T' ~ T1+T>. Consequently, the DSRG
equations reduce to H!(s) = ri(s) and H.j(s) = 15 (s).
At the same time, to produce a computationally viable
method it is also necessary to truncate the BCH expan-
sion of H(s). Since the operator A(s) contains both exci-
tation and de-excitation operators (1" and 7'"), the BCH
expansion of the DSRG Hamiltonian does not terminate,
thus, making the exact evaluation of H(s) impractical.
This issue also arises in unitary versions of single- and
multireference coupled cluster theories.33:36:37:81:82 Fgl-
lowing the approach of Yanai and Chan,?¢37 we approxi-
mate each commutator that enters into the BCH formula
with its one- and two-body components (indicated with
the subscript “1,27):

[ [[H,A(s)] 12, A(9)12, 12 -

k nested commutators
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This recursive approximation is consistent with the level
of truncation of the cluster operator and leads to a prac-
tical and efficient computational scheme. We name this
truncated MR-DSRG approach as MR-LDSRG(2) where
the “L” indicates the linear commutator approximation
and “(2)” denotes that the DSRG equations are trun-
cated to one- and two-body operators.

D. Structure of the MR-DSRG equations

In this section we compare the structure of the MR-
DSRG equations to those of the single-reference cou-
pled cluster (CC) theory. To evaluate the commuta-
tors in the DSRG Hamiltonian [Eq. (18)], we use the
Mukherjee—Kutzelnigg generalized Wick’s theorem (MK

4

Wick’s theorem).56:%% For two normal-ordered second-
quantized operators (e.g., {X} and {V'}), the MK Wick’s
theorem allows us to express the product {X}{Y} as the
normal-ordered product {XY} plus a sum over contrac-
tions of normal ordered operators:

— =l
{(XHVF =XV} + D {XVh+ > (X7}

™ il
Y AX Y+ DD AX Y+

single single single
4-leg pairs 4-leg

(19)

When compared to the traditional Wick’s theorem used
in single-reference (SR) theories,*? the MK Wick’s the-
orem contains two new aspects. Firstly, contrary to the
single-reference case in which pairwise contractions in-
troduce a Kronecker delta (¢), in the multireference case
pairwise contractions give either a one-particle (7y;) or
one-hole (1) density matrix:

r1
[
aqgal =k =67 — 4P, (21)

Secondly, new multi-legged contractions appear, each of
which contains 2k-legs (k > 2) and pairs k creation op-
erators with k annihilation operators. These new con-
tractions correspond to elements of the k-body density
cumulant (Ay) of the reference Wy. It is important to
note that cumulant contractions span only those orbitals
that are partially occupied in the reference. Hence, for
a complete active space reference, cumulant contractions
only connect operators labeled by active indices.

It is instructive and insightful to compare the structure
of the MR-DSRG Hamiltonian obtained with the MK
Wick’s theorem with the similarity transformed Hamilto-
nian of CC theory. In the MR-DSRG, each commutator
in the BCH expansion contain contributions of the form

(B, A) = (1,7 — 7Y = (7 — T — AT+ THA. (22)

One may identify two classes of terms that arise from
the application of the MK Wick’s theorem to each prod-
uct of operators that appear in Eq. (22). The first class
contains only pairwise contractions. These terms have
the same structure of the CC contributions, except for
the fact that their expressions contain matrix elements
of 1 and m;. However, by an appropriate redefinition of
the cluster amplitudes, these terms are equivalent to the
single-reference coupled cluster equations.??

The second class of terms that arises from MK Wick’s
theorem [Eq. (19)] consists of contractions that involve
cumulants. These contractions are not contained in the
single-reference CC equations, and they increase the alge-
braic complexity of multireference internally-contracted
approaches. Nevertheless, for CAS-CI and CASSCF ref-
erences cumulants can only contract second-quantized



operators labeled by active indices, which implies that
the computational cost of these additional terms is pro-
portional to a polynomial in the number of active or-
bitals.

Another point of divergence between the MR-DSRG
and CC equations arises from the mixed particle-hole
character of the operators labeled by active orbital in-
dices (@, and a!) that enter in the definition of the cluster
operator. These operators do not fall in the traditional
categories of vacuum creation and annihilation operators
because, in general, they neither create nor annihilate the
reference Wy. Consequently, commutators of the form
{X}, {T}} cannot be simply expressed as the connected
part of {X}{T'}, like in the coupled cluster theory. In-
stead, one must also consider the connected contribution
from the product {T}{X}:

(X} AT = (XHT} — {THX Deonnectea-  (23)

In the evaluation of commutators of the form [{X}, {T'}]
several simplifications may apply. For example, single
pairwise contractions give a Kronecker delta, while single
multi-leg contractions give null contributions.

1. IMPLEMENTATION

The MR-LDSRG(2) method is implemented as a
Ps14%* plugin augmented with the open-source tensor
library AMBIT.®> The MR-LDSRG(2) energy and clus-

Compute |¥q)

Semicanonicalize orbitals ‘<—

l

’ Initialize t ), t(

Compute H(s

Update & (s), t7 (s) ‘ H(s) converged?

Relax reference?

yes
Solve Eq. (6)

{c*} converged?
FIG. 1. The algorithm used to evaluate the MR-LDSRG(2)
energy.

ter amplitudes are computed via an iterative procedure
briefly summarized in Fig. 1. The first step is determin-

ing the reference wave function |¥y) in the semicanon-
ical basis, and computing the one-particle density ma-
trix, and two- and three-body density cumulants. The
MR-LDSRG(2) equations are written as a set of itera-
tive equations:

i,new 7i,0ld i,0ld i 1- e_S(Ai)z
ta" " (s) = [Ha™(s) + 107 () Aa]——x7— (24)
.. . .. l_e_s(Alb)Q
1j,new 1j,0ld 1j,0ld 7
tan (S) = [Ha‘%z ( ) + t J ( )Aajb} A” 9
ab
(25)

which are solved using as a starting guess first-order am-
plitudes obtained from a DSRG-MRPT?2 computation.5*

Matrix elements of the one- and two-body DSRG
transformed Hamiltonians [Eqs. (24) and (25)] are com-
puted by accumulating the nested commutators in

Eq. (18):
Hl,z = Z Ok(s)a (26)
k=0

where the kth-nested term [Oy(s)] is obtained from the
recursive equation:

1 .

Ok(s) = E[Okfl(s),A(S)]1’27 k= 1,2,3,--- 5 (27)
starting from Oy = H. In Appendix B, we
report all equations to compute the commutator

O(s) = [H, A(s)]1.2, which is sufficient to obtain H(s); o
via Eq. (26).

The MR-LDSRG(2) equations for the energy and am-
plitudes consist of 39 terms (in the spin orbital formal-
ism). In comparison, SR CC theory with singles and
doubles requires 48 diagrams in total, while the ic-MRCC
equations have a significantly larger number of terms.32
For small active spaces, the computational cost of MR-
LDSRG(2) is dominated by the contribution:

O3 (s %ZZvZZtifb s)vF, jeH,beP,pgeG,
(28)

which, after factorization, has a computational cost that
scales as O(N?NZNZ). The term with the worst scaling
with respect to the number of active orbitals has a cost of
O(N§ Nv), which it is still significantly cheaper that the
cost required by the orthonormalization step in projective
theories [O(NY)].

In the MR-DSRG, reference relaxation effects are ac-
counted for by solving the eigenvalue equation [Eq. (7)].
To diagonalize the Hj »(s) within the space of reference
determinants, we first express H(s) using second quan-
tized operators that are normal ordered with respect to
the true vacuum. Specifically, we write the one- and two-
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When the Hjs(s) is written in this form, the quanti-
ties [Hd(s) — > qu( )vi] and [H}:(s)] may be readily
identified as MR DSRG dressed one- and two-electron
integrals, respectively. These quantities can be used to
build and diagonalize H(s) in the CASCI space and de-
termine the density matrix and cumulants for the new
reference. Practically, we find that 5-10 macroiterations
are required to converge the energy to less than 1078 Ej,.

IV. COMPUTATIONAL DETAILS

The ground-state singlet potential energy curves
(PECs) of HF and Ny were computed using the MR-
LDSRG(2), Mukherjee MRCC theory with singles and
doubles (Mk-MRCCSD),26:28:54,55.86 MRCI with singles
and doubles (MRCISD),*>87 MRCISD with Davidson
correction® (MRCISD+Q), and full configuration in-
teraction (FCI). Special treatments were applied to
the Mk-MRCCSD computations of Na: (1) Tikhonov
regularization®® (w = 0.01) was used throughout the it-
erations to aid convergence; (2) the effective Hamilto-
nian matrix elements between determinants that differ
by more than two spin orbitals were neglected. Spec-
troscopic constants of HF and Ny were obtained by
fitting the PECs with a ninth-order polynomial cen-
tered around the equilibrium geometry and compared
to results from coupled cluster theory with singles
and doubles (CCSD),3® CCSD with perturbative triples
[CCSD(T)],3%% and unitary DSRG with one- and two-
body operators [DSRG(2)].%3

The singlet-triplet splitting of para-benzyne was stud-
ied using the MR-LDSRG(2) theory in combination with
two active spaces: CAS(2,2) and CAS(8,8). The for-
mer consists of two carbon o orbitals on radical centers,
while the latter further includes six carbon 7 orbitals.
Optimized geometries of singlet and triplet p-benzynes
computed at the Mk-MRCCSD /cc-pVTZ level of theory
using a CASSCF (2, 2) reference were taken from Ref. 91.

All computations utilized Dunning’s correlation con-
sistent double-( (cc-pVDZ) basis set?? and semicanoni-
cal CASSCEF orbitals, obtained by diagonalizing the core,
active, and virtual blocks of the generalized Fock matrix.
Carbon, nitrogen, and fluorine 1s core orbitals were al-
lowed to relax in the CASSCF computations, but were

frozen in all subsequent treatments of electron correla-
tion. We used the MOLPRO 2015.1 package®®°? to obtain
the MRCISD and FCI energies, and the Psi4 program®*
for the remaining computations. All FCI energies are
provided in the supplementary material.

V. RESULTS
A. Hydrogen fluoride, CAS(2,2)

To investigate the ability of the MR-LDSRG(2) ap-
proach to describe single-bond breaking process, we
study the ground-state dissociation curve of HF (X '¥+).
Figure 2 presents the energy differences relative to the
FCI of several multireference theories as a function of the
bond distance (rpp). For the MR-LDSRG(2) method,
we report the energy computed with both an unrelaxed
and a fully relaxed reference (the former indicated with
the prefix “u”). In all MR-LDSRG(2) calculations the
flow variable is set equal to s = 0.5 F; 2 a value that has
been shown to provide reliable results at the second-order
perturbation level.54

8 F
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FIG. 2. Energy deviations relative to FCI for the X '27F

state of HF computed using various multireference methods
based on a CASSCF(2,2) reference and the cc-pVDZ basis
set. All MR-LDSRG(2) curves are computed using s = 0.5
E. 2. The dashed line indicates the range of the plot for which
Mk MRCCSD computations failed to converge (2.60-2.85 A).

A comparison of the MR-LDSRG(2) curves shows that
reference relaxation effects play a significant role at equi-
librium and in the recoupling region (rg_r € [1,2] A). At
long distances (rp.p > 2.5 A), relaxation effects vanish
because the reference coefficients are determined by sym-
metry, and as a result, both the relaxed and unrelaxed
calculations converge to the same limit. Judged from the
nonparallelity error (NPE)—defined as the difference be-
tween the maximum and minimum signed errors—the
unrelaxed (3.36 mFE}y) and relaxed (4.24 mEy) versions
of the MR-LDSRG(2) yield curves that have slightly



larger errors than those computed with the MRCISD
(2.24 mE},) and Mk-MRCCSD (2.85 mFEy,) methods.

In Table II we compare the equilibrium bond length
(re), harmonic vibrational frequency (w.), and the an-
harmonicity constant (wew.) of HF (X 1XT) computed
with various single-reference and multireference meth-
ods. To gauge the s dependence of the MR-LDSRG(2)
results we consider both the case s = 0.5 and 1.0 E{Q.
For the uMR-LDSRG(2), the change of s causes a large
shift in the value of equilibrium properties. This is
demonstrated, for example, by the 22.3 cm™! variation
in the harmonic vibrational frequency. As observed in
the PECs calculations, properties computed with the re-
laxed MR-LDSRG(2) are less sensitive to the choice of
s. The shift in harmonic vibrational frequency is only
6.7 cm™!, less than three times the value obtained with
the unrelaxed approach. In general, properties computed
with the uMR-LDSRG(2) and MR-LDSRG(2) methods
are less accurate than those from SR-CC methods, Mk-
MRCCSD, and MRCISD.

TABLE II. Spectroscopic constants for the X 'S state of
HF computed using various single-reference and multirefer-
ence methods. All computations use the cc-pVDZ basis set.
Coupled cluster calculations use a restricted Hartree—Fock ref-
erence, whereas multireference calculations are based on a
CASSCF(2,2) reference. All values are deviations from FCI
results.

Method re/A wefem™' wexe/em™?
CCSD —0.0014 25.8 —-1.4
CCSD(T) —0.0004 7.0 —0.2
DSRG(2) (s = 1.0) 0.0009 —21.9 1.7
CASSCF(2,2) 0.0008 —81.3 10.2
DSRG-MRPT2 (s = 0.5) —0.0026  10.3 1.4
DSRG-MRPT2 (s =1.0) —0.0065 15.0 6.4
uMR-LDSRG(2) (s = 0.5) —0.0035  50.3 6.0
uMR-LDSRG(2) (s = 1.0) —0.0041  72.6 18.0
MR-LDSRG(2) (s = 0.5)  0.0021 —40.0 0.8
MR-LDSRG(2) (s =1.0)  0.0022 —33.3 3.7
Mk-MRCCSD —0.0008 11.0 0.0
MRCISD —0.0005 1.0 0.8
MRCISD+Q 0.0000 -0.8 —-0.1
FCI 0.9203 4143.2 92.9

B. Nitrogen molecule, CAS(6,6)

Next, we focus on the PEC for the XlE;‘ state of
N,. Energy errors with respect to FCI computed at
various atomic distances (ry.n) are summarized in Ta-
ble III and plotted in Fig. 3.7 In contrast to the case
of hydrogen fluoride, for Ny both the uMR-LDSRG(2)
and MR-LDSRG(2) methods are consistently in better
agreement with the reference with FCI curve than the
MRCISD and Mk-MRCCSD approaches. The NPEs of
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FIG. 3. Energy deviations relative to FCI for the XIZ;]"
state of No computed using various methods based on a
CASSCF(6, 6) reference and the cc-pVDZ basis set. All MR-
LDSRG(2) curves used s = 0.5 E 2. The Mk-MRCCSD curve
results from the approximated Mk-MRCCSD computations
described in Sec. IV.

uMR-LDSRG(2) and MR-LDSRG(2) are 5.25 and 4.81
mFEy,, respectively. These results are comparable to the
corresponding MRCISD number (3.27 mFEy) and sub-
stantially smaller than the Mk-MRCCSD value (14.16
mEh).98

Table I11 also reports results for linear CT (LCT)3637
and quadratic CT (QCT) theory, with and without the
inclusion of the exact three-body density matrix.?® The
LCTSD scheme results are directly comparable to those
from the MR-LDSRG(2) since both methods use the
same commutator expansion and truncate the cluster op-
erator to one- and two-body operators. Interestingly, the
LCTSD gives a NPE (1.85 mFE},) that is smaller than the
relaxed MR-LDSRG(2) value (3.23 mEy, s = 0.5 E; ?).
Another significant fact, is that the QCTSD approach—
which uses an improved commutator expansion—gives a
NPE (3.68 mEy) larger than the approaches based on
a linearized commutator approximation. This observa-
tion can be explained by an analysis of the errors intro-
duced by truncating nested commutators up to two-body
operators.”® We also note that the inclusion of the three-
body density matrix improves the performance of both
LCT and QCT, but increases the computational scaling
to O(N7) and O(N®), respectively.

Another interesting comparison can be made between
MR-LDSRG(2) and the strongly contracted (SC) and
weakly contracted (WC) versions of CT.?® Both the SC-
and WC-CTSD methods have a computational complex-
ity analogous to that of the MR-LDSRG(2) approach,
as they avoid diagonalizing the semi-internal excitation
overlap metric [a O(NY) step]. The Ny data summarized
in Table IV show that the MR-LDSRG(2) scheme yields
results of quality intermediate between that of the WC-
and SC-CTSD methods. However, note that these two
variants of CT are affected by the intruder-state prob-



TABLE III. Energy errors (in mFEy) for N2 (X 'SF) at several atomic distances (rn.n, in A). All computations used a
CASSCF (6, 6) reference and the cc-pVDZ basis set. Correlated methods included only single and double excitations and
employed the frozen-core approximation.

MR-LDSRG(2)

unrelaxed relaxed
NN LCT® L3CT* QCT*> Q3CT2 s=0.5 s=05 s=10 MRCI MRCI+Q Mk-MRCCP FCI®

0.9525 —0.421 —1.781 4.620 3.387 3.702 2.613 2.455 8.391 —0.564 4.750 —109.167573
1.0679 —0.576 —2.575 5.191 3.257 4.819 3.287 2.829 8.883 —0.782 6.576 —109.270 384
1.1208 —0.281 —2.582 5.426 3.043 5.487 3.703 3.207 9.123 —0.845 7.193 —109.278 339
1.1737 —0.178 —2.696 5.818 2.913 6.147 4.113 3.613 9.348 —0.812 7.874 —109.271915
1.2700 0.342 —2.852 7.044 3.387 7.188 4.781 4.344 9.734 —1.029 9.010 —109.238 397
1.4288 0.613 —2.993 7.745 3.280 8.171 5.466 5.272 10.313 —1.174 11.341 —109.160 305
1.5875 0.474 —2.873 7.672 3.485 8.444 5.527 5.675 10.634 —1.363 13.373 —109.086 211
1.7463 0.07 —2.00 6.34 3.47 8.81 5.57 6.08 10.66 —1.49 15.72 —109.03031
1.9050 —1.24 —1.89 4.07 3.09 9.12 5.85 6.62 10.14 —1.75 17.56 —108.994 81
NPEd 1.85 1.213 3.68 0.571 5.41 3.23 4.17 2.72 1.19 12.81

2 From Ref. 95. L3CT and Q3CT include the exact three-body reduced density matrix.

b The Mk-MRCC effective Hamiltonian elements between determinants that differ by more than two spin orbitals are neglected.

¢ FCI absolute energies (in E}) taken from Ref. 96.
d Non-parallel error (NPE) computed using these nine points.

lem and that some of the results reported in Table IV
were obtained by manually removing excitations linked
to intruders.3

TABLE 1IV. Errors (mEy) relative to MRCISD+4Q for the

X 12;‘ state of N2 in the range of 1.0 < ry.n < 3.0 A. All com-
putations used a CASSCF(6,6) reference and the cc-pVDZ
basis set. Core orbitals were not correlated.

MR-LDSRG(2) LCTSD®
unrelaxed relaxed
Error s=0.5 s=0.5 s=1.0 SC WC
MIN 4.753 3.506 3.191 5.280 3.524
MAX 11.026 9.563 10.701 9.206 11.096
NPE 6.273 6.057 7.510 3.927 7.977

2 From Ref. 53.

Table V reports the spectroscopic constants for the
ground state of Ny. Contrary to the case of HF, all MR-
LDSRG(2) methods yield results comparable to those
of the approximated Mk-MRCCSD and the single ref-
erence DSRG(2), and considerably exceed the quality of
the CCSD results. The MR-LDSRG(2) method provides
the most reliable predictions, which differ from FCI by
0.0016 A (r¢), 15.4 ecm™" (w,), and 0.2 cm ™! (weze). An-
other encouraging observation is that both going from a
perturbative to a nonperturbative treatment of dynamic
correlation and the inclusion of relaxation effects con-
tribute to reducing the s dependence of the MR-DSRG
methods.

C. p-Benzyne, CAS(2,2) and CAS(8,8)

In our final test case we use the MR-LDSRG(2) to
compute the adiabatic singlet-triplet splitting (AEst =

TABLE V. Spectroscopic constants for the XIE; state of
N2 computed using various single-reference and multirefer-
ence methods. All computations use the cc-pVDZ basis set.
Coupled cluster calculations use a restricted Hartree—Fock ref-
erence, whereas multireference calculations are based on a
CASSCF(6,6) reference. All values are deviations from FCI
results.

Method re/A we/em™' weze/em™?
CCSD —0.0073 85.2 —-1.4
CCSD(T) ~0.0012 153 0.4
DSRG(2) (s = 1.0) —0.0013 355 —2.7
CASSCF(6,6) —0.0058 41.8 -0.3
DSRG-MRPT2 (s = 0.5) —0.0011  —3.5 0.7
DSRG-MRPT2 (s = 1.0) —0.0019 7.8 1.1
uMR-LDSRG(2) (s = 0.5) —0.0025  21.8 0.4
uMR-LDSRG(2) (s = 1.0) —0.0027  29.1 0.4
MR-LDSRG(2) (s = 0.5) —0.0016  13.7 0.2
MR-LDSRG(2) (s = 1.0) —0.0015  15.4 ~0.0
Mk-MRCCSD? —0.0022 22.9 —0.2
MRCISD —0.0009 6.5 -0.0
MRCISD+Q 0.0002 —2.2 0.0
FCI 1.1201 2323.6 14.9

# The Mk-MRCC effective Hamiltonian elements between
determinants that differ by more than two spin orbitals
are neglected.

Et—Eg) of p-benzyne.86:91,100,1027110 Oy yeference value
was taken from the photoelectron spectroscopy experi-
ments of Wenthold, Squires, and Lineberger.!! These
authors obtained the value AEgt = 3.8 & 0.5 kcal mol ™,
but also considered an alternative (but less likely) value
of 2.1 kcal mol~!.

Table VI reports the DSRG-MRPT2 and MR-



TABLE VI. Adiabatic singlet-triplet splittings (AEst = Er—
FEs, in kcal molfl) of p-benzyne computed using various mul-
tireference methods and the cc-pVDZ basis set. All computa-
tional results include a zero-point vibrational energy (ZPVE)
correction equal to +0.30 kcal mol™!. Geometries and the
ZPVE correction are taken from Ref. 91.

Active Space Method AFEst
CASSCF 0.27

DSRG-MRPT?2 (s = 0.5) 2.55

uMR-LDSRG (2) (s = 0.5) 2.15

uMR-LDSRG (2) (s = 1.0) 2.72

MR-LDSRG(2) (s = 0.5) 3.51

CAS(2,2) MR-LDSRG(2) (s = 1.0) 5.32
MRCISD 1.75

MRCISD+Q 2.67

Mk-MRCCSD 5.23
Mk-MRCCSD(T) 4.49

ic-MRCCSD? 4.02
ic-MRCCSD(T)* 5.06

CASSCF 2.37

DSRG-MRPT2 (s = 0.5) 4.22

uMR-LDSRG(2) (s = 0.5) 4.04

uMR-LDSRG (2) (s = 1.0) 4.46

MR-LDSRG(2) (s = 0.5) 4.71

CAS(8,8) MR-LDSRG(2) (s = 1.0) 5.50
MRCISD 3.54

MRCISD+Q 4.18

Mk-MRCCSDP 5.23
Mk-MRCCSD(T)? 3.86

ic-MRCCSD? 4.95
ic-MRCCSD(T)* 5.25

Experiment® 3.8£04

# From Ref. 100.

P Approximated value obtained using the same procedure
for N2 described in Sec. IV.

¢ Ultraviolet photoelectron spectroscopy from Ref. 101.

LDSRG(2) singlet-triplet splitting computed with the
cc-pVDZ basis set. All results are shifted by +0.30
keal mol~! to account for zero-point vibrational energy
(ZPVE) corrections.”! The singlet-triplet splitting com-
puted with the uMR-LDSRG(2) method shows a marked
dependence on the size of the active space and the error
is dominated by the CASSCF contribution. This can be
seen from the fact that the correlation energy contribu-
tion to the splitting (e.g. AE%RiDSRG@) — AESRSSCE)
is almost the same for the CAS(2,2) and CAS(8,8) ref-
erences. For example, at s = 0.5 E 2 the correlation
energy contribution to the splitting is 1.88 and 1.67 kcal
mol~!, respectively. After introducing reference relax-
ation, the active space dependence is greatly alleviated,
and becomes smaller as the flow parameter increases. For
the MR-LDSRG(2) at s = 1 E, 2, the difference between

AFEgt computed with the CAS(2,2) and CAS(8,8) refer-
ences is only 0.18 kcal mol~!.

Our best estimates of AFEgp computed using the MR-
LDSRG(2) based on a CASSCF(8,8) reference are 4.71
and 5.50 keal mol~* for s = 0.5 and 1.0 E; %, respectively.
These values are in good agreement with the ic-MRCCSD
and ic-MRCCSD(T) results computed with the largest
active space: 4.95 and 5.25 kcal mol ™!, respectively. No-
tice that AFEgt from MRCISD and MRCISD+Q shows
a marked dependence on the size of the active space,
while the ic-MRCCSD and ic-MRCCSD(T) results dis-
play smaller variations. Interestingly, the CAS(8,8) Mk-
MRCCSD(T) singlet-triplet splitting (3.86 mEy) is the
one that comes the closest to the experimental value
(3.8 mFEy). This result is likely to be fortuitous, since
the quality of the Mk-MRCC approach is known to de-
grade as the active space is increased.!!!>112 Another is-
sue to take into consideration is the fact that Mk-MRCC
computations have a cost proportional to the number of
reference determinants, which makes this approach im-
practical for large active spaces. Indeed, our p-benzyne
CAS(8,8) Mk-MRCCSD computations cost about 660
times more than a single CCSD calculation.

D. Evolution of the MR-LDSRG(2) flow

In this section we analyze the evolution of the MR-
LDSRG(2) energy as a function of the flow variable s.
To this end, we consider the ground state of hydrogen
fluoride at three bond lengths: 1.0, 1.5, and 2.0 A. Fig-
ure 4 depicts the energy errors of both SR- and MR-
DSRG with respect to the FCI as a function of s. Specif-
ically, we consider the unrelaxed uMR-LDSRG(2), the
single-reference (SR) DSRG(2), and the fourth-order en-
ergy corrected version of the DSRG(2) [DSRG(2*)].%3

The top panel of Figure 4 shows that energy error of
the single-reference DSRG(2) and DSRG(2*) methods
are monotonically decreasing functions of s. This be-
havior is consistent with the flow of the energy in the
similarity renormalization group (SRG).!*® In the limit
of s that goes to infinity, the DSRG(2*) energy is al-
most indistinguishable from the CCSD value, while the
DSRG(2) overestimates the correlation energy.

On the contrary, the MR-LDSRG(2) energy does not
decrease monotonically with respect to s. This behav-
ior was already observed in results from second-order
MR-DSRG perturbation theory®® and applications of
the in medium multireference SRG to nuclear structure
problems.'!* For large values of s, the MR-LDSRG(2)
fails to converge when rg.gp = 1.0, and 1.5 A, while there
are no issues at 2.0 A. Convergence problems for large val-
ues of s are expected, and can be understood by means
of a perturbative analysis of the MR-LDSRG(2) equa-
tions. The first-order MR-DSRG amplitudes for doubles
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FIG. 4. Energy deviations relative to FCI for HF (X 'X™)
plotted against the flow parameter s (in logarithm scale): (a)
SR-DSRG(2) at rmr = 1.0 A, and (b) uMR-LDSRG(2) at
rir = 1.0,1.5, and 2.0 A. The insets show the corresponding
enlarged plots for 0.1 < s < 10.0 E}TQ. All computations used
the cc-pVDZ basis set.

are given by:%

| 1 _ g—seitej—ea—ep)?
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In the limit of s — oo, the first-order MR-DSRG am-
plitudes are equivalent to the first-order Mgller—Plesset
amplitudes, and they diverge when the energy denom-
inator €; + €; — €, — €, approaches zero. The inset of
Fig. 4(b) shows details of the MR-LDSRG(2) energy for
s in the range [0.1,10] E, 2. We notice that our rec-
ommended range for s, [0.5,1.0] E; 2, is located within
an energy plateau, which is consistent with the observed
weak s-dependence of our results.

Our experience with the single-reference DSRG% sug-
gests that numerical instabilities may also be aggra-
vated by the use of an approximate BCH expansion. In-
deed, when the linearized BCH approximation is modi-
fied to recover the correct prefactor for the leading third-
order terms, the convergence of the resulting DSRG(2*)
method is superior to that of the DSRG(2). In fact, when
we look at a different bond length (rg.r = 2.0 A) than the
one used in Fig. 4(a), the DSRG(2) becomes numerically
unstable for s > 2.0 E, 2, while the DSRG(2*) always
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converges in the sampled region (s < 102 E; ?).

VI. FORMAL COMPARISON OF THE MR-DSRG WITH
OTHER MULTIREFERENCE METHODS

In this section we will summarize the similarities and
differences between the MR-DSRG formalism and other
nonperturbative multireference theories. Readers may
immediately recognize the close connection between the
MR-DSRG and canonical transformation (CT) theory
of Yanai and Chan.?%:37 Both methods transform the
Hamiltonian unitarily, and evaluate the BCH expansion
using a recursive commutator approximation.?%”® How-
ever, there are several important distinctions between the
MR-DSRG and LCTSD approaches. Firstly, reference re-
laxation effects were not considered in the formulation of
CT theory. However, semi-internal excitations (a¥ and
a%¥) still allow some degree of indirect reference relax-
ation in CT theory.

Secondly, the MR-DSRG relies on a set of many-body
equations, while the CT scheme uses a projective for-
malism. More precisely, the CT amplitudes are deter-
mined from a set of generalized Brillouin conditions of

the form:115-116

(Wolle A HeA,ay " —ath )| We) =0,  (31)

where A is analogous to the MR-DSRG A(s) operator
but does not depend on s and it is normal-ordered with
respect to the true vacuum. Moreover, since the basis of
states &fﬁ',',‘ |Wg) is nonorthogonal and linearly dependent,
in CT it is necessary to orthogonalize this basis. The
most demanding step of the orthogonalization procedure
involves semi-internal excitations and scales as O(NY).
The MR-LDSRG(2) approach avoids orthogonalization
of the excitation manifold by employing many-body con-
ditions [Eq. (17)],13%58 and as a result, it has a lower
scaling with respect to the size of the active space.

Other approaches closely related to the MR-DSRG
include the internally-contracted MRCC theory,3":32
the state-specific partially internally contracted MRCC
(pIC-MRCC)3* and the MR equation-of-motion CC
(MR-EOMCC) theory of Datta and Nooijen.3% 79117118
As in the case of CT theory, the ic-MRCC formalism is
projective, but it relies on a nonunitary transformation
of the bare Hamiltonian and does allow for relaxation of
the reference wave function.

The pIC-MRCC and MR-EOMCC are two transform
and diagonalize approaches. For example, in the MR-
EOMCC method, the Hamiltonian is similarity trans-
formed according to:

G={e"y e T el (), (32)

where 7" contains excitations from H to V, while ¥ con-
tains the non-commuting components of the ic-MRCC
excitation operator. The use of normal ordered expo-
nential operators'*® [{exp(Y)}] instead of the traditional



exponential operator simplifies the algebraic structure of
the MR-EOMCC equations.’>"7° Both the pIC-MRCC
and MR-EOMCC use a hybrid set of residual condi-
tions. Single excitations 7" are obtained from a set of
projected equations of the form (¥g|alG|W¥o) = 0, while
doubles amplitudes are derived from a set of many-body
conditions.?* This mixed scheme has the advantage that
one needs to orthogonalize only the space of single excited
configurations. Once G is determined, it is subsequently
diagonalized in a space of determinants that spans a small
multireference configuration interaction wave function.
Thus, both the pIC-MRCC and MR-EOMCC theories
properly account for reference relaxation effects.

For reasons that vary from method to method, all ap-
proaches considered here require the elimination of a por-
tion of the cluster amplitudes. In CT and ic-MRCC
theory, the orthonormalization of the basis of excitation
operators uses a numerical threshold to identify ampli-
tudes that are redundant. In the case of pIC-MRCC
and MR-EOMCC, despite the use of many-body condi-
tions for doubles, it is still necessary to discard some
doubles amplitudes that correspond to weakly occupied
active orbitals.>»™ In contrast, the combination of many-
body equations and renormalization of intruders allows
the MR-DSRG to retain all amplitudes and, in principle,
avoid discontinuities caused by the elimination of excita~
tions.

VIl. CONCLUSIONS

The framework of similarity renormalization group
provides a general approach to create many-body the-
ories that do not suffer from problems with small en-
ergy denominators. In this work we take advantage of
this strategy to formulate the MR-LDSRG(2) approach,
a novel multireference theory that combines numerical
robustness with an internally-contracted treatment of dy-
namical electron correlation effects that is comparable to
that of the single-reference CCSD approach.

The MR-DSRG formalism addresses two major diffi-
culties encountered in other nonperturbative multiref-
erence theories: 1) convergence issues linked to the
intruder-state problem and 2) energy discontinuities that
arise from the need to eliminate redundant wave func-
tion parameters. The MR-DSRG performs a contin-
uous unitary transformation of the Hamiltonian that
folds in dynamical correlation effects. This transfor-
mation produces a flow renormalization of the many-
body interaction, where problematic rotations between
the reference and near-degenerate excited configura-
tions are suppressed.®®> The redundancy problem is
dealt with a many-body formulation of the MR-DSRG
equations,'?345® an approach that has been successfully
applied to numerous MR methods.34:3579:114 Tp addition,
the MR-DSRG equations make extensive use of Mukher-
jee and Kutzelnigg’s normal order formalism for multi-
configurational vacua.%> 70
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The MR-LDSRG(2) model introduced in this work is
based on a cluster operator truncated to one- and two-
body terms, while the Baker—-Campbell-Hausdorff ex-
pansion is approximated with a linearized recursive for-
mula. This model is perhaps one of the simplest inter-
nally contracted MR methods available: it contains only
39 terms and has a computational cost that scales as
O(N?NZNZ), which is roughly the same as single refer-
ence CCSD [O(NgNy)].

The MR-LDSRG(s) has been benchmarked against the
FCI ground-state potential energy curves (PECs) of HF
and N», and the experimental singlet-triplet splitting of
p-benzyne. The relaxed MR-LDSRG(2) PECs of HF
and Ns show similar nonparallelity errors, 4.24 mFE}, and
4.81 mEy, respectively, and maximum errors of compa-
rable magnitude, 4.65 and 7.60 mFEy, respectively. To
put these numbers into perspective, we also evaluate the
CCSD and CCSD(T) dissociation energy of HF and Ny as
D.(HF) = E(H,2S) + E(F,2P)—E(HF,r.) and D.(N3) =
2 E(N,AS)—E(Ny,r.), respectively. At the CCSD level,
D.(HF) and D,(Ns) deviate from FCI by —1.3 and —12.7
mFEy,, respectively. The addition of pertubative triples
reduces these errors to —0.3 (HF) and —1.6 mFE}, (N3).
Hence, the accuracy of the MR-LDSRG(2) appears to
fall within the range expected for CCSD. For p-benzyne,
the singlet-triplet gap is predicted to be 4.71 kcal mol !
at the MR-LDSRG(2) (s = 0.5) level of theory, a value
that is within 1.2 kcal mol~! from the experimentally
measured gap and previously reported ic-MRCCSD and
ic-cMRCCSD(T) results.!00

We also notice that dependency of the MR-LDSRG(2)
energy and properties on the value of the flow variable (s)
is greatly reduced with respect to the DSRG second-order
multireference perturbation theory (DSRG-MRPT2).64
For example, when the flow variable s is increased from
0.5 to 1.0 E; 2, the MR-LDSRG(2) equilibrium distances
of HF and Ny change by less than 0.0002 A, while at
the DSRG-MRPT?2 level they vary by 0.004 and 0.001
A, respectively. Moreover, it is important to allow the
reference wave function to relax in the presence of dy-
namic correlation, as shown by the conspicuous 1-3 kcal
mol~! changes in the p-benzyne singlet-triplet splittings.
In general, we find that the relaxed MR-LDSRG(2) ap-
proach with s = 0.5 E 2 provides a consistent compro-
mise between numerical robustness and accuracy.

Overall, our results suggest that future study should
the natural next step would be to explore more accu-
rate MR-DSRG truncation schemes. Perhaps, the largest
source of error in the MR-LDSRG(2) is the linear commu-
tator approximation, since it is known to yield correlation
energies that are correct only up to third order in pertur-
bation theory. One way to address this issue is to con-
sider a quadratic commutator approximation.”® Another
aspect to consider is the inclusion of triple excitations
via a perturbative correction analogous to the CCSD(T)
approach.® In this respect, one of the advantages offered
by the MR-DSRG formalism is that it does not require
the costly orthogonalization of triple excitations, which



is instead mandatory in methods that project equations
onto a set of internally contracted configurations.
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Appendix A: MR-DSRG theory in a general basis

As commented in Ref. 63, the original formulation of
the DSRG gives an energy that is not invariant with
respect to separate rotations among orbitals that leave
the reference unchanged (in the case of the MR-DSRG
these are the core, active, and virtual orbitals), unless
s = 0 or s = oo. The lack of orbital invariance is due
to the structure of the source operator [Eq. (16)]. The
original parameterization of the source operator uses a
Gaussian function of Mgller—Plesset denominators in the
semicanonical basis. When orbitals are rotated to a dif-
ferent basis, the functional form of the source operator
changes, thus, breaking orbital invariance. By analyzing
the issue of orbital invariance in the second-order SRG
approach, we found a simple approach to write a gen-
eral orbital-invariant DSRG source operator. Without

J

o =

ZU“ Z < HFU] + A7, Z

k= > vrul 1O v HEUL Ui+
kled

i'j'a’b’

where the Mgller—Plesset denominators AZ, = € — €y

L
and A’} = €y + €jy — €ar — €, are defined in the semi-

canonical basis.

In practice, to evaluate the MR-DSRG equations, we
first evaluate H°'9 and t°'4 in a general basis, transformed
them in the semicanonical basis, update the amplitudes
using Egs. (24) and (25), and transform the amplitudes
back to the general basis. The resulting algorithm is
more expensive than directly solving the DSRG equation
[Eq. (5)] in the semicanonical basis since it requires ad-
ditional steps that scale as O(NANg). Nevertheless, an
orbital invariant formulation of the MR-DSRG allows us
to evaluate the renormalized Hamiltonian in other bases
that might offer a computational advantage (for example,
the natural orbital basis). We have implemented and nu-
merically verified the orbital invariance of this new source
operator on the singlet ground state of Ns.

UStE Ui e
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going in details of this derivation, our solution to the or-
bital invariance issue is to relate the source operator in
an arbitrary basis to the original expression in the semi-
canonical basis via a series of unitary transformations.
To begin with, we need to establish the relationship be-
tween a set of general and semicanonical orbitals. If we
start from a noncanonical basis {¢?}, the unitary trans-
formation 1/)1’/ = Zp U}f'qbp that connects it to the semi-

canonical basis {1’} satisfies the eigenvalue problem for
each block of the Fock matrix:
FxUX:UXex, X:C,A,V, (Al)
where F x is the Fock matrix for block X and ex is the
corresponding diagonal matrix of orbital energies. The
direct sum of these block transformations (Ux) yields
the unitary matrix (U) that rotates a general basis to
the semicanonical basis,
U=Uc® U,y & Uy. (A2)
Following the notation of Kong,''! we express the matrix
element of U and its transpose as U and Ug/, respec-
tively.
In a general basis obtained by rotating the semicanon-
ical orbitals, the one- and two-body components of the
source operator [Eq. (16)] can be rewritten as:

—s(AY)? Uk, (A3)
+ AL ST OB UL U e @) UL U (A4)
klcd
[
Appendix B: Matrix elements of O(s) = [H, A(s)]1,2

Here we present the matrix elements of the linear com-
mutator O(s) = [H,A(s)]1,2 required to evaluate the
MR-DSRG transformed Hamiltonian via Egs. (18) and
(27). Since [H,T7(s)] = —[H,T(s)]" holds, only terms
from [H,T(s)]1.2 need to be derived. As indicated by
Eq. (2), we may write the quantity [H,T(s)];2 as the
sum of four contributions,

[ﬁv T(S)]L? :[ﬁ7
+ (B1)

Table A1 reports all terms resulting from C(s) =
[H ,T(s)]1.2, expressed in terms of the one-particle den-
sity matrix (), the one-hole density matrix (1), and
density cumulants (\) of ¥,.56:70.7 For convenience, we
adopt the Einstein summation convention, and drop the
symbol “(s)” from the cluster amplitudes. Line 1 corre-



13

TABLE Al. Equations for the evaluation of the commutator [ﬁ , T(s)hz expressed using Einstein’s notation. Indices follow

the convention introduced in Table I.

# Contribution Expression
) c FEPtYInE + SATU(fotly + vinte) — (fater 4+ vpti)] + Tvittd vEyintnk
FATSUIStR I 4 ANTY (vsatanEnh + vt E) SN (vt + vty
2 ol it + StV Y + Ut mEnG + AGY (Gupt 1Y, + vpatl)
3 cy —fPtl — SoRitet Yy — 2olst Sy yind — ATY(Fvbntiy + vlitl)
4 Ci o SRS — TSP+ SN (vt — vt
5 Cy iyl — trodn v + SATY (vistly — vty
6 P(p,b) 3, o fy
7 P(g,5) C%4 +to ff
8 P(p,a)Cap +thvops
9 P(r,i) Cpr +thvpn
10 CH +3 (ordtmin — vl by
11 Chy +3 (RIS — oRdt i)
12 P(p,b)P(g,4) CY Rt AF — ol vy

sponds to the fully contracted contribution, while lines
2-5 and 6-12 report the one- and two-body contribu-
tions of C(s), respectively. In lines 6-9 and 12, we intro-
duce the index permutation operator P(p,q) defined as
P(p,q) =1 — (p + ¢) to indicate contributions to per-
mutation of the tensor C}7. For example, line 6 should
be interpreted as:

Col —+ Yt fo, (B2)

Copy == D tan ]y (B3)
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