
A GPU-based Large-scale Monte Carlo Simulation Method
for Systems with Long-range Interactions

Yihao Liang, Xiangjun Xing
Institute of Natural Sciences and Department of Physics and Astronomy, Shanghai Jiao Tong

University, Shanghai, 200240 China

Yaohang Li
Department of Computer Science, Old Dominion University, Norfolk, VA 23529, United States

Abstract

In this work we present an efficient implementation of Canonical Monte Carlo sim-
ulation for Coulomb many body systems on graphics processing units (GPU). Our
method takes advantage of the GPU Single Instruction, Multiple Data (SIMD)
architectures, and adopts the sequential updating scheme of Metropolis algorithm.
It makes no approximation in the computation of energy, and reaches a remarkable
440-fold speedup, compared with the serial implementation on CPU. We further
use this method to simulate primitive model electrolytes, and measure very pre-
cisely all ion-ion pair correlation functions at high concentrations. From these
data, we extract the renormalized Debye length, renormalized valences of con-
stituent ions, and renormalized dielectric constants. These results demonstrate
unequivocally physics beyond the classical Poisson-Boltzmann theory.
Keywords: Monte Carlo, GPU, Parallel Computing, Coulomb Many Body
Systems, Electrolytes, Charge Renormalization

1. Introduction

Molecular simulations generally fall into two categories: molecular dynamics
(MD) and Monte Carlo (MC). In a MD simulation, one solves the Newtonian
equation, from which both dynamical and static properties of studied systems can
be extracted. In a Monte Carlo simulation, one carries out a Markovian stochastic
process which converges to the equilibrium Gibbs distribution. The main advan-
tage of MC is that it can often be accelerated substantially by performing unphys-
ical moves that involve long displacement and/or large number of particles. Hence
MC is usually more efficient than MD for simulation of equilibrium systems.

Preprint submitted to Journal of Computational Physics March 1, 2017

ar
X

iv
:1

60
2.

05
71

6v
3 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 2
8 

Fe
b 

20
17



Long range interactions impose substantial difficulties on numerical simula-
tions, because the computational complexity for one cycle (where every particle
moves one step on average) scales as N2, in contrast with N for short range in-
teractions, where N is the size of system being simulated. This severely limits the
size of feasible simulations. There are three classes of methods to speed up the
simulation for long range interacting systems: 1) Multipole expansion methods
[1, 2, 3, 4], where interactions are computed approximately using truncated multi-
pole expansions. This reduces the computational complexity to N or N logN . 2)
Fourier transforms augmented by Ewald-summations, which reduce the complex-
ity to N3/2. It can be further reduced to N logN , by using Fast Fourier Transform.
Unfortunately, the latter trick is not applicable for MC. Furthermore, additional
artifacts arise due to periodic images. For a discussion of these artifacts, see ref-
erence [5]. 3) Multi-scale reaction-potential methods [5, 6, 7], whose idea is to
simulate only a small portion of the system and use continuum theory to describe
the remaining. These methods have difficulty to scale to system with large number
of particles, since they do not use any speedup technique in the computation of
energy.

Graphics processing units (GPU) offer a new possibility for speeding up large
scale simulation of long range interacting systems without sacrificing accuracy.
GPU is a powerful device which can process thousands of threads simultaneously
with high memory bandwidth. Compared to CPU, GPU is designed with more
transistors that are devoted to data processing rather than data caching and flow
control [8]. It is suitable for computation-intensive and data-parallel computations
such as graphics rendering - the original purpose of designing GPU. In recent years,
the GPU is devoted to more and more general purpose fields, such as data mining,
machine learning, finance, scientific computing and molecular simulation.

Many MD simulation methods have already been adapted to GPU in the past
years [9, 10, 11, 12, 13, 14, 15, 16]. There are also many MD softwares and
libraries that can be implemented on GPU, including AMBER [17, 18, 19, 20]
FENZI [21, 22] LAMMPS [23, 24] NAMD [25, 26], HALMD [27], OpenMM [28]
HOOMD-blue [29, 30], GROMACS [31], ACEMD[32]. Most of these packages
have demonstrated efficiency in simulating long range interacting systems.

Implementation of Monte Carlo simulation on GPU turns out to be significantly
harder. This is mainly because of the sequential nature of Monte Carlo stochastic
dynamics, where particles are moved one by one. Nonetheless, there have been a
few attempts to realize MC simulation of Ising model [33, 34, 35] and Hard disk
fluid [36] on GPU. A. Yaseen and Y. Li used the remapping method to calculate the
total energy on GPU for protein systems [37]. A group at Wayne State University
[39, 40] realized a GPU code for Gibbs ensemble MC simulation of simple liquids.
J. Kim et. al. developed an implementation with embarrassing parallel on GPU,

2



where each block performs an individual Monte Carlo simulation [41, 42, 43]. We
have not found any previous realization of MC simulation for large-scale long range
interacting systems on GPU.

In this work, we develop an efficient GPU approach to realize the canonical
Monte Carlo of systems with long range interactions. The fundamental idea behind
this method is to update every particle once during one invoking of GPU kernel,
and to use one (or a few) thread(s) to control one particle in a synchronous mode
with coalesced memory access, i.e., to calculate its energy change and to attempt
to move it. The same idea has been used in MD simulations in [9], where each
thread controls the evolution of one particle. 1 In our case of MC simulation, each
thread also has to take care of Monte Carlo trials and decisions. In terms of the
interaction table, this parallel metropolis scheme looks like a “brush”, hence we
call it the Brush Metropolis Algorithm.

This approach enhances temporal locality and thereby improves cache per-
formance. We benchmark this code on a Tesla K20 GPU and find a remarkable
440-fold speedup compared to sequential codes on Intel Xeon E5-2670. It is impor-
tant to stress that this speedup is achieved without sacrifice of accuracy, since there
is no approximation (such as truncated multipole expansion) used in the Brush
Metropolis Algorithm. Using this program, we carry out large-scale Monte Carlo
simulations of primitive model electrolytes containing as many as 106 ions and
measure all pair correlation functions up to extremely high precision. The radius
of the simulation box is hundreds of Debye length, so that all boundary artifacts
are completely screened. Using this huge amount of data, we are able to measure
precisely static linear response properties of the system, including the renormal-
ized valences of constituent ions, the renormalized Debye lengths and renormalized
dielectric constant. Comparison of these renormalized parameters with their bare
values clearly demonstrates that the statistical physics of concentrated electrolytes
is beyond the classical Poisson-Boltzmann theory.

The remaining of this paper is organized as follows: In section 2, we compare
the feasibility of parallelism in random moving and sequential moving. In section
3, we discuss GPU implementation of sequential moving. We show the benchmark

1However, there are also important differences between these two algorithms. In MD, the
only dependency is that the particle coordinates updates and the force computations should be
fairly separated in time. To satisfy this dependency, two basic kernels are needed: one is for
position updating and the other one is for force computation. Moreover, the force computations
are independent so that they can be performed without any inter-thread communication. In
comparison, the Hamiltonian change in our MC method is more complicated, due to complex and
strong dependency in updating coordinates and energy calculation. In our implementation for
MC, the updates of coordinates and the corresponding energy computation are carried out within
one kernel and the order of computations and updates together with inter-thread communications
are deliberately designed.

3



results and present simulation results for linear response properties of electrolytes
in sections 4 and 5, respectively. Section 6 summarizes our conclusions and future
research directions.

2. Concurrency

In a Metropolis Monte Carlo simulation, a Monte Carlo step is the smallest
unit of Markov chain where one particle is moved. A Monte Carlo cycle consists
of N steps, where N is the total number of particles. A MC step contains three
basic sub-steps:

a) Selection: Select a particle k, either randomly or sequentially.
b) Trial: Propose an unbiased perturbation of the selected particle. The new
coordinate of the selected particle x̃k is generated by a symmetric probability
transition function T (xk, x̃k) = T (x̃k,xk), which yields conditional probability
density that x̃k is selected as the new coordinate, given the current coordinate
is xk. We then calculate the change of total energy ∆Ek due to this trial. For
long range interacting system, the time cost for calculation of ∆Ek scales with
N , and therefore is the most computationally expensive substep.
c) Acceptance/rejection: Accept the tried state as the next state of the
Markov chain with probability min{1, e−β∆E}. The new position is then given
by

x′k =
{

x̃k, trial accepted;
xk, trial rejected. (1)

Here β = 1/(kBT ), kB is the Boltzmann constant and T is the temperature of the
system. Substep a) (selection) can be executed in two different ways: 1) Random
Updating Scheme, where the particle is selected at random, and 2) Sequential
Updating Scheme, where all particles are labeled and moved in ascending order.
In Fig. 1, we schematically illustrate several consecutive MC steps in the random
updating scheme (left) and the sequential updating orders (right). All particles
are labeled by integers 0, 1, . . . , N − 1. Each row of figure corresponds to a state
in one MC cycle, where the current position of each particle is listed in ascending
order. In the random scheme, every particle moves one step on average within one
MC cycle. By contrast, in sequential updating scheme, every particle attempts
to move exactly once within one cycle. In random updating scheme, the Markov
process has a time-independent transition matrix, whereas in sequential scheme,
the transition matrix is periodic with periodicity N . Note that detailed balance
of the Markov process is guaranteed by the symmetry of the transition function
T (x, x̃), together with the choice of acceptance probability, and therefore is valid
for both updating schemes. Because of the Markovian nature of MC simulation,
the acceptance ratio of a trial in the random updating scheme depends on all

4



Figure 1: Schematic illustrations of several consecutive MC steps in the random updating scheme
(left) and the sequential updating orders (right). Each row denotes a state of the system, and
red dashed boxes denote the particles being updated, one in each step. The purple arrows denote
the actions of updating, with A/R meaning accept and reject, respectively. In order to determine
the results of updates (either acceptation or rejection), one needs to sum of the changes of all
pairwise interactions. These are designated by black horizontal arrows with underlying plus
signs.

details of all prior steps. This severely limits the potential of concurrency of the
Random Updating Scheme. By contrast, the potential of concurrency of Sequential
Updating Scheme is much higher, as we shall show in detail.

Starting from the initial state {x0,x1, . . . ,xN−1}, we can now propose N ran-
dom trial new positions {x̃0, x̃1, . . . , x̃N−1}, one for each particle, so that the first
several states in one MC cycle are as shown in Fig. 1. To illustrate the inter-
dependency of tasks involved in one MC cycle of the sequential updating scheme,
we introduce the graphic representations in Fig. 2 of all involved pairwise interac-
tions that must be calculated during a MC cycle. The horizontal axis is the index
of particles (in ascending order), whereas the vertical axis is the time line, with
the numbers on the axis label particles selected in each step. Each square element
(except the dark ones) denotes the change of a pairwise interaction ∆Eij in step i
where the i-th particle is being tried to move. It is defined as

∆Eij ≡


U(x̃i − xj)− U(xi − xj), i < j;

U(x̃i − x′j)− U(xi − x′j), i > j.
(2)

Now the important point is that for i < j, ∆Eij does not depend on any of new
positions x′k. (All these ∆Eij are shown in the upper triangle in Fig. 2. ) Therefore
they can be calculated simultaneously before any particle is moved. Furthermore,
all the squares in one row to the right of diagonal can be summed before any move.
Both of these calculations can be done in parallel.

Now the 0-th particle is ready to take the trial move, and determines its new
position according to Eq. (1). After this, all elements in the 0-th column below

5



Figure 2: Table of pairwise interactions in sequential updating scheme. Each element (except
the dark ones) denotes computation of a pairwise interaction. The dark square (one for each
row) denotes the action of decision(acceptance or rejection) for the selected particle in each step.
“+” denotes the summation of the pairwise interactions in selected region (red region or purple
region). Decision must be done after the summations in each row. After the decision in one
column is done, all squares below are to be updated.

the diagonal line can be calculated independently (because these elements depend
only on the new position x′0, but not on others). The inter-dependency of these
operations is illustrated in Fig. 2. They can also be added to ∆Ei independently.
After this, particle 1 is ready to take the trial move. The process keeps going until
the last particle N is tried. This is the main idea behind our GPU implementation
of the sequential updating scheme.

3. GPU implementation

We implement the sequential updating scheme with the NVIDIA CUDA pro-
gramming model and perform simulations and benchmarks on Tesla K20 GPUs.
CUDA is a programming platform with extensions of C/C++, which provides
a convenient way for parallel programming on NVIDIA GPU. An Nvidia Tesla
K20 card includes 13 stream multiprocessor(SMX), each of which has 192 CUDA

6



cores, result in totally 2496 CUDA cores and 1.17 Tflops double-precision peak
performance or 3.52 Tflops single-precision peak performance. The size of global
memory in a Tesla K20 GPU is 5GB, and in each SMX there is a 48KB shared
memory. Details and terminologies of CUDA and GPU architecthure can be found
in the CUDA-C programming guide [8].

3.1. Data setting and random numbers
We use CUDA’s float4 data type for particle parameters, where x, y, z com-

ponents are positions and w stores valence of each particle. The information of
particles makes up an N -elements array, which is stored in the device’s global
memory. In the following text, we denote this array by Xdev. Using float4 data
type with aligned access allows coalesced memory access to the arrays of data
in device memory, resulting in efficient memory requests and transfers [8]. All
the tasks in MC moves are performed in GPU, except for generation of random
numbers.

In our program, random numbers are generated by the code “ran4” described
in the book Numerical recipes [44]. This code generates single-precision floating-
point numbers which are uniformly distributed in the interval [0, 1). We use two
N -elements float4 arrays to store the random numbers used in an MC cycle, one of
which is on the host and the other is on the device. The array of random numbers
on device is denoted by “rnum” in the following text and pseudo-code. The x, y, z
components of an element in “rnum” are used to generate new coordinates whereas
w is for decision(acceptance or rejection) in each trial. The computational cost of
random number generations can be effectively masked by MC cycles carried out
on GPU. This is due to the fact that during the GPU performing a MC cycle, the
random numbers for the next MC cycle can be generated simultaneously on CPU
supported by concurrent execution between CPU and GPU in CUDA. We use
CUDA’s built-in function “cudaMemcpy” to upload the random numbers to the
device. Function “cudaMemcpy” contains an intrinsic synchronization so that the
system copies data only after the previous GPU job in the same stream finishes.
Therefore there is no worry that the random number array changes while the GPU
kernel is still using it.

Data sampling and analysis can be either on the device or on the host. If we
want to put some analysis tasks in CPU cores, we can download this array by
built-in functions such as “cudaMemcpy” from device as well.

3.2. Decomposition
When the host program invokes a kernel function of MC cycle, GPU constructs

a one-dimensional grid with B thread blocks. Each thread block is one-dimensional
and contains S = dN/Be threads. In the following text, we use a two-element tuple

7



(bid, tid) to identify each thread, where bid shows which block the thread locates
in and tid is the relative identity of this thread within the block bid.

Similarly, the array of particles is divided into B groups, each with S particles.
The trial of p’th particle in group g is assigned to the thread tid = p in block bid =
g. In this article, we call the assigned particle the host-particle of corresponding
thread. The mission of each thread is to compute the change of energy due to
the trial of its host-particle and then decide the acceptance of the new move. At
the beginning of kernel grid, each thread loads the information of its host-particle
and random number vector from the global memory to its own registers. Then it
computes the new position of its host-particle. The total energy change ∆Etid of
the host-particle is stored as a double floating-point variable in thread’s registers,
which can be initialized with 0 or the change of its self-energy (if any). The pseudo-
code of initialization and the statements of symbols are shown in Algorithm 1.

3.3. Energy computation
Despite the positions are represented by single floating-point data type, all the

computations related to the energy should be performed by double floating-point
operations. The reason is that the energy is a summation of billions of terms which
can be either positive or negative in the charged system. Single float treatment in
such summation amplifies the truncation error significantly.

If there are hard core repulsions between particles, energy may be infinite. To
avoid this problem, we can set an individual variable to indicate overlap. All the
updating scheme of this indicator is similar to the computation of energy. In the
CPU-based sequential program, when the overlap is encountered, we can stop the
energy computation and reject the trial directly. This pre-rejection strategy can
improve the speed of simulation on CPU, especially in the high volume fraction
system. However, this is not a GPU-friendly strategy, due to the fact that this
strategy leads to a long divergence path among different MC trials, which offends
the SIMD computing scheme of GPU [45] and degrades the parallel efficiency.
In this work, we do not use the pre-rejection strategy for two reasons. Firstly,
the purpose of this work is to give a general framework on how to parallelize
the Metropolis Monte Carlo simulation, where the hard-core repulsion is just a
specific choice to deal with the short-range interaction. Secondly, in almost all
the systems we study in this work, the volume fraction of particles is low, so that
the pre-rejection doesn’t make significant reduction of the computation, and the
probability that all threads within a warp be pre-rejected is very low. As a result,
the naive pre-rejection strategy on the GPU implementation cannot improve the
performance.

8



Algorithm 1 Statement and initialization
Require: bid: the index of block
Require: tid: the index of thread in its block
Require: B: number of groups and the number of blocks
Require: S: number of particles(threads) per group(block)
Require: Xdev: Particles’ list on the global memory
Require: rnum: Random number sequence on the global memory
Require: D: Range of one moving
Require: ∆E: Total change of energy due to the trial of host-particle. It is double

precision and located on each thread’s registers.
Require: BlockState: An array with B elements on global memory which shows

the state of each block. The initial value of each element is 0. The element is
1 if the corresponding block terminated and the coordinates of it’s host particle
group updated.

Require: X: a float4 vector whose x,y,z components are old coordinates of the
host-particle and w component is the valence

Require: X ′: a float4 vector whose x,y,z components are new coordinates of the
host-particle and w is the random number for decision

Require: Y : a float4 array with B elements on the shared memory, which stores
the coordinates of guest particles

Require: λ: Bjerrum length

X ← Xdev[bid*S+tid]
X ′ ←rnum[bid*S+tid]
X ′.x← (X ′.x −0.5) ∗D
X ′.y← (X ′.y −0.5) ∗D
X ′.z← (X ′.z −0.5) ∗D
∆E ← Change of self energy

9



3.4. Intergroup Calculation
When threads in a block compute interactions with group J where J 6= bid

(particles in J are called the guest particles and J is called the guest group),
they perform a brush-like operation which is widely used in MD implementation [9].
Threads in this block firstly load the information of J from the global memory to
an S-element float4 array Y on the shared memory. This loading procedure is
one-to-one and aligned, so that we can enhance the cache hit rate and reduce the
transaction of global memory.

After group J loaded (here a synchronize instruction “ syncthreads” is taken
to ensure that all the threads in this block finish loading data of guest-group J),
all threads within this thread block take a loop to calculate the change of pairwise
interactions and add them up, as showed in Fig. 3.

To avoid the bank conflict and take advantage of broadcasting feature of shared
memory, all the loops in this block start at the same index. In this way, threads in
the same warp access the same address simultaneously so that the shared memory
can broadcast data. We choose 64-bit mode to make full use of the band-width of
the shared memory.

At last, the block synchronize instruction “ syncthreads” is taken again to
ensure that all threads finish processing the group J before the next group are
loaded. Fig. 3 is the schematic illustration of this part. The pseudo-code of this
part is shown in algorithm 2.

Algorithm 2 Energy changes with group J (J 6=bid)
Y[tid]← Xdev[J*S+tid];

syncthreads();
for l := 0 to S − 1 do

∆E ← ∆E + ∆U(X,X ′,Y[l]);
end for

syncthreads();

3.5. Self Calculation
When thread block computes the interactions within its host-group, the pro-

cedure involves two main tasks of computations: (1). Compute the upper triangle
parts in Fig.4. (2). Decide the trial and calculate the lower triangle parts as in
Fig.5. Here we describe the details of these two tasks respectively.

3.5.1. Upper triangle part
The upper triangle of the self-interaction table is independent of any other

tasks. Therefore we can pre-calculate them by the brush scheme as before. Thread

10



Figure 3: Schematic illustration of intergroup calculation. In this interaction table, the vertical
indices indicate threads in thread block I and horizontal indices specify the particles in group
J(6= I). Each element stands for a pairwise energy change of corresponding particle pairs. The
dashed arrows show the direction of loop for summation. Threads in block I compute and
accumulate these pairwise interactions along horizontal direction in sequential order, whereas
the energy change on each particle in group I is evaluated in parallel.

tid = p computes the change of energy with particles p + 1, p + 2, ..., S − 1 in
the host-group. To ensure threads within a warp accessing the same address, the
for-loop of each thread should start at btid/wc × w + 1. Here w is the size of a
warp. In most GPU, w = 32. Fig. 4 is an illustration of this procedure. The
pseudo-code for this part is shown in algorithm 3.

Algorithm 3 Upper triangle part of self calculation
Y[tid]← X;

syncthreads();
for l :=btid/wc × w + 1 to S − 1 do

if l >tid then
∆E ← ∆E + ∆U(X,X ′,Y[l]);

end if
end for

syncthreads();

In the first w loops, half of the threads on average within a warp are inactive.
To reach the full warp efficiency we can use the map algorithm [37, 38, 39].
But this strategy increases usage of registers per thread that limits the number
of concurrently executed blocks in one streaming multiprocessor(SMX) and thus
decreases the SMX’s efficiency. On the other hand, the computation of the first

11



w loops is light compared with the whole tasks. So we do not implement this
strategy in our code for Tesla K20.

Figure 4: Upper triangle part of self calculation.

3.5.2. Decision and lower triangle part
The computation of the lower triangle part of the self-interaction table, together

with decision of the trial in the host-group, should be performed at last. As
shown in Fig. 5, when thread 0 finishes all the summations for ∆E0, it can make
a decision by comparing with the random number X ′.w under acceptance ratio
min{1, exp(−β∆E0)}. If X ′.w< min{1, exp(−β∆E0)}, thread 0 replaces x0 by
x′0 on the shared memory. Otherwise no coordinate update will be made. After
thread 0 updates the coordinate of 0’th particle, the remaining threads tid > 0
in this block calculate the interactions with the 0’th particle together, and add
the results to their own ∆Etid. Then thread 1 updates the coordinate of particle
1 and the updated energy of particle 1 is propogated to the other threads. This
procedure is repeated for other threads until all the host-particles in this block are
updated.

The last step is to copy the information array of the host-particles from the
shared memory to the global memory and set the corresponding flag “BlockState”
to be one. The “BlockState” is an array with B elements, each of which indicates
the state of corresponding block. Initially all the elements in this array is 0. When

12



Figure 5: Lower triangle part of self calculation.

a thread block has written the updated coordinates of its host-particles to the
global memory, the corresponding flag BlockState[bid] is set to 1. Since CUDA is
a weak order programming language, the writing instruction for coordinates and
the setting instruction for “BlockState” should be seperated by a “syncthreads”or
a “threadfence” instruction to ensure the required executing order viewed in other
blocks. The pseudo-code for this part is shown in algorithm 4.

3.6. Global procedure
Fig. 6 shows the global procedure of a thread block. After initialization, threads

in this block firstly compute the inter-group interactions with groups bid+ 1,bid+
2,. . . , B − 1. Then they compute the internal upper-triangle interactions.

The second global loop is to evaluate the interactions with groups 0,1,..,bid−1.
In serial implementation, particles in these groups are updated before the host-
particles. To realize this dependency in the GPU implementation, before loading
information of a guest-group J , J < bid, all threads in this block should wait until
the coordinates of particles in guest-group J are updated. Therefore, in each step
J of this loop, one of the threads in this block firstly runs a subloop to check and
wait until BlockState[J ] is 1. Finally, threads make the decisions and evaluate the
lower-triangle part of self-interaction table.

A remaining issue is to reinitialize the flag-array to 0s for the next grid. We

13



Algorithm 4 Decision and lower triangle part
Y[tid]← X;

syncthreads();
for l := 0 to S − 1 do

if (tid= l) and (X ′.w< exp(−λ∆E)) then
X ′.w←X.w;
Y[l]←X ′;

end if
syncthreads();

if (tid> l) then
∆E ← ∆E + ∆U(X,X ′,Y[l]);

end if
end for
Xdev[bid*S+tid]← Y[tid];

syncthreads();
Thread 0 do: Set BlockState[bid] to be 1

assign this additional work to block B − 1, which is the last one to terminate.
Threads in it set all the elements of “BlockState” to 0s so that the next grid can
use these indicators directly. The pseudocode for the global procedure is shown in
algorithm 5.

The above inter-block communications via flags are blocked communica-
tions since receivers will not carry out follow-up tasks until receiving the required
messages. In a parallel program with blocked communication, we always need to
avoid a deadlock state where receivers are waiting for each other and cannot ter-
minate without external force. A case of deadlock in GPU is that all the resident
blocks in SMXs are waiting for a message from a block which is not executed yet.
In this case, the inactive sender block cannot move forward until one of the resi-
dent blocks terminates so that there is enough space to launch this sender block.
Therefore, the resident blocks and the inactive sender blocks are waiting for each
others. In our implementation, deadlock can be fortunately avoided because each
thread block receives messages only from its previous blocks.

3.7. Multi-Thread-Per-Particle Treatment
In above algorithm, one thread is responsible for one particle’s trial. This

one-thread-per-particle assignment cannot take full use of device if the number of
particles is small because insufficient number of threads are carried out simultane-
ously to fully take advantage of the capability of GPU. To deal with small system,
we take a multi-thread-per-particle assignment, in which the change of energy due
to the trial of one particle is evaluated by two or more adjacent threads.

14



Algorithm 5 Global procedure
Initialization
for J :=bid+1 to B − 1 do

Calculate the energy changes with group J
end for
Calculate the energy changes of upper triangular part
for J := 0 to bid-1 do

Thread 0 do: Wait and check until BlockState[J ]=1
syncthreads();

Calculate the energy changes with group J
end for
Decision and lower triangular part
if bid=B-1 then

Set all the elements of BlockState to 0
end if

Figure 6: Global procedure in Monte Carlo kernel.

15



In a program with η-thread-per-particle scheme, the size of thread block is
η times of the group size. The energy change of the host particle k (k is the
relative index within its group) will be computed by a bundle of threads tid = ηk,
tid = ηk, ..., tid = η(k + 1) − 1, with interleaved loops as show in Fig. 7. This
interleaved approach is performed in the inter-group evaluation and upper triangle
part of self-table. Before the decisions and evaluation of the lower triangle part of
self-table, we use warp-reductions to sum up results in all the slave threads of a
particle to one. For convenience, η is selected to be 2, 4, 8 and 16, leading 1-step,
2-step, 3-step and 4-step warp shuffle instructions in the reductions.

Figure 7: Multi-thread-per-particle assignment for the intergroup evaluation. Each thread block
contains 1024 threads. The size of particle group is 256.

4. Benchmark

We benchmark the performance of our Brush Metropolis Algorithm on GPU
by simulating the primitive model of electrolyte with various numbers of particles,
and make a comparison with two other MC implementations: a sequential CPU
code and a GPU code with parallel reduction scheme.

In the CPU code, the evaluation and summation of the pairwise interactions
are performed sequentially without using any acceleration methods. In the GPU
code with parallel reduction scheme, each kernel tries to move one particle. There
are N−1 pairwise interactions per trial to be calculated and summed, between the
selected particle and the rest of particles in the system. We distribute these N − 1
evaluation to N threads while the thread for the selected particle remains idle.
In this reduction kernel, the size of thread block is 1,024, which is the maximum

16



number of threads per block in Tesla K20. The reduction within one block is done
by warp shuffle instructions [46], which is an optimized version of parallel reduction
[47] for Tesla K20. The intermediate results of warp sums are stored in the shared
memory temporarily. We perform warp reduction again with these intermediate
results so that the partial sums in this block are integrated. The sub-total of each
block is to be added into the global memory atomically. When a block finishes
adding the sub-total to the global memory, it should increase a global counter by 1
atomically. This global counter indicates the number of completed thread blocks.
Finally, the last block decides acceptance of the proposed particle move. Before
the last block updates the coordinate of the selected particle, one of threads in
the last block checks this global counter ceaselessly until it indicates completion
of summation. This method is straightforward and easy to implement, but it has
some drawbacks that limit its performance. Firstly, in the parallel reduction there
is a great thread divergency. For a reduction within warp(32 threads), the mean
number of active threads is only (32 + 16 + 8 + 4 + 2 + 1)/6 ≈ 10.5, which means
about 2/3 of computational resources are idle. Secondly, each time when the kernel
is invoked, the system needs to take some time to initialize the environment. In
this naive method program invokes kernel for N times in a cycle (N is the number
of particles) whereas our Brush Metropolis method just invokes kernel once per
cycle. Thus this naive method accumulates a considerable time for initialization.
Finally, in each time when the kernel is invoked, the information of particles needs
to be reloaded, leading to many global memory transactions and thus low cache
efficiency.

For the Brush Metropolis GPU code, we mainly measure the performance
of one-thread-per-particle approach, with number of particles from 8, 192 up to
1, 048, 576. In addition, we carry out benchmarks of multi-thread-per-particle ap-
proach with number of particles from 8, 192 to 32, 768. We find that the size of
block 1, 024 exhibits best performance. However, for the multi-thread-per-particle
implementation, the number of slave threads per particle η with best performance
changes with the size of system. We measure the execution time for 4 small sys-
tems, and find the best η for each system, as shown in Table. 1

N Size of thread block η
8192 1024 16
16384 1024 8
24576 1024 4
32768 1024 4

Table 1: Parameters

We carry out all benchmarks on a Linux machine with 2×8 Intel Xeon E5-2630

17



(2.3GHz) CPU cores and two NVIDIA Tesla K20 GPUs. The operating system is
Ubuntu 14.04, with the host C-code compiler GCC 4.8.4 and the GPU code com-
piler CUDA 7.0. The GPU driver’s version is 346.96. The Monte Carlo simulation
program on CPU is compiled with optimization option -O3. Both GPU codes are
compiled with option -arch=sm 35. Since the GPU implementation of the Brush
Metropolis method costs lots of registers, we take option -maxrregcount=65 as the
register usage per thread to yield the best performance.

Figure 8: Excution time in log-scale.

The execution time in log-scale for all three algorithms is showed in Fig.8. It
clearly shows that the time complexity of the Brush Metropolis Algorithm with
one-thread-per-particle assignment is between the step complexity O(N) and the
work complexity O(N2). (The step complexity measures the computational com-
plexity assigned to each thread, including the cost of synchronization.) For particle
number less than 50, 000, the time complexity scales approximately linearly with
the step complexity. For even larger particle numbers, the workload of device
is nearly saturated so that the time complexity scales with the work complexity.
The GPU implementation with parallel reduction has a time complexity between
O(NlogN) and O(N2).

The speedup of the Brush Metropolis GPU code (comparing with the CPU

18



Figure 9: Speedup of the Brush Metropolis GPU code and the convention GPU code using
parallel reduction.

Figure 10: Performance comparison between GPU implementations based on parallel reduction
and Brush Metropolis on a system with 131,072 particles. Performance data obtained from
nvprof. Due to significantly higher L2 cache efficiency, our GPU implementation has better
floating point throughput than that of parallel reduction implementation.

19



code) as a function of system size is showed in Fig.9. For large systems the imple-
mentation with one-thread-per-particle saturates to approximately 440. In general
the Brush Metropolis method exhibits significantly better speedup than the imple-
mentation with parallel reduction method, because of less global memory trans-
actions and higher L2 cache efficiency, as well as higher floating point throughput
in comparison with parallel reduction method, as shown in Fig.10. The main
factor that prevents us from achieving even higher floating point efficiency is the
Metropolis-style acceptance and rejection, which generate a divergence path for
each proposed move.

5. Simulation of Linear Response Properties of Dense Electrolytes

In this section, we use our Brush Metropolis GPU code to carry out a large
scale MC simulation of the primitive model electrolytes, which are modeled as
charged hard spheres. In the experiment the system contains 1, 048, 576 ions,
and more than a hundred of Debye length. Because of the huge amount of avail-
able data, we are able to measure all pair correlation functions up to extremely
precision and very long scale. Using these correlation functions, we determine var-
ious renormalized parameters that characterize the linear response properties of
the electrolyte, including renormalized valences of the constituent ions, the renor-
malized Debye length, and the renormalized dielectric constant. These results
demonstrate unequivocally that the properties of system are beyond the classical
Poisson-Boltzmann theory (PB). We emphasize that in order to compute precisely
the long scale properties of electrolytes, it is essentially important to simulate
very large system sizes without making any approximation in long scales. This is
the main advantage of our GPU code, compared with methods using multipole
expansions.

5.1. Charge renormalization in concentrated electrolytes
The classical Poisson-Boltzmann theory (PB) [50] predicts that the mean po-

tential around a fixed ion with charge Q is given by

φ = Qe−κr

4πεr , (3)

whereas the effective interaction, i.e., two-ion potential of mean force (PMF),
between two ions Q1, Q2 is

U12 = Q1Q2 e
−κr

4πεr . (4)

In the above equations, κ is the bare inverse Debye length, which, according to
PB, is related to bulk ion densities n̄± and charges q± via:

κ2 = β

ε

(
n̄+q

2
+ + n̄−q

2
−

)
. (5)

20



Because the classical PB theory ignores correlation effects, it is not applicable
in the concentrated regime. In this regime, the correct far field behaviors of mean
potential and two-ion PMF are [48, 49]:

φ = QR e
−κRr

4πεRr
, (6)

U12 = QR
1 Q

R
2 e
−κRr

4πεRr
, (7)

where QR, Q
R
1 , Q

R
2 , κR, εR are, respectively, the renormalized charges, renormalized

inverse Debye length, and renormalized dielectric constant, which are different
from their bare values. There is an exact relation between the renormalized Debye
length and renormalized charges of constituent ions:(

κR
κ

)2
= qR+ − qR−
q+ − q−

. (8)

Eqs. (6)-(8) are the main results of the dressed-ion theory [48]. We shall compute
renormalized valences of constituent ions, renormalized Debye length and renor-
malized dielectric constant, and finally verify the relation Eq. (8) using large-scale
MC simulations.

5.2. Simulation Methodology
To compute all renormalized parameters of dense electrolytes, we perform large

scale simulations of electrolytes and measure all pair correlation functions. All
our simulations are carried out in the Center for High Performance Computing
(HPC) of Shanghai Jiaotong University. To fully take advantage of computation
resources, we perform one individual simulation on each GPU card. The number
of cards employed in simulation varies according to the ion densities. Typically
one data point needs 2 GPU cards, each of which carries out about 2, 000 iterations
with about 5 days. In particular, as the system approaches the charge oscillation
regime (where ion densities are high), more Monte Carlo cycles are needed and
thus more cards are used. For each simulation(MPI Process), the memory cost on
host is 263MB, and the cost of global memory on GPU is about 32MB. The system
contains 1, 024× 1, 024 = 1, 048, 576 particles with room temperature T = 300K,
and relative dielectric constant of the solvent is chosen to be ε = 78.3 and the
Bjerrum length b = 7.117Å. We use a spherical simulation domain with hard
wall boundary conditions. To eliminate influences from the boundary, ions that
are less than ten Debye lengths away from the boundary are not used for data
collection. The initial state is generated by setting particles uniformly inside the
simulation domain with hard core repulsions. The proposed position of the selected
particle is uniformly generated inside a cubic center around its original position

21



with size about L/3 from experience, where L is the size of simulation domain.
In the warming iterations we output the total energy to monitor whether the
system equilibrates or not. We find that almost all the systems we study can
equilibrate in about 10 cycles. Therefore we are sure that for all the systems the
correlation between successive configurations is weak. In Fig. 11 we present a
typical autocorrelation function of total energy for an equilibrated 3:-1 electrolyte
with classical debye length 28.53Å, whose autocorrelation time is about 2.3. Here
the autocorrelation function of total energy is defined as

Cn = (Ek − E)(Ek+n − E)
(Ek − E)2

. (9)

Here Ek denotes the total energy at step k and E stands for the mean energy
at equilibrium. The over-line can be performed by averaging variable over both
ensemble (MPI procedures) and time (steps). The integrated autocorrelation time
is defined as

Tc = 1
2 +

∞∑
k=1

Ck. (10)

Figure 11: Autocorrelation function of a 3:-1 electrolyte.

A typical pair correlation function is showed in Fig. 12.

22



Figure 12: A typical radial correlation function of 3:-1 electrolyte. The radius of ions is 3.75Å
and the classical debye length is 28.53Å.

The renormalized parameters κR, εR, qR± can be obtained from tails of pair cor-
relation functions g±±(r) as follows. Firstly the two-ion PMF are obtained via:

U±±(r) = −kBT log g±±(r). (11)

Now, let us fix a positive/negative ion q+/q− at the origin in the bulk electrolyte.
The average charge density (excluding the charge q± fixed at the origin) can also
be computed by:

ρq±(r) = n+q+g+±(r) + n−q−g−±(r). (12)

Now the mean potential φ±(r) around the fixed ion is given by Eq. (6) with QR

replaced by qR± in the far field. The mean charge density ρq±(r) can be obtained
using the exact Poisson equation. In the far field, they decay in the form of
screened Coulomb potential:

ρq±(r) = −ε∇2φ±(r) ∼ εκ2
R q

R
±e
−κRr

4πεRr
. (13)

We can take the logarithm of Eq. (13) and obtain:

log [r ρq±(r)] ∼ log
[
εκ2
R q

R
±

4πεR

]
− κR r. (14)

23



Figure 13: Plotting ln(rρq
±/e) v.s. r for 3:-1 electrolyte. The radius of ions is 3.75Å and the bare

debye length (as prodicted by PB) is 28.53Å. The renormalized Debye length is 25.57Å.

We can therefore plot the l.h.s. (measured by simulations) as a function of radius
r, fit the data to straight-lines in the far field, and extract the renormalized inverse
Debye length κR from their slopes. This is illustrated in Fig. (13). Note that two
straight-lines have the same slope and give a renormalized Debye length κ−1

R =
25.57Å, manifestly different from the bare Debye length κ−1 = 28.53Å.

According to Eq. (7), the far field asymptotics of the two-ion PMF is

U±±(r) ∼ qR±q
R
±e
−κRr

4πεRr
. (15)

Taking the ratio of Eqs. (13) and (15), we find the following relation valid in the
far field:

qR± = −εκ2
R

U±±(r)
ρq±(r) . (16)

Since all quantities in the r.h.s. are known, we can use this relation to determine
the renormalized charges qR± of positive and negative ions. In fact we have two
independent ways to compute the renormalized charges. Let us write them out
explicitly:

qR+ = −εκ2
R

U++(r)
ρq+(r) = −εκ2

R

U−+(r)
ρq−(r) , (17a)

qR− = −εκ2
R

U+−(r)
ρq+(r) = −εκ2

R

U−−(r)
ρq−(r) . (17b)

The data for one particular simulation are shown in Fig. 14, from which we extract
the renormalized charges of positive and negative ions to be 4.125 and -0.884 re-

24



spectively. Note that these are substantially different from the bare charges, which
are 3 and -1 respectively. This charge renormalization arises as a consequence of
ionic correlations and signify the failure of the classical PB theory.

Using Eq. (13) we can compute the renormalized dielectric constant εR in terms
of κR, qR±, and ρq±(r) (again in two independent ways):

εR = −εκ
2
Rq

R
±e
−κRr

4πr ρq±(r) . (18)

Finally, we also use the computed κR and qR± to test the validity of the exact relation
Eq. (8). The results are displayed in Fig. 15(a). Additionally, we plot qR± and κR
in Figs. 15(b) and 15(c) respectively measured in two independent ways and show
that they are consistent with each other, within computational errors. All these
numerical tests unambiguously demonstrate the validity and internal consistency
of the dressed-ion theory, Eqs. (6)-(8).

Figure 14: Plotting βU v.s. ρq/e for 3:-1 electrolyte. The radius of ions is 3.75Å and the
classical debye length is 28.53Å. Using Eq. (17) and fitting the long rang data to straight-lines,
we obtain the renormalized valences of the positive ion and of the negative ions to be 4.125 and
-0.884 respectively, which are different from the bare valences 3 and -1 respectively. This again
demonstrates the failure of classical PB theory.

6. Conclusion

In this work, we have developed an efficient GPU code for large-scale Monte
Carlo simulation of Coulomb many-body systems, which parallelizes the sequential

25



æ
æ

æ

æ

æ

à
à

à

à

à

ì
ì

ì

ì

ì

ò
ò

ò

ò

ò

æ 2:-1, d=7.5
à 3:-1, d=7.5

ì 1:-1, d=10
ò 3:-1, d=24

1.2 1.4 1.6 1.8 2.0 2.2 2.4 HΚR�ΚL2
1.2

1.4

1.6

1.8

2.0

2.2

2.4

q+
R - q-

R

q+ - q-

(a)

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à

à

à

à

à

à

à

à

à

à

ìì
ì

ì

ì

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

æ 2:-1, d=7.5
à 3:-1, d=7.5

ì 1:-1, d=10
ò 3:-1, d=24

1 2 3 4 5 6
qR�e

1

2

3

4

5

6

qR�e

(b)

æ

æ
æ

æ

æ

à

à

à

à

à

ì

ì
ì

ì

ì

æ 2:-1, d=7.5
à 3:-1, d=7.5

ì 3:-1, d=24

0.70 0.75 0.80 0.85 0.90 0.95 1.00
ΕR�Ε

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ΕR�Ε

(c)

Figure 15: (a):Verification of the exact relation Eq. (8) using MC simulation. d is the ion
diameter (in the unit of Å). Vertical axis:

(
qR

+ − qR
−
)
/ (q+ − q−). (b): The renormalized valences

of ions, computed using in two independent ways, see Eqs. (17). The purpose of this panel is
to demonstrate that two independent computations give the same result, within computational
errors. (c): Renormalized dielectric constant can also be computed in two ways, see (18). The
fact that these renormalized parameters are different from their bare values demonstrates that
the properties of concentrated electrolytes are beyond the classical Poisson-Boltzmann theory.

updating scheme and achieves an acceleration of 440 over the sequential CPU code,
without sacrificing accuracy. We have further applied this method to precisely mea-
sure the long scale linear response properties of dense asymmetric electrolytes and
have demonstrated that they are beyond the classical Poisson-Boltzmann theory.
Further applications of this method will be reported in future publications.

Y.H. Liang and X.J. Xing acknowledge financial support from NSFC (grant
No. 11174196 and 91130012). Y.H. Li acknowledges support from NSF (grant No.
1066471). The authors also thank Beijing Computational Science Research Center
(BCSRC) for hospitality, where part of this work is done. This work is supported
by Center for HPC, Shanghai Jiao Tong University.

References

[1] Andrew W. Appel. An efficient program for many-body simulation. SIAM
J. Sci. Stat. Comput., 6(1):85, Jan 1985.

[2] Josh Barnes and Piet Hut. A hierarchical o(n log n) force-calculation algo-
rithm. Nature, 324(4):446, Dec 1986.

[3] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Jour-
nal of Computational Physics, 73(2):325–348, 1987.

[4] Gan Zecheng and Xu Zhenli. Efficient implementation of the barnes-hut octree
algorithm for monte carlo simulations of charged systems. Science China,
Mathematics, 57(7):1331–1340, July 2014.

26



[5] Yihao Liang, Zhenli Xu, and Xiangjun Xing. A multi-scale Monte Carlo
method for electrolytes New J. Phys., 17(2015), 083082.

[6] Zhenli Xu, Yihao Liang, Xiangjun Xing. Mellin Transform and Image Charge
Method for Dielectric Sphere in an Electrolyte. SIAM J. Appl. Math.,
73(4), 1396-1415.(2013).

[7] Y. Lin, A. Baumketner, S. Deng, Z. Xu, D. Jacobs, and W. Cai. An image-
based reaction field method for electrostatic interactions in molecular dynam-
ics simulations of aqueous solutions. J. Chem. Phys., 131:154103, 2009.

[8] NVIDIA. CUDA C Programming Guide. NVIDIA, 7.0 edition, Mar 2015.

[9] Lars Nyland, Mark Harris, and Jan Prins. Fast n-body simulation with cuda.
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch31.html.

[10] Carolyn L. Phillips, Joshua A. Anderson, and Sharon C. Glotzer. Pseudo-
random number generation for brownian dynamics and dissipative particle
dynamics simulations on gpu devices. Journal of Computational Physics,
230:7191–7201, 2011.

[11] Tsuyoshi Hamada and Toshiaki Iitaka. The chamomile scheme: An optimized
algorithm for n-body simulations on programmable graphics processing units.
arXiv:astro-ph/0703100v1, 2007.

[12] Evghenii Gaburov, Jeroen Bédorf, and Simon Portegies Zwart. Gravitational
tree-code on graphics processing units: implementation in cuda. In Procedia
Computer Science, volume 1, pages 1119–1127. International Conference
on Computational Science, ICCS 2010, 2012.

[13] Juekuan Yang, Yujuan Wang, and Yunfei Chen. Gpu accelerated molecular
dynamics simulation of thermal conductivities. Journal of Computational
Physics, 221:799–804, 2007.

[14] Trung Dac Nguyen, Carolyn L. Phillips, Joshua A. Anderson, and Sharon C.
Glotzer. Rigid body constraints realized in massively-parallel molecular dy-
namics on graphics processing units. Computer Physics Communica-
tions, 182:2307–2313, 2011.

[15] Weiguo Liu, Bertil Schmidt, Gerrit Voss, and Wolfgang Müller-Wittig. Accel-
erating molecular dynamics simulations using graphics processing units with
cuda. Computer Physics Communications, 179:634–641, 2008.

27

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch31.html


[16] D.C. Rapaport. Enhanced molecular dynamics performance with a pro-
grammable graphics processor. Computer Physics Communications,
182:926–934, 2011.

[17] Andreas W. Götz, Mark J. Williamson, Dong Xu, Duncan Poole, Scott Le
Grand, and Ross C. Walker. Routine microsecond molecular dynamics sim-
ulations with amber on gpus. 1. generalized born. Journal of Chemical
Theory and Computation, 8:1542–1555, 2012.

[18] Romelia Salomon-Ferrer, Andreas W. Götz, Duncan Poole, Scott Le Grand,
and Ross C. Walker. Routine microsecond molecular dynamics simulations
with amber on gpus. 2. explicit solvent particle mesh ewald. Journal of
Chemical Theory and Computation, 9:3878–3888, 2013.

[19] Romelia Salomon-Ferrer, David A. Case, and Ross C. Walker. An overview
of the amber biomolecular simulation package. WIREs Computational
Molecular Science, 3:198–210, Mar 2013.

[20] Scott Le Grand, Andreas W. Götz, and Ross C. Walker. Spfp: Speed without
compromise—a mixed precision model for gpu accelerated molecular dynamics
simulations. Computer Physics Communications, 184:374–380, 2013.

[21] Michela Taufer, Narayan Ganesan, and Sandeep Patel. Gpu-enabled macro-
molecular simulation: Challenges and opportunities. Computing in Science
& Engineering, pages 56–65, 2013.

[22] Narayan Ganesan Brad A. Bauer Timothy R. Lucas Sandeep Patel and
Michela Taufer. Structural, dynamic, and electrostatic properties of fully hy-
drated dmpc bilayers from molecular dynamics simulations accelerated with
graphical processing units (gpus). Journal of Computational Chemistry,
32:2958–2973, 2011.

[23] William Michael Brown, Steven James Plimpton, Peng Wang, Pratul K. Agar-
wal, Scott Hampton, and Paul Stewart Crozier. Porting lammps to gpus. In
SciTech Connect, Savannah, GA., 2010. Proposed for presentation at the
SOS 14 Conference.

[24] W. Michael Brown, Peng Wang, Steven J. Plimpton, and Arnold N. Tharring-
ton. Implementing molecular dynamics on hybrid high performance computers
– short range forces. Computer Physics Communications, 182:898–911,
2011.

28



[25] John E. Stone, James C. Phillips, Peter L. Freddolino, David J. Hardy,
Leonardo G. Trabuco, and Klaus Schulten. Accelerating molecular model-
ing applications with graphics processors. Wiley InterScience, 2007.

[26] James C. Phillips, John E. Stone, and Klaus Schulten. Adapting a message-
driven parallel application to gpu-accelerated clusters. In Proceedings
of the 2008 ACM/IEEE Conference on Supercomputing, page 1,
Austin,Texas, 2008. IEEE/ACM, IEEE Press.

[27] Peter H. Colberg and Felix Höfling. Highly accelerated simulations of glassy
dynamics using gpus: Caveats on limited floating-point precision. Computer
Physics Communications, 182:1120–1129, 2011.

[28] Peter Eastman and Vijay S. Pande. Efficient nonbonded interactions for
molecular dynamics on a graphics processing unit. Journal of Compu-
tational Chemistry, 31:1268–1272, 2010.

[29] Joshua A. Anderson, Chris D. Lorenz, and A. Travesset. General purpose
molecular dynamics simulations fully implemented on graphics processing
units. Journal of Computational Physics, 227:5342–5359, 2008.

[30] Hoomd-blue. http://codeblue.umich.edu/hoomd-blue/.

[31] Gromacs. http://www.gromacs.org.

[32] Acemd. ttps://www.acellera.com.

[33] Benjamin Block, Peter Virnau, and Tobias Preis. Multi-gpu accelerated multi-
spin monte carlo simulations of the 2d ising model. Computer Physics
Communications, 181:1549–1556, 2010.

[34] Tobias Preis, Peter Virnau, Wolfgang Paul, and Johannes J. Schneider. Gpu
accelerated monte carlo simulation of the 2d and 3d ising model. Journal of
Computational Physics, 228:4468–4477, 2009.

[35] Tal Levy, Guy Cohen, and Eran Rabani. Simulating lattice spin models on
graphics processing units. Journal of Chemical Theory and Computa-
tion, 6:3293–3301, 2010.

[36] Joshua A. Anderson, Eric Jankowski, Thomas L. Grubb, Michael Engel, and
Sharon C. Glotzer. Massively parallel monte carlo for many-particle simula-
tions on gpus. Journal of Computational Physics, 254:27–38, 2013.

29

http://codeblue.umich.edu/hoomd-blue/
http://www.gromacs.org
ttps://www.acellera.com


[37] Ashraf Yaseen and Yaohang Li. Accelerating knowledge-based energy evalu-
ation in protein structure modeling with graphics processing units. Journal
of Parallel and Distributed Computing, 72:297–307, 2012.

[38] Ashraf Yaseen and Yaohang Li. A Load-Balancing Workload Distribution
Scheme for Three-Body Interaction Computation on Graphics Processing
Units (GPU). Journal of Parallel and Distributed Computing, 87:91–
101, 2016.

[39] Jason Mick, Eyad Hailat, Vincent Russo, Kamel Rushaidat, Loren Schwiebert,
and Jeffrey Potoff. Gpu-accelerated gibbs ensemble monte carlo simulations of
lennard-jonesium. Computer Physics Communications, 184:2662–2669,
2013.

[40] Eyad Hailat, Vincent Russo, Kamel Rushaidat, Jason Mick, Loren
Schwieberto, Kamel Rushaidat, Jason Mick, Loren Schwiebert, and Jeffrey
Potoff. Parallel monte carlo simulation in the canonical ensemble on the
graphics processing unit. International Journal of Parallel, Emergent
and Distributed Systems, 29(4):379–400, 2014.

[41] Jihan Kim and Jocelyn M. Rodgers and Manuel Ath enes and Berend Smit
Molecular Monte Carlo Simulations Using Graphics Processing Units: To
Waste Recycle or Not? Journal of Chemical Theory and Computation,
7:3208–3222, 2011

[42] Jihan Kim and Berend Smit Efficient Monte Carlo Simulations of Gas
Molecules Inside Porous Materials Journal of Chemical Theory and
Computation, 8:2336–2343, 2012

[43] Jihan Kim and Richard L. Martin and Oliver RÃĳbel and Maciej Haranczyk
and Berend Smit High-Throughput Characterization of Porous Materials Us-
ing Graphics Processing Units Journal of Chemical Theory and Com-
putation, 8:1684–1693, 2012

[44] William H. Press and Saul A. Teukolsky. Numerical Recipes.
9780521431088. Cambridge University Press, 3rd edition, August 2007.

[45] Wenjian Yu, Kuangya Zhai, Hao Zhuang, Junqing Chen/ Accelerated floating
random walk algorithm for the electrostatic computation with 3-D rectilinear-
shaped conductors Simulation Modelling Practice and Theory, 34:20-
36, 2013

30



[46] Justin Luitjens. Faster parallel reductions on kepler. http://devblogs.
nvidia.com/parallelforall/faster-parallel-reductions-kepler/,
Feb 2014.

[47] Mark Harris. Optimizing parallel reduction in cuda. http://developer.
download.nvidia.com/assets/cuda/files/reduction.pdf, 2008.

[48] Roland Kjellander and D John Mitchell. An exact but linear and poisson—
boltzmann-like theory for electrolytes and colloid dispersions in the primitive
model. Chemical physics letters, 200(1):76–82, 1992.
Roland Kjellander and D. John Mitchell. Dressed ion theory for electrolyte
solutions: A Debye-Hückel-like reformulation of the exact theory for the prim-
itive model. The Journal of Chemical Physics, 101(1):603–626, 1994.

[49] Mingnan Ding, Yihao Liang, Bing-sui Lu, and Xiangjun Xing. Charge Renor-
malization and Charge Oscillation in Asymmetric Primitive Model. Submitted
to Journal of Statistical Physics.

[50] D. Andelman. Electrostatic Properties of Membranes: The Poisson-
Boltzmann Theory., chapter 12. Structure and Dynamics of Membranes
Generic and Specific Interactions. ELSEVIER, Amsterdam, 1995.

31

http://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/
http://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

	1 Introduction
	2 Concurrency
	3 GPU implementation
	3.1 Data setting and random numbers
	3.2 Decomposition
	3.3 Energy computation
	3.4 Intergroup Calculation
	3.5 Self Calculation
	3.5.1 Upper triangle part
	3.5.2 Decision and lower triangle part

	3.6 Global procedure
	3.7 Multi-Thread-Per-Particle Treatment

	4 Benchmark
	5 Simulation of Linear Response Properties of Dense Electrolytes
	5.1 Charge renormalization in concentrated electrolytes
	5.2 Simulation Methodology

	6 Conclusion

