
ON THE NUMERICAL SOLUTION OF THE FAR FIELD REFRACTOR
PROBLEM

ROBERTO DE LEO, CRISTIAN E. GUTIÉRREZ AND HENOK MAWI

Abstract. The far field refractor problem with a discrete target is solved with
a numerical scheme that uses and simplify ideas from [CKO99]. A numerical
implementation is carried out and examples are shown.

1. Introduction

The purpose of this paper is to present an algorithm to construct far field
one source refractors with arbitrary precision. We use the ideas from the paper
[CKO99] by Caffarelli, Kochengin and Oliker, where they develop an algorithm
to construct far field point source global reflectors, i.e., the source domain Ω is the
whole sphere S2, and the density is smooth. For our refraction problem, we are
able to simplify and extend these ideas to deal with densities that are only bounded
and work in general domains. In particular, we do not need to consider derivatives
of the refractor measure, we only need to prove an appropriate Lipschitz bound
for the refractor measure which considerably simplifies the approach proposed
in [CKO99]. In addition, our approach does not use the mass transport structure
of the far field problem, and therefore it can be used in near field problems.
Since we are working in general domains Ω and with a non smooth density, the
differentiability of the refractor measure might not hold in general. This depends
on the shape and regularity of the domain and the smoothness of the density.
The nature of refraction problems demands for domains for which total internal
reflection does not occur, see condition (2.5). Therefore the global problem does
not make sense in this case.

To place our results in perspective we mention the following. Recently, Castro,
Mérigot and Thibert [CMT15] introduced numerical methods to solve the reflector
problem. These are based on optimal transport ideas introducing a concave
function arising from the Kantorovitch functional. This function is analyzed
numerically and their results follow, combined with other numerical packages.
An advantage of this approach is that the convergence of their algorithm is faster
than the one proposed in [CKO99]. For general cost functions satisfying the
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Ma, Trudinger and Wang condition arising in optimal transport [MTW05], the
algorithm in [CKO99] is extended in [Kit14] when the density is C∞ and the
domains are convex with respect to the cost function. We remark that this does
not include our results when the density is smooth, since the refractor considered
in the present paper is for κ < 1 and the condition of Ma, Trudinger and Wang
does not hold in this case; see [GH09, Section 5]. We believe the case κ < 1 is more
interesting for lens design since lenses are made of materials that are denser than
the surrounding medium. In fact, if the material around the source is cut out with
sphere centered at the source, then the lens sandwiched between that sphere and
the constructed refractor surface will perform the desired refracting job.

The far field refractor problem has been considered and solved for the first
time in [GH09] using optimal mass transport. Several models and variants have
been introduced to reflect more accurately the physical features of the problem;
see [GM13], [GT13], [GT15], and [GS14]. For numerical results to design reflec-
tors solving Monge-Ampère type pdes we refer to [BHP15b] and [BHP15a] both
containing many references.

The organization of the paper is as follows. In Section 2, we explain the set
up and the problem solved. In Section 3.1 we prove lemmas concerning the
tracing map and the refractor measure to be used in solving the problem. Section
3.2 contains a few results about geodesic disks that are needed in the proof of
the Lipschitz estimates. The algorithm is explained in detail in Section 4, and
the convergence in a finite number of steps in Section 4.3. Section 5 contains
the Lipschitz estimate in Proposition 5.1 needed to show the convergence of the
algorithm in a finite number of steps. Finally, in Section 6 we give a numerical
implementation of our algorithm to construct various examples.

2. Set up, definitions, and statement of results

Suppose Γ is a surface in R3 that separates two homogeneous, isotropic and
dielectric media I and II having refractive indices n1 and n2, respectively. If a ray
of light having direction x ∈ S2, the unit sphere in R3, and traveling through the
medium I strikes Γ at the point P, then this ray is refracted in the direction m ∈ S2

through the medium II according to the law of refraction (Snell’s Law)

(2.1) n1(x × ν) = n2(m × ν),

where ν is the unit normal to Γ at P pointing towards medium II. If we setκ = n2/n1,
then we can also write (2.1) as

(2.2) x − κm = λν

where λ ∈ R is given by λ = x · ν − m · ν = x · ν − κ
√

1 − κ−2(1 − (x · ν)2). When
medium I is optically denser than medium II, that is, κ < 1, the vector m bends
away from the normal, and total internal reflection might occur. That is, the ray
with direction m is transmitted to medium II if and only if x·m ≥ κ, or equivalently
x · ν ≥

√
1 − κ2; see [GH09, Section 2.1].
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When κ < 1, the surfaces having the uniform refracting property, are ellipsoids
of revolution having a focus at the origin, see [GH09, Section 2.2]. That is, the
surface written in polar coordinates ρ(x)x with x ∈ S2 and with

(2.3) ρ(x) =
b

1 − κm · x
,

b > 0, is an ellipsoid of revolution with axis m, eccentricity κ, foci 0 and
2κb

1 − κ2 m,
and refracts all rays emanating from 0 into the direction m for x ·m ≥ κ. We then
denote this semi-ellipsoid by

(2.4) E(m, b) =

{
ρ(x)x : ρ(x) =

b
1 − κm · x

, x ∈ S2, m · x ≥ κ
}
.

We assume throughout the paper that medium I is denser than medium II and therefore
κ = n2/n1 < 1. We also point out that similar analysis can be done for the case
κ = n2/n1 > 1, changing ellipsoids for hyperboloids, see [GH09, Section 2.2].

Suppose that Ω and Ω∗ are two domains of the unit sphere S2 of R3∗ with the
property, to avoid total reflection [BW59, Sect. 1.5.4], that

(2.5) inf
m∈Ω̄∗,x∈Ω̄

m · x ≥ κ,

where m · x is the usual inner product of m and x in R3; and the boundary of Ω
has surface measure zero.

Definition 2.1. A surfaceR inR3 parameterized by ρ(x)x is a refractor from Ω̄ to Ω̄∗ if for

any xo ∈ Ω̄ there exists a semi-ellipsoid E(m, b) with m ∈ Ω̄∗ such thatρ(xo) =
b

1 − κm · xo

and ρ(x) ≤
b

1 − κm · x
for all x ∈ Ω̄. We call E(m, b) a supporting semi-ellipsoid to R at

ρ(xo)xo or simply at xo.

From the definition, it is easy to see that refractors are Lipschitz continuous in
Ω̄, i.e., |ρ(x) − ρ(y)| ≤ Cκ

(
infΩ ρ

)
|x − y| for x, y,∈ Ω̄ with Cκ a constant depending

only on κ.

Definition 2.2. Given a refractor R = {ρ(x)x : x ∈ Ω̄}, the refractor mapping of R is the
multi-valued map defined for xo ∈ Ω̄ by

NR(xo) = {m ∈ Ω̄∗ : E(m, b) supports R atρ(xo)xo f or some b > 0}.

Given mo ∈ Ω̄∗ the tracing mapping of R is defined by

TR(mo) = {x ∈ Ω̄ : mo ∈ NR(x)}.

Suppose that we are given a nonnegative function g ∈ L1(Ω̄). We then recall the
notion of refractor measure, see [GH09, Section 3.1].

∗The physical problem considered is three dimensional; the mathematical extension to n dimen-
sions is straightforward.
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Definition 2.3. The refractor measure associated with the refractor R and the function g
is the Borel measure given by

GR(ω) =

∫
TR(ω)

g(x) dx

for every Borel subset ω of Ω̄∗.

Given a Borel measure µ in Ω∗ satisfying the energy conservation condition∫
Ω

g(x) dx = µ(Ω∗), the far field refractor problem consists in finding a refractor R
from Ω to Ω∗ such that GR = µ in Ω∗. Existence of refractors and uniqueness up
to dilations is proved in [GH09] using mass transport techniques. This is also
proved in [GM13] with a different method where a more general case that takes
into account internal reflection is considered.

For the remaining part of the discussion fix m1,m2, . . . ,mN,N ≥ 2, distinct points
in Ω̄∗ ⊂ S2. Given b = (b1, . . . , bN) ∈ RN

+ , i.e., with each bi > 0, we denote by R(b)
the refractor defined by a finite number of semi-ellipsoids and given by

(2.6) R(b) =

{
ρ(x)x : x ∈ Ω̄, ρ(x) = min

1≤i≤N

bi

1 − κmi · x

}
.

In this setting, we recall the following theorem from [GM13, Remark 6.10] for
discrete targets.

Theorem 2.4. Let g ∈ L1(Ω̄) with g > 0 a.e., f1, . . . , fN are positive numbers, m1, · · · ,mN ∈

S2 are distinct points with x · m j ≥ κ for all x ∈ Ω and 1 ≤ j ≤ N. Assume the energy
conservation condition

(2.7)
∫

Ω̄

g(x) dx = f1 + · · · + fN.

Then there exists a refractor unique up to dilations†, having the form (2.6), and solving
GR(b)(mi) = fi for all i = 1, . . . ,N.

The main result of this paper is to describe an iterative scheme to construct this refractor
with arbitrary precision. That is, given g ∈ L∞ non negative, and f1, · · · , fN; m1, · · · ,mN,
as in Theorem 2.4, and ε > 0 we find a vector b ∈ RN

+ , which depends on ε, such
that the refractor R(b) of the form 2.6 satisfies

(2.8) |GR(b)(mi) − fi| ≤ ε, 1 ≤ i ≤ N.

3. Preliminary results

3.1. Lemmas for the tracing map and refractor measures.

Lemma 3.1. Let b = (b1, . . . , bN) ∈ RN with each bi > 0.Consider the family of refractors
obtained from R(b) = {ρ(x)x : x ∈ Ω}, by changing only bi and fixing b j for all j , i.
Then:

i. GR(b)(mi) = 0 for bi > (1 + κ) min j,i b j.

†The assumption g > 0 a.e. is only used to prove uniqueness up to dilations.
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ii. GR(b)(mi) =
∫

Ω
g(x) dx for 0 < bi <

min j,i b j

1 + κ
.

Proof. To prove (i) suppose x ∈ TR(b)(mi), and x is not a singular point of R(b).
Then E(mi, bi) is a supporting semi-ellipsoid to R(b) at ρ(x)x. So we have

bi

1 − κmi · x
≤

b j

1 − κm j · x

for all j = 1, . . . ,N. Therefore

bi ≤
1 − κmi · x
1 − κm j · x

b j ≤
1 − κ2

1 − κ
b j = (1 + κ)b j, j = 1, · · · ,N.

Hence if bi > (1+κ) min j,i b j, thenTR(b)(mi) ⊂ S,where S is the singular set ofR(b).
The first part of the lemma is then proved.

Let us prove (ii). Let b0 = min j,i b j, and take 0 < bi < b0/(1 + κ). Then for any
x ∈ Ω and for any j , i we have

bi

1 − κmi · x
<

b0/(1 + κ)
1 − κmi · x

≤
bo

1 − κ2 ≤
b j

1 − κ2 ≤
b j

1 − κm j · x
.

So for 0 < bi < b0/(1 + κ) we obtain

min
1≤l≤N

bl

1 − κml · x
=

bi

1 − κmi · x

and consequentlyTR(b)(mi) = Ω̄ completing the proof of part (ii) of the Lemma. �

Remark 3.2. For each fixed 1 ≤ i ≤ N, from Lemma 3.1, the function GR(b)(mi) is
constant on the set defined by linear inequalities

Fi :=
⋃
j,i

{
b = (b1, · · · , bN) : bi ≥ (1 + κ) b j

}⋃⋂
j,i

{
b = (b1, · · · , bN) : bi ≤

1
1 + κ

b j

}
.

If we set Gi(b) = GR(b)(mi), 1 ≤ i ≤ N, and consider the map b = (b1, · · · , bN) 7→
(G1(b), · · · ,GN(b)), the Jacobian of this map is zero on the set ∪N

i=1Fi.

Lemma 3.3. Let b = (b1, . . . , bN) and b∗ = (b∗1, . . . , b
∗

N) be in RN
+ . Suppose that for some

l, b∗l ≤ bl and for all i , l, b∗i = bi, where 1 ≤ l, i ≤ N. Then

(3.1) TR(b)(ml) ⊆ TR(b∗)(ml)

and

(3.2) TR(b∗)(mi) ⊆ TR(b)(mi) for i , l,

where the inclusions are up to a set of measure zero. Consequently

GR(b)(ml) ≤ GR(b∗)(ml) and GR(b)(mi) ≥ GR(b∗)(mi) for i , l.
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Proof. We use here that if x0 ∈ TR(b)(ml) and x0 is not a singular point, then the
ellipsoid E(ml, bl) supports R(b) at x0, this holds for any refractor R(b) and any
1 ≤ l ≤ N; see [GM13, Lemma 5.1].‡

We first prove (3.2) when x0 is not a singular point of R(b∗). Since b∗l ≤ bl, we
obviously have ρ∗(x) ≤ ρ(x) for all x ∈ Ω, where ρ∗ is the parametrization of R(b∗)
and ρ is the parametrization of R(b). Suppose i , l and let x0 ∈ TR(b∗)(mi). Then,

since x0 is not a singular point of R(b∗), the ellipsoid with polar radius
bi

1 − κx ·mi

supports R(b∗) at x0. We have ρ(x) ≤
bi

1 − κx ·mi
. Therefore

bi

1 − κx0 ·mi
= ρ∗(x0) ≤ ρ(x0) ≤

bi

1 − κx0 ·mi
,

that is, x0 ∈ TR(b)(mi).
We now prove (3.1). That is, if x0 is neither a singular point of R(b) nor a
singular point of R(b∗), and x0 ∈ TR(b)(ml), then x0 ∈ TR(b∗)(ml). We may assume
b∗l < bl. We have that E(ml, bl) supports R(b) at x0. We claim that the ellipsoid

with polar radius
b∗l

1 − κ x ·ml
supports R(b∗) at x0. Suppose this is not true.

Since by definition ρ∗(x) ≤
b∗l

1 − κ x ·ml
, we would have ρ∗(x0) <

b∗l
1 − κ x0 ·ml

. So

ρ∗(x0) =
b j

1 − κ x0 ·m j
for some j , l, and therefore

b j

1 − κ x ·m j
supports R(b∗) at x0.

Since x0 is not a singular point of R(b∗), then by the inclusion previously proved
we get that x0 ∈ TR(b)(m j). Since j , l we obtain that x0 is a singular point of R(b),
a contradiction. �

Remark 3.4. We show that if Ω is connected, 0 < |TR(b)(ml)| < |Ω|, and b∗` < b`,
then |TR(b∗)(ml) \ TR(b)(ml)| > 0. Therefore, if g > 0 a.e., then this implies that if
0 < GR(b)(ml) <

∫
Ω

g(x) dx we obtain GR(b)(ml) < GR(b∗)(ml) when b∗` < b`.
In fact, the proof follows the argument in [Gut14, Lemma 4.12]. Since |TR(b)(ml)| >

0, by [Gut14, Lemma 4.11] if x0 ∈ TR(b)(ml), then the semi-ellipsoid E(m`, b`) sup-

ports R(b) at x0. Hence
b j

1 − κm j · x0
≥

b`
1 − κm` · x0

for all j. Since b∗` < b`, we then

get
b j

1 − κm j · x0
>

b∗`
1 − κm` · x0

∀ j.

‡The restriction that x0 is not a singular point cannot be disposed of. For example, consider a
refractorR that is the min of only two semi-ellipsoids E(m2, b2) and E(m3, b3). Take a singular point
x0 of this refractor and consider a supporting semi-ellipsoid E(m1, b) at x0 having another direction
m1. Take now E(m1, b1) with b1 > b. The refractor can be defined with the three ellipsoids E(mi, bi),
1 ≤ i ≤ 3, because the definition of refractor does not see E(m1, b1), but E(m1, b) is supporting at x0
and b < b1 and E(m1, b1) does not support R at x0.
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By continuity there is a neighborhood Vx0 such that
b j

1 − κm j · x
>

b∗`
1 − κm` · x

∀ j, ∀x ∈ Vx0 .

Thus Vx0 ⊂ TR(b∗)(ml). Therefore, we have the inclusion

T := TR(b)(ml) ⊂ interior
(
TR(b∗)(ml)

)
:= O.

On the other hand, from the proof of [Gut14, Lemma 3.12], the set TR(b)(ml) is
compact. Therefore the set O \ TR(b)(ml) is an open set. Now since GR(b)(ml) <∫

Ω
g(x) dx, by the continuity of the refractor measure as a function of b`, Lemma

3.6(ii) below, we have that GR(b∗)(ml) <
∫

Ω
g(x) dx for b∗` sufficiently close to b`.

Since GR(b∗)(ml) increases when b∗` decreases, it is enough to prove the desired
inequality when b∗` is sufficiently close to b`. This implies that O , Ω̄. So we have
the configuration T closed, T ⊂ O $ Ω̄. If the set O \ T , ∅, then since O \ T
is open, we have |O \ T | > 0. Since O \ T ⊂ TR(b∗)(ml) \ TR(b)(ml), we obtain the
desired result. It then remains to show that O \ T , ∅. Suppose by contradiction
that O \ T = ∅. That is, O ∩ (Ω̄ \ T ) = ∅. We shall prove this implies that

(3.3) Ω̄ = O ∪ (Ω̄ ∩ T c).

Since both sets in this union are open (T is closed) relative to Ω̄, and O , Ω̄, we
obtain that Ω̄ is disconnected, contradicting the assumption that Ω̄ is connected.
So let us prove (3.3). Write

O ∪ (Ω̄ ∩ T c) = (O ∪ Ω̄) ∩ (O ∪ T c) = Ω̄ ∩ (O ∪ T c)

⊃ Ω̄ ∩ (O ∪ Oc) = Ω̄ since T ⊂ O.

This completes the remark.

By [GM13, Lemma 3.6], we also have the following:

Lemma 3.5. Let R j = {ρ j(x)x : x ∈ Ω̄}, j ≥ 1 be refractors from Ω̄ to Ω̄∗. Suppose that
0 < a1 ≤ ρ j ≤ a2 and ρ j → ρ pointwise on Ω̄. Then:

i. R := {ρ(x)x : x ∈ Ω̄} is a refractor from Ω̄ to Ω̄∗.
ii. The measures GR j converge weakly to the measure GR.

Lemma 3.6. If in Lemma 3.5, R j and R are defined by finite number of semi-ellipsoids as:

R j = R(b j) =

ρ(x)x : x ∈ Ω̄, ρ(x) = min
1≤i≤N

b j
i

1 − κmi · x

 .
and

R = R(b) =

{
ρ(x)x : x ∈ Ω̄, ρ(x) = min

1≤i≤N

bi

1 − κmi · x

}
.

then
i. GR j =

∑
GR j(mi)δmi ,GR =

∑
GR(mi)δmi

ii. GR j(mi)→ GR(mi) for all 1 ≤ i ≤ N, when b j → b.
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For a proof of this lemma see [Gut14, Lemma 4.7].

3.2. Geodesic disks. Recall that if α, β ∈ S2, the geodesic distance between them
is given by cos−1(α · β). We define a geodesic disk with center α and radius r to be
the set of points x on S2 for which x · α ≥ cos r.

Lemma 3.7. Let b1, b2 > 0 and m1,m2 ∈ S2 be such that m1 , m2. Consider the set

V12 =

{
x ∈ S2 :

b1

1 − κ x ·m1
≤

b2

1 − κ x ·m2

}
.

This set is non empty if and only if
b1 − b2

κ |b1m2 − b2m1|
≤ 1, and V12 is the geodesic disk with

center at
A12 =

b1m2 − b2m1

|b1m2 − b2m1|

and radius
τ12 = cos−1 b1 − b2

κ|b1m2 − b2m1|
,

that is,
V12 =

{
x ∈ S2 : x · A12 ≥ cos τ12

}
.

In addition, if
b1 − b2

κ |b1m2 − b2m1|
≤ −1, then V12 = S2. If R(b) is the refractor in Ω with

polar radius ρ(x) = min
{

b1

1 − κ x ·m1
,

b2

1 − κ x ·m2

}
, then TR(b)(m1) ⊂ V12.

Proof. If TR(b)(m1) = ∅, there is nothing to prove. Otherwise, let x ∈ TR(b)(m1).

Then
b1

1 − κm1 · x
≤

b2

1 − κm2 · x
. So b1 − b2 ≤ x · κ(b1m2 − b2m1), and we obtain

x ·
b1m2 − b2m1

|b1m2 − b2m1|
≥

1
κ

b1 − b2

|b1m2 − b2m1|
,

in particular, we must have
b1 − b2

κ |b1m2 − b2m1|
≤ 1. Thus TR(b)(m1) is contained in the

geodesic disc with center at
b1m2 − b2m1

|b1m2 − b2m1|
and geodesic radius cos−1

(
1
κ

b1 − b2

|b1m2 − b2m1|

)
.

�

Remark 3.8. If R(b) is a refractor of the form (2.6), then

(3.4) TR(b)(mi) = Ω ∩ ∩N
j=1Vi j, except possibly on the singular set of R(b),

where Vi j =

{
x ∈ S2 :

bi

1 − κ x ·mi
≤

b j

1 − κ x ·m j

}
. In fact, if x0 ∈ TR(b)(mi) and x0 is

not singular, then by [GM13, Lemma 5.1] the semi-ellipsoid E(mi, bi) supportsR(b)

at x0 implying
bi

1 − κ x0 ·mi
≤

b j

1 − κ x0 ·m j
for all j. Vice versa, if x0 ∈ Ω ∩ ∩N

j=1Vi j,
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then the polar radius ρ satisfies ρ(x0) =
bi

1 − κ x0 ·mi
, and so

bi

1 − κ x ·mi
supports

ρ at x0.
The following example shows that in (3.4) it is necessary to remove the sin-

gular points. In fact, take two ellipsoids E1 and E2 with polar radii
b1

1 − κ x ·m1

and
b2

1 − κ x ·m2
respectively, with m1 , m2 and take the corresponding refractor

minimum of the two ellipsoids and let ρ(x) be the polar radius. Suppose the
refractor ρ has a singular point x0. At x0 take a supporting semi-ellipsoid to ρ
having axis m3, with m3 different from m1 and m2. Let the polar radius of this

ellipsoid be
b3

1 − κx ·m3
. Now take an ellipsoid E of the form

b∗
1 − κx ·m3

with

b∗ much larger than b3 so that the ellipsoids E1 and E2 are contained in the in-

terior of the solid E, that is,
bi

1 − κ x ·mi
, i = 1, 2, are both strictly smaller than

b∗
1 − κx ·m3

. Then refractor min
{

b1

1 − κ x ·m1
,

b2

1 − κ x ·m2
,

b∗
1 − κx ·m3

}
is the same

as the refractor ρ(x). We have that x0 ∈ Tρ(m3). On the other hand, the sets

V31 =

{
b∗

1 − κx ·m3
≤

b1

1 − κ x ·m1

}
= ∅ and V32 =

{
b∗

1 − κx ·m3
≤

b2

1 − κ x ·m2

}
= ∅.

4. The algorithm

We assume the energy conservation condition (2.7).

4.1. The set W of admissible vectors. Let N ≥ 2, fo = min1≤i≤N fi, and 0 < δ <
fo/N. Consider the set of admissible vectors

W = {b = (1, b2, . . . , bN) : bi > 0 and GR(b)(mi) ≤ fi + δ for i = 2, . . . ,N}.

This set is non empty and their coordinates are bounded away from zero. This is
the contents of the following lemma.

Lemma 4.1. Suppose fo = min1≤i≤N fi and 0 < δ < fo/N. We have that
(1) if bi > 1 + κ for 2 ≤ i ≤ N, then (1, b2, b3, · · · , bN) ∈W;
(2) if b = (1, b2, · · · , bN) ∈W, then

(4.1) bi ≥
1

1 + κ
for 2 ≤ i ≤ N.

Proof. We prove (1). Let b = (1, b2, · · · , bN) with bi > 0. Fix j ≥ 2 and let x ∈ TR(b)(m j)
be a non singular point. Then from [GM13, Lemma 5.1], the semi-ellipsoid E(m j, b j)
supports R(b) at x. Since x ·m j ≥ κ, we have

b j

1 − κ2 ≤
b j

1 − κ x ·m j
= ρ(x) ≤

1
1 − κ x ·m1

≤
1

1 − κ
,
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and so b j ≤ 1 + κ. Therefore, if b j > 1 + κ with j , 2, and x ∈ TR(b)(m j), then x is a
singular point and thereforeTR(m j) has measure zero, and so GR(b)(m j) = 0 < f j +δ.

To show (2), we first prove that GR(b)(m1) > 0 for each b ∈W. In fact, from (2.7)
and the definition of W we have

GR(b)(m1) = f1 +

N∑
i=2

( fi − GR(b)(mi)) > f1 − (N − 1)δ > f1 −Nδ > 0

from the choice of δ. Since g ≥ 0, the set TR(b)(m1) has positive measure. This
implies that for each b ∈W,TR(b)(m1)∩

(
∪

N
i=2TR(b)(mi)

)c
, ∅. Otherwise,TR(b)(m1) ⊂

∪
N
i=2TR(b)(mi) which means that each point in TR(b)(m1) is singular, and therefore
|TR(b)(m1)| = 0; a contradiction. From this we conclude (4.1) because, if b ∈ W,
then we can pick x0 ∈ TR(b)(m1) ∩

(
∪

N
i=2TR(b)(mi)

)c
and we have

ρ(x0) =
1

1 − κ x0 ·m1
≤

bi

1 − κ x0 ·mi
, i = 2, · · · ,N

so

bi ≥
1 − κ x0 ·mi

1 − κ x0 ·m1
≥

1 − κ x0 ·mi

1 − κ2 ≥
1 − κ
1 − κ2 =

1
1 + κ

.

�

4.2. Detailed description of the algorithm. From Lemma 4.1 (2), we can pick
b1 = (1, b2, · · · , bN) ∈W. We will construct N − 1 intermediate consecutive vectors
b2, · · · ,bN associated with b1 in the following way.

Step 1. We first test if b1 satisfies the inequality:

(4.2) f2 − δ ≤ G
R(b1)(m2) ≤ f2 + δ.

If b1 satisfies this inequality, then we set b2 = b1 and we proceed to Step 2 below.
Notice that the inequality on the right hand side of (4.2) holds since b1

∈W. If b1

does not satisfy (4.2), then

(4.3) G
R(b1)(m2) < f2 − δ.

We shall pick b∗2 ∈ (0, b2), and leave all other components fixed, so that the new
vector b2 = (1, b∗2, b3, · · · , bN) belongs to W, and satisfies

(4.4) f2 ≤ G
R(b2)(m2) ≤ f2 + δ.

In fact, this is possible because applying Lemma 3.3 with ` = 2 we get that
G
R(b2)(m j) ≤ G

R(b1)(m j) for j , 2 and b∗2 ∈ (0, b2] from (3.2); and applying Lemma
3.1 (ii.) we get that G

R(b2)(m2) →
∫

Ω
g(x) dx = f1 + · · · + fN as b∗2 → 0, from the

energy conservation assumption. Since the fi’s are all positive, f1 + · · · + fN > f2,
and from the choice of δ we have f1 + · · · + fN > f2 + δ. As a function of b∗2, the
function G

R(b2)(m2) is non-increasing on (0, b2) from (3.1), tends to f1 + · · · + fN as
b∗2 → 0, and from (4.3) is strictly less than f2 − δ at b∗2 = b2. Therefore by continuity
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of G
R(b2)(m2), Lemma 3.6 ii, we can pick a value b∗2 ∈ (0, b2) such that (4.4) holds§.

Therefore, if the vector b1 does not satisfy (4.2), we have then constructed a vector
b2
∈W that satisfies (4.4) which is stronger than (4.2).

Step 2. Next we proceed to test the inequality

(4.5) f3 − δ ≤ G
R(b2)(m3) ≤ f3 + δ,

with b2 the vector constructed in Step 1. If b2 satisfies (4.5), we set b3 = b2 and
we proceed to the next step. If b2 does not satisfy (4.5), then

G
R(b2)(m3) < f3 − δ

and we proceed as before, now to decrease the value of b3, the third component
of the vector b2, and construct a vector b3

∈W such that

f3 ≤ G
R(b3)(m3) ≤ f3 + δ,

and in particular, (4.5) holds for b3. Notice that we do not know if the newly
constructed vector b3 satisfies (4.2).
Step 3. Next we proceed to test the inequality

(4.6) f4 − δ ≤ G
R(b3)(m4) ≤ f4 + δ,

with b3 the vector from Step 2. If this is true, then we set b4 = b3 and proceed to
the next step. Otherwise, we must have

G
R(b3)(m4) < f4 − δ

and we continue in the same way as before now decreasing the fourth component
b4 of b3 obtaining a new vector b4 satisfying

f4 ≤ G
R(b4)(m4) ≤ f4 + δ,

in particular, (4.6).
Step N − 1. We proceed to test the inequality

(4.7) fN − δ ≤ G
R(bN−1)(mN) ≤ fN + δ,

where bN−1 is the vector from Step N−2. If this holds we set bN = bN−1. Otherwise,
we have

G
R(bN−1)(mN) < fN − δ,

and proceeding as before, by decreasing the Nth-component of bN−1, we obtain a
vector bN

∈W
fN ≤ G

R(bN)(mN) ≤ fN + δ.

In this way, starting from a fixed vector b1
∈W, we have constructed intermediate

vectors b2, · · · ,bN all belonging to W and satisfying the above inequalities. Notice
that by construction, the `-th components of b j−1 and b j are all equal for ` , j. If
§Notice that for any a ∈ [ f2 − δ, f1 + · · · , fN], we can pick b∗2 ∈ (0, b2) such that G

R(b2)(m2) = a.



12 ROBERTO DE LEO, CRISTIAN E. GUTIÉRREZ AND HENOK MAWI

for some 2 ≤ j ≤ N, b j−1 , b j, then the j-th component of b j is strictly less than
the j-th component of b j−1. And so if we needed to decrease the j-th component
of b j−1 to construct b j is because

G
R(b j−1)(m j) < f j − δ,

and then by construction b j satisfies

f j ≤ G
R(b j)(m j) ≤ f j + δ.

We therefore obtain from the last two inequalities the following important in-
equality

(4.8) δ < G
R(b j)(m j) − G

R(b j−1)(m j), for intermediate vectors b j , b j−1.

We now repeat the construction above starting with the last vector bN. In
fact, we start from a vector b1,1

∈ W and constructed N − 1 intermediate vectors
b1,2, · · · ,b1,N using the procedure described. So we obtain in the first step the
finite sequence of vectors

b1,1,b1,2, · · · ,b1,N.

In the second step we repeat the construction now starting with the vector b1,N

and we get the finite sequence of vectors

b2,1,b2,2, · · · ,b2,N

with b2,1 = b1,N. For the third step we repeat the process now starting with the
last intermediate vector b2,N obtained in the previous step, obtaining the finite
sequence of vectors

b3,1,b3,2, · · · ,b3,N

with b3,1 = b2,N. Continuing in this way we obtain a sequence of vectors, in
principle infinite,
(4.9)

b1,1, · · · ,b1,N; b2,1, · · · ,b2,N; b3,1, · · · ,b3,N; · · · ; bn,1, · · · ,bn,N; bn+1,1, · · · ,bn+1,N; · · ·

with b2,1 = b1,N,b3,1 = b2,N, · · · ,bn+1,1 = bn,N, · · · . If for some n, the vectors in the
nth-stage are equal, i.e., bn,1 = bn,2 = · · · = bn,N := bn, then from the construction

|GR(bn)(m j) − f j| ≤ δ, for 2 ≤ j ≤ N.

Furthermore, by conservation of energy,
∑N

i=1 GR(bn)(mi) =
∑N

i=1 fi, so we obtain

| f1 − GR(bn)(m1)| =

∣∣∣∣∣∣∣
N∑

j=2

GR(bn)(m j) − f j

∣∣∣∣∣∣∣ ≤
N∑

j=2

|GR(bn)(m j) − f j| ≤ N δ.

If we now choose δ = ε/N, then the refractor R(bn) will satisfy (2.8), and the
problem is solved.
Therefore, if we show that for some n the intermediate vectors b1,n,b2,n, · · · ,bn,N

are all equal, we are done.
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4.3. A Lipschitz estimate implies that the process stops. We shall prove that
the estimate (5.6) implies that there is an n such that the vectors in the group
bn,1,bn,2, · · · ,bn,N are all equal, and we also show an upper bound for the number
of iterations.

Suppose we originate the iteration at b0 = (1, b0
2, · · · , b

0
N) ∈ W. Since by con-

struction the coordinates of the vectors in the sequence (4.9) are decreased or kept
constant, the jth coordinate of any vector in the sequence is less than or equal to b0

j ,
1 ≤ j ≤ N. In addition, from (4.1), points in W have all their coordinates bounded
below by 1/(1 + κ). Therefore all terms in the sequence (4.9) are contained in the
compact box K = {1} ×

∏N
j=2[1/(1 + κ), b0

j ]. We want to show that there is n0 such

that the intermediate vectors bn0,1,bn0,2, · · · ,bn0,N are all equal. Otherwise, for each
n the intermediate vectors bn,1,bn,2, · · · ,bn,N are not all equal. This implies that
for each n there are two consecutive intermediate vectors (1, b2, b3, · · · , bN) and
(1, b̄2, b̄3, · · · , b̄N), that are different. By construction of intermediate vectors, they
can only differ in one coordinate, say that b j > b̄ j. Notice that j depends on n, but
there is j and a subsequence n` such that there are two consecutive intermediate
vectors (1, bn`

2 , b
n`
3 , · · · , b

n`
N ) and (1, b̄n`

2 , b̄
n`
3 , · · · , b̄

n`
N ) in each group bn`,1, · · · ,bn`,N such

that their j-th coordinates satisfy bn`
j > b̄n`

j , and all other coordinates are equal.
Also notice that since the coordinates are chosen in a decreasing form we have
bn`

j > b̄n`
j ≥ bn`+1

j > b̄n`+1
j for ` = 1, · · · . From (4.8) we then get

(4.10) δ < G j

(
1, b̄n`

2 , b̄
n`
3 , · · · , b̄

n`
N

)
− G j

(
1, bn`

2 , b
n`
3 , · · · , b

n`
N

)
= (∗)

for each ` ≥ 1. We write

(1, b̄n`
2 , b̄

n`
3 , · · · , b̄

n`
j , · · · b̄

n`
N ) = (1, b̄n`

2 , b̄
n`
3 , · · · , b

n`
j + b̄n`

j − bn`
j , · · · b̄

n`
N ),

and let t := b̄n`
j − bn`

j < 0. Since the vectors belong to W, we have b̄n`
j ≥ 1/(1 + κ).

Then from (5.6) we obtain

(4.11) (∗) ≤ −
(
b̄n`

j − bn`
j

)
Cκ (sup

Ω

g) (N − 1) := L (bn`
j − b̄n`

j ), ∀`.

On the other hand,

(4.12)
∞∑
`=1

(bn`
j − b̄n`

j ) ≤ b0
j −

1
1 + κ

,

which contradicts (4.10) and therefore the intermediate vectors bn0,1,bn0,2, · · · ,bn0,N

are all equal for some n0.
Let us now estimate the number of iterations used. Consider the sequence of

vectors (4.9) constructed and list them as a sequence denoted by vi, i = 1, 2, 3, · · ·
and maintaining the given order. By construction the j-th coordinate of the
vector vi is greater than or equal than the j-th coordinate of the vector vi+1, 1 ≤
j ≤ N. Given 1 ≤ j ≤ N, if we let c j(vi) = j-th coordinate of the vector vi, then
c j(vi) ≥ c j(vi+1); and any two consecutive vectors vi and vi+1 can differ in only one
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coordinate. Let C j = {i : c j(vi) > c j(vi+1)}; (notice that C1 = ∅). If i ∈ C j, then from
(4.10) and (4.11)

c j(vi) − c j(vi+1) ≥
δ
L
,

and so adding over i we get from (4.12)

#(C j) ≤
L
δ

(
b0

j −
1

1 + κ

)
.

Now the set {i : vi , vi+1} ⊂ ∪
N
j=2C j, and therefore the sequence (4.9) is constant for

all n ≥ n0 with

(4.13) n0 ≤ N
(1 + κ) Cκ (supΩ g) (N − 1)

δ
max
2≤ j≤N

(
b0

j −
1

1 + κ

)
.

4.4. Limit as n→∞ of the sequence (4.9). We will show here that the procedure
described always converges in an infinite number of steps, assuming only that
g ∈ L1(Ω) with g not necessarily bounded. This can be clearly seen by listing the
vectors constructed in the following way:

group 1



b1,1
→ 1 b1,1

2 b1,1
3 b1,1

4 · · · b1,1
N

= ≤ = = · · · =
b1,2

→ 1 b1,2
2 b1,2

3 b1,2
4 · · · b1,2

N

= = ≤ = · · · =

b1,3
→ 1 b1,3

2 b1,3
3 b1,3

4 · · · b1,3
N

= q = ≤ · · · =

· · ·

b1,N−1
→ 1 b1,N−1

2 b1,N−1
3 b1,N−1

4 · · · b1,N−1
N

= = = = · · · ≤

b1,N
→ 1 b1,N

2 b1,N
3 b1,N

4 · · · b1,N
N

= = = = · · · =

group 2



b2,1
→ 1 b2,1

2 b2,1
3 b2,1

4 · · · b2,1
N

= ≤ = = · · · =

b2,2
→ 1 b2,2

2 b2,2
3 b2,2

4 · · · b2,2
N

= = ≤ = · · · =

b2,3
→ 1 b2,3

2 b2,3
3 b2,3

4 · · · b2,3
N

= q = ≤ · · · =

· · ·

b2,N−1
→ 1 b2,N−1

2 b2,N−1
3 b2,N−1

4 · · · b1,N−1
N

= = = = · · · ≤

b2,N
→ 1 b2,N

2 b2,N
3 b2,N

4 · · · b2,N
N

= = = = · · · =
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group 3



b3,1
→ 1 b3,1

2 b3,1
3 b3,1

4 · · · b3,1
N

= ≤ = = · · · =

b3,2
→ 1 b3,2

2 b3,2
3 b3,2

4 · · · b3,2
N

= = ≤ = · · · =

b3,3
→ 1 b3,3

2 b3,3
3 b3,3

4 · · · b3,3
N

= q = ≤ · · · =

· · ·

b3,N−1
→ 1 b3,N−1

2 b3,N−1
3 b3,N−1

4 · · · b1,N−1
N

= = = = · · · ≤

b3,N
→ 1 b3,N

2 b3,N
3 b3,N

4 · · · b3,N
N

= = = = · · · =

and continuing in this way we get an infinite matrix having N columns. With the
notation bi, j

k we have that i=group, j=vector in the group, and k= the component.
We have

bi, j
j+1 ≥ bi, j+1

j+1 , for j = 1, · · · ,N − 1, and i = 1, 2, · · ·

and

bi, j
` = bi, j+1

` , for ` , j + 1.

We now look at each of the N columns of the infinite matrix above. Each column
has entries in non increasing order (the first column is obviously one), therefore the
limit of the entries exists and is a number different from zero because the vectors
belong to W and therefore each limiting coordinate is bigger than 1/(1 + κ). Let
b∞j be the limit of the entries in the column j, j ≥ 2. Then the vector

b∞ = (1, b∞2 , b
∞

2 , · · · , b
∞

N )

satisfies

(4.14) f j − δ ≤

∫
TR(b∞)(m j)

g(x) dx ≤ f j + δ, j = 2, · · · ,N.

In fact, fix 2 ≤ j ≤ N, the vector b∞ is the limit of the vectors bi, j as i→∞. But the
vectors bi, j verify

f j − δ ≤

∫
T
R(bi, j)(m j)

g(x) dx ≤ f j + δ, for i = 1, 2, · · · .

Since the function
∫
TR(b)(m j)

g(x) dx is continuous as a function of b for each j,
Lemma 3.6ii, taking the limit as i→ ∞ we obtain (4.14). As it was shown before,
the validity of (4.14) for j , 1 implies that (4.14) holds with j = 1 and with δ
replaced by Nδ.
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5. A Lipschitz estimate of Gi

Consider the map G : RN
+ → R

N
≥0 given by

(5.1) G : b = (b1, . . . , bN)→ (G1(b), . . . ,GN(b))

where

(5.2) G j(b) = GR(b)(m j)

for j = 1, . . . ,N and RN
+ = {b = (b1, . . . , bk) : b j > 0 for j = 1, . . . ,N}.

Let ei be the unit vector in RN with 1 at the i-th position. We shall compute
Gi(bt) − Gi(b) where bt = (bt

1, . . . , b
t
N) := b + t ei. From Remark 3.8

TR(b)(mi) = Ω ∩

N⋂
j=1

V j

except possibly on a set of measure zero, with

(5.3) V j =

{
x ∈ S2 :

bi

1 − κmi · x
≤

b j

1 − κm j · x

}
,

where for brevity we have used the notation V j for Vi j. Likewise

T
R(bt)(mi) = Ω ∩

N⋂
j=1

Vt
j.

where

(5.4) Vt
j =

x ∈ S2 :
bt

i

1 − κmi · x
≤

bt
j

1 − κm j · x

 .
We have Vt

j = V j = S2 for j = i. So

(5.5) TR(b)(mi) = Ω ∩
⋂
j,i

V j, T
R(bt)(mi) = Ω ∩

⋂
j,i

Vt
j.

We prove the following proposition needed to show in Section 4.3 that the
algorithm stops in a finite number of steps.

Proposition 5.1. If g is bounded in Ω, then

0 ≤ Gi(b + t ei) − Gi(b) ≤
(
sup

Ω

g
)∑

r,i

C(κ,mi ·mr)
br

(−t),(5.6)

for −bi < t < 0 and for each b ∈ RN
+ , where the constant C(κ,mi ·mr) depends only on κ

and the angle between mi and mr.
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Proof. We have

Vt
j ⊂ V j for t > 0, j , i and V j ⊂ Vt

j for t < 0, j , i,

so from (5.5)

T
R(bt)(mi) ⊂ TR(b)(mi) for t > 0

and

TR(b)(mi) ⊂ TR(bt)(mi) for t < 0.

Since

Gi(bt) − Gi(b) =

∫
T
R(bt)(mi)

g(x)dx −
∫
TR(b)(mi)

g(x)dx,

we obtain

Gi(bt) − Gi(b) =


−

∫
TR(b)(mi)\TR(bt)(mi)

g(x)dx if t > 0∫
T
R(bt)(mi)\TR(b)(mi)

g(x)dx if t < 0.

If t < 0, then we have

T
R(bt)(mi) \ TR(b)(mi) = Ω ∩

{{
∩ j,iVt

j

}
\ {∩r,iVr}

}
= Ω ∩

{{
∩ j,iVt

j

}
∩

{
(∩r,iVr)

c}}
= Ω ∩

{{
∩ j,iVt

j

}
∩

{
∪r,iVc

r
}}

= Ω ∩
{
∪r,i

{
Vc

r ∩
{
∩ j,iVt

j

}}}
⊂ Ω ∩

{
∪r,i

{
Vc

r ∩ Vt
r

}}
⊂ ∪r,i

(
Vt

r \ Vr

)
.

On the other hand, if t > 0, then

TR(b)(mi) \ TR(bt)(mi) ⊂ ∪r,i

(
Vr \ Vt

r

)
.

We will estimate for −bi < t < 0

0 ≤ Gi(bt) − Gi(b) =

∫
T
R(bt)(mi)\TR(b)(mi)

g(x)dx ≤
∫

Ω∩{∪r,i{Vc
r∩Vt

r}}

g(x) dx

≤

(
sup

Ω

g
)

area
(
∪r,i

(
Vt

r \ Vr

))
≤

(
sup

Ω

g
)∑

r,i

area
(
Vt

r \ Vr

)
.(5.7)

We will calculate the area of Vt
r \ Vr for r , i and for −bi < t < 0.

Case Vr = S2.
In this case, Vt

r = S2 and so area
(
Vt

r \ Vr
)

= 0.
Case Vr , ∅.
If t → −bi, then Vt

r → S2. We will estimate the area measure of Vt
r \ Vr when
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−bi < t < 0. The center of Vr is the point Ar =
bimr − brmi

|bimr − brmi|
. Fix an arbitrary vector

u from which we are going to measure the angles θ. Given 0 ≤ θ ≤ 2π consider
the points γr(θ, s) along the geodesic originating from Ar and forming an angle
θ with the vector u; s denotes geodesic arc length. The point γr(θ, s) is on the

boundary of Vr if and only if the parameter s = τr = cos−1

(
bi − br

κ|bimr − brmi|

)
. Since

Vr ⊂ Vt
r, and so the geodesic curve γr(θ, s) must intersect the boundary of Vt

r for a
unique value of s with s ≥ τr. Let us denote this value of s by

hr(θ, t),

and so
γr(θ, s) ∈ ∂Vt

r if and only if s = hr(θ, t).
Let us set

xt = γr(θ, hr(θ, t)).
Since γr(θ, s) is a geodesic curve from the point Ar to the point xt, we have

hr(θ, t) = arccos (Ar · xt) .

On the other hand, the boundary of Vt
r is the collection of points where the

ellipsoids E(mi, bi + t) and E(mr, br) intersect. So xt satisfies
bi + t

1 − κxt ·mi
=

br

1 − κxt ·mr
,

which yields
br(1 − κ xt ·mi) = (bi + t)(1 − κ xt ·mr)

which using the definition of Ar yields

Ar · xt =
bi − br

κ |bimr − brmi|
+

1 − κ xt ·mr

κ |bimr − brmi|
t = cos s +

1 − κ xt ·mr

κ |bimr − brmi|
t,

where in the last identity we used the definition of s = τr. We are now ready to
calculate the surface area of Vt

r \ Vr. Integrating in polar coordinates we obtain

area(Vt
r \ Vr) =

∫ 2π

0

∫ hr(θ,t)

τr

sin s ds dθ

=

∫ 2π

0
(cos τr − cos hr(θ, t)) dθ = (−t)

∫ 2π

0

1 − κ xt ·mr

κ |bimr − brmi|
dθ

≤ (−t) 2π
1 + κ
κ

1
|bimr − brmi|

≤ C(κ,mi ·mr)
1

max{br, bi}
(−t),(5.8)

¶ for −bi < t < 0, where C(κ,mi · mr) is a positive constant depending only on κ
and the dot product mi ·mr.
¶Since mi , mr and have absolute value one, we have mi ·mr ≤ 1−δ for some 1 > δ > 0. We then

have |bimr−brmi|
2 = b2

r−2brbimr ·mi +b2
i ≥ b2

r−2brbi(1−δ)+b2
i = (br−(1−δ)bi)2 +b2

i δ(2−δ) ≥ b2
i δ(2−δ).

Similarly, |bimr − brmi|
2
≥ b2

rδ(2 − δ).
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Case when Vr = ∅.
Let us recall that

Vr =

{
x ∈ S2 :

bi

1 − κmi · x
≤

br

1 − κmr · x

}
and

Vt
r =

{
x ∈ S2 :

bi + t
1 − κmi · x

≤
br

1 − κmr · x

}
.

We have that

Vt
r =

{
x ∈ S2 : x ·

(bi + t)mr − brmi

|(bi + t)mr − brmi|
≥

bi + t − br

κ |(bi + t)mr − brmi|

}
Let

(5.9) g(t) =
bi + t − br

κ |(bi + t)mr − brmi|
, t ∈ (−bi,+∞).

Since Vr = ∅we have
g(0) > 1.

If we set ∆(t) = |(bi + t)mr − brmi|, then by calculation

g′(t) =
br(bi + t + br)(1 −mi ·mr)

κ∆(t)3 ,

and therefore
g′(t) > 0, ∀t ∈ (−bi,+∞).

Also

g(t)→ −
1
κ
, when t→ −bi,

and

g(t)→
1
κ
, when t→∞.

Therefore there is a unique number −bi < t0 < 0 such that Vt
r = ∅ for t0 < t < 0 and

Vt
r , ∅ for −bi < t ≤ t0; this is the value for which g(t0) = 1. In particular, when

t = t0, the set Vt0
r consists only of the center point Ar,t0 =

(bi + t0)mr − brmi

|(bi + t0)mr − brmi|
. We

need to calculate the area of Vt
r \Vr = Vt

r for −bi < t ≤ t0. To do this we will use the
calculation from the previous case with Vr { Vt0

r . In fact, we now parametrize the
boundary of Vt

r from the center of Vt0
r , Ar,t0 . Fix a arbitrary vector u from which we

are going to measure the angles θ. Given 0 ≤ θ ≤ 2π consider the points γr(θ, s)
along the geodesic originating from Ar,t0 and forming an angle θ with the vector
u; s denotes geodesic arc length. The point γr(θ, s) is on the boundary of Vt0

r if

and only if the parameter s = τr,t0 = cos−1

(
(bi + t0) − br

κ |(bi + t0)mr − brmi|

)
= 0. Since t ≤ t0,
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Vt0
r ⊂ Vt

r, and so the geodesic curve γr(θ, s) must intersect the boundary of Vt
r for

a unique value of s with s > τr,t0 = 0. Let us denote this value of s by

hr(θ, t),

and so
γr(θ, s) ∈ ∂Vt

r if and only if s = hr(θ, t).
Let us set

xt = γr(θ, hr(θ, t)).
Since γr(θ, s) is a geodesic curve from the point Ar,t0 to the point xt, we have

hr(θ, t) = arccos
(
Ar,t0 · xt

)
.

On the other hand, the boundary of Vt
r is the collection of points where the

ellipsoids E(mi, bi + t) and E(mr, br) intersect. So xt satisfies

bi + t
1 − κxt ·mi

=
br

1 − κxt ·mr
,

which yields

br(1 − κ xt ·mi) = (bi + t)(1 − κ xt ·mr) = (bi + t0)(1 − κ xt ·mr) + (t − t0)(1 − κ xt ·mr)

which using the definition of Ar,t0 yields

Ar,t0 · xt =
(bi + t0) − br

κ |(bi + t0)mr − brmi|
+

1 − κ xt ·mr

κ |(bi + t0)mr − brmi|
(t − t0)

= 1 +
1 − κ xt ·mr

κ |(bi + t0)mr − brmi|
(t − t0),

where in the last identity we used that τr,t0 = 0. Integrating in polar coordinates
as before we obtain for −bi < t ≤ t0 that

area(Vt
r) =

∫ 2π

0

∫ hr(θ,t)

0
sin s ds dθ

=

∫ 2π

0
(1 − cos hr(θ, t)) dθ = (t0 − t)

∫ 2π

0

1 − κ xt ·mr

κ |(bi + t0)mr − brmi|
dθ

≤ (t0 − t) 2π
1 + κ
κ

1
|(bi + t0)mr − brmi|

≤ C(κ,mi ·mr)
1

max{bi + t0, br}
(t0 − t)

≤ C(κ,mi ·mr)
1
br

(t0 − t) ≤
C(κ,mi ·mr)

br
(−t),

since t0 < 0, where C(κ,mi ·mr) is a positive constant depending only on κ and the
dot product mi ·mr.
As a conclusion we obtain combining all cases the proposition. �



ON THE NUMERICAL SOLUTION OF THE FAR FIELD REFRACTOR PROBLEM 21

Figure 1. Graph of the functions G2(b) = GR(b)(m2) (semitransparent)
and G3(b) = GR(b)(m3) (opaque) in the [0, 2]2 square for the case with three
unit output directions m1,m2,m3 given by the homogeneous coordinates
[0 : 0 : 1], [0 : 1 : 5], and [1 : 0 : 5], respectively.

Remark 5.2. Similar estimates for Gi(b) hold when the increment are in the vari-
ables br with r , i. In fact, using arguments similar to the ones used in the proof
of the last proposition one can show that

0 ≤ Gi(b + t er) − Gi(b) ≤ Cκ sup
Ω

g
1

max{bi, br}
t

for all 0 < t < ∞ and for each b ∈ RN
+ , r , i. Using these estimates for r , i, and

the fact that in the far field the refractor measure is invariant by dilations, one can
also obtain the estimate (5.6).

6. Numerical analysis

In order to see our algorithm in action, we implemented routines in the C/C++
programming language to produce some concrete numerical examples of refrac-
tors for a given output image. ‖. We will assume that the function g in Definition
2.3 is constant.

Assuming b1 = 1 and conservation of energy G1(1, b2, · · · , bN)+G2(1, b2, · · · , bN)+
· · · + GN(1, b2, · · · , bN) =constant, we have from Remark 3.2 that the map

(6.1) (b2, · · · , bN) 7→ (G2(1, b2, · · · , bN), · · · ,GN(1, b2, · · · , bN))

‖All software used in our numerical investigation and graphical results can be found at
http://helios.physics.howard.edu/ deleo/Refractor/

http://helios.physics.howard.edu/~deleo/Refractor/
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has a highly degenerate Jacobian in a large region of the phase space (e.g. see
Figure 1), that is, in the region ∪N

i=1Fi (with b1 = 1). Notice that the vector b in (2.8)

belongs to
(
∪

N
i=1Fi

)c
.

To evaluate numerically the output intensities Gi(b) = GR(b)(mi) for any fixed
b = (1, b2, · · · , bN), we proceed as follows. We discretize Ω into a finite array of
directions A. Fix a direction γ ∈ A and considered the ray, denoted by `γ, from
0 having direction γ. Now all the ellipsoids E(m j, b j) intersect the ray `γ at some
point P( j, γ). Then there is a jγ such that the distance from P( j, γ) to the origin is
minimum, and we choose this ellipsoid. So for each γ ∈ A we have an index jγ
such that the ellipsoid E(m jγ , b jγ) intersects the ray `γ at the point having minimum
distance to the origin. Since the refractor is by definition the minimum of the polar
radii of ellipsoids, then, in the direction γ, the refractor refracts into the direction
m jγ . This way we have a map T from each γ ∈ A into a vector m jγ . Clearly, this
map T might not cover all of the m1, ...,mN. We have

(6.2) Gi(b) =
#{γ ∈ A : T(γ) = mi}

#{γ ∈ A}
.

To reduce computational time in the calculation of Gi(b), it is helpful not only to
keep track of how many of the directions γ get refracted in the direction mi, but
also to record T(γ) at each γ ∈ A. This is because in two consecutive steps of
the algorithm described in Section 4 we need to compute the values of Gi(b) and
Gi(b′), where b and b′ are two vectors that differ only in one component. In fact,
suppose b and b′ are successive values in the algorithm differing only in the j0-th
component, and we know T(γ) = m j relative to b. To evaluate T(γ) relative to
b′ and subsequently obtaining the value of Gi(b′), we only need to consider the
ellipsoids E(m jγ , b jγ) and E(m j0 , b′j0) and the distance from the origin to P( j, γ) and
P( j0, γ).∗∗ By doing so we cut the running time by a factor of N.

From (4.13), we know that the number of iterations needed to find the optimal
vector b, for which err = max2≤i≤N | fi − Gi(b)| < δ, grows not faster than N2/δ.
We expect it not to grow slower than this as well, so that we expect a theoretical
computational time of order O(N2/δ). In addition, to use smaller values of δ
requires increasing the value of K and therefore increasing also the number of
directions in A to test (see the end of Section 4.2). Indeed, for any given A, from
(6.2) the set of values that Gi(b) takes on is finite. Therefore for δ small enough
there is j0 such that we cannot find a value of b j0 for which f j0 < G j0(b) < f j0 + δ.
This means that, if we want to find a b such that err < δ, we need to increase the
size of A so that #A > 1/δ. Since the loop on A leads to a running time proportional
to #A, in our implementation we expect a computational time of order O(N2/δ2).

For the calculations here we choose Ω as the intersection of the upper semi
sphere in R3 with the cone with vertex at the origin and generated by the vectors
∗∗First notice that T depends on b. If b′ and b are as in Lemma 3.3, then if γ ∈ Tb(m j), then

γ ∈ Tb′ (m`) or γ ∈ Tb′ (m j) (γ no singular). Because if γ < Tb′ (m`), then γ ∈ Tb′ (mk) for some k , `.
Then by (3.2), γ ∈ Tb(mk), and since γ is not singular, we get k = j.
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(1, 1, 2), (−1, 1, 2), (−1,−1, 2) and (1,−1, 2). The set Ω∗ is the intersection of the
upper semi sphere inR3 with the cone with vertex at the origin and generated by
the vectors (1, 1, 5), (−1, 1, 5), (−1,−1, 5) and (1,−1, 5). This choice of the domains Ω
and Ω∗ satisfy the condition (2.5) avoiding total internal reflection when κ = 1/2.
Inside Ω∗, we choose the refracted directions {mi}1≤i≤N, with N = (n + 1)2, as

Ω∗N =
{
[r : r′ : 5n] : r, r′ = −n,−n + 2, . . . ,n − 2,n; with r, r′ integers

}
;

where [r : r′ : 2n] denotes the unit vector in the direction (r, r′, 2n). We discretize
Ω into K = (2M + 1)2 points having the form

ΩK =
{
[r : r′ : 2M] : −M ≤ r, r′ ≤M; with r, r′ integers

}
.

We always start the algorithm in Section 4 with a vector in W, the set of admis-
sible vectors, satisfying b1 = 1 and bi = 2 for i ≥ 2 to obtain a vector b satisfying
(2.8), with ε = 1/10N, and uniform output intensities fi = 1/N, 1 ≤ i ≤ N, for the
directions mi ∈ Ω∗N. That is, we stop our computations when

max
1≤i≤N

∣∣∣∣∣GR(b)(mi) −
1
N

∣∣∣∣∣ ≤ ε =
1

10N
.

While implementing the algorithm for 1 ≤ n ≤ 10, with δ = ε/N = 1/(10N2), as in
Section 4.2, our data in Fig. 2a, show that the number of iterations ν grows roughly
as ν(N) ' 0.3N2.8; although the exponent appears to slow down towards 2 as N
increases. This is consistent with (4.13), according to which the growth cannot be
faster than N4. Similarly, for the running times τ we observe that τ(N) ' 0.003N3.
Note that the evident jump in the running times when n ≥ 7 is due to the fact
that the values of δ for these cases get so small that for the algorithm to complete
successfully it is necessary to use for these cases larger values of K (M = 200 for n
up to 4, M = 250 for 5 ≤ n ≤ 6, M = 500 for n = 7, M = 350 for n = 8, M = 800 for
n = 9 and M = 1100 for n = 10). Such a fast growth suggests that, although the
algorithm in Section 4 always yields a solution b after a finite number of iterations,
it might take a long computational time for large values of n. For example for
n = 30, namely N = 961, these data predict a running time of at least 34 days.

The running time decreases considerably if we disregard the direction m1. In
fact, in order to be able to use the algorithm in Section 4.2 with higher values of
N, we disregard the intensity in the first refracted direction m1, namely, we stop
our computations when

max
2≤i≤N

∣∣∣∣∣GR(b)(mi) −
1
N

∣∣∣∣∣ ≤ ε =
1

10N
.

As it is clear from the discussion in Section 4.2, in order to achieve this result it
is enough to take δ ≤ ε. This way, omitting m1, δ will decrease more slowly with
N and, accordingly, the number of iterations will grow slower with N and with
the size of the discretization of Ω. Therefore, the running time will be shorter. In
Fig. 2b we show the growth of the number of iterations and running time when
1 ≤ n ≤ 30, corresponding to 4 ≤ N ≤ 961. In this case, the data show a growth
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a) Runtime/iteration time growth with full error b) Runtime/iteration time growth with partial error

c) Lens d) Vector b for N = 5041

Figure 2. a) Growth of runtime and number of iterations in our imple-
mentation of the algorithm of Section 4.2 when we minimize |GR(b)(mi) −
1/N| for all mi. Blue is (ln N, ln τ(N)); orange is (ln N, ln ν(N)). b) Same plot
when we disregard what happens in the direction m1, as a function of the
number of output directions. c) Detail of the lens giving rise to Descartes’
image with N = 712 output directions. d) Plot of the components of the
vector b, considered as a map Ω∗N → R, when the refractor R(b) gives the
71 × 71 Descartes’ picture in Figure 3 b. The set Ω∗N is represented as the
array of points (r/5n, r′/5n), r, r′ = −n,−n + 2, . . . ,n, inside the square
[−1/5, 1/5]2.

in the number of iterations ν roughly quadratic in the number N of the output
directions: ν(N) ' 2.7N2.05. Similarly, for the running times τ, we observe that
τ(N) ' αN1.9. Here α depends on the value of δ, and so from the duration of
every single step in the program’s loop to evaluate the map T(γ), the size of the
discretization ΩK (and therefore the number of steps in the loop above), as well as
on non mathematical factors like the hardware on which the program runs†† and
the coding details of the algorithm implementation. For 1 ≤ n ≤ 9 (see Fig. 2a)
we use δ = 10−3 and M = 200 and find α ' 0.03 seconds. For n ≥ 10, the value
δ = 10−3 is not small enough for the algorithm to reach a 10% error and so we
lower it to δ = 2 · 10−4. This change of course increases α, leading to the visible
jump in the (log-log) graph of τ(N). For 10 ≤ n ≤ 22 we find α ' 0.05s. For n ≥ 23,

††All data in Fig. 2 and Fig 3 are produced on an Intel Xeon 2.6GHz CPU
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a discretization of Ω with M = 200 is not fine enough to allow the evaluation of
the map T(γ). So we increase M to 300, leading to a second visible jump in the
graph corresponding to the larger value α ' 0.135 secs. For example, with this
last value of α, we get a lower bound of about 16 days for the running time in the
case N = 5000, i.e, n ≈ 70.

The results can be obtained faster combining this algorithm for small values
of n with a quasi-Newtonian root-finding algorithm. Such methods are gen-
eralizations of the Newton method to find the root of a function without an
explicit expression of its Hessian. The problem is that, as for the Newton method,
quasi-Newtonian methods require a starting point where the function has a non-
degenerate Jacobian and, as we already pointed out at the beginning of the section,
the function (6.1) has a degenerate Jacobian in a large portion of its domain. We
use the GNU Scientific Library (GSL) implementation of the quasi-Newtonian
version of Powell’s Hybrid method, since this method does not need an explicit
Jacobian.

Therefore, as a first step we use the algorithm from Section 4.2 (disregarding
the direction m1) to find a vector b̃ inside the region where the Jacobian is non-
degenerate. And next use b̃ as a starting point of the quasi-Newtonian algorithm
to find a vector b∗ for which the output intensities Gi(b∗) are “close enough” to
the fi = 1/N. In fact, we start by evaluating a vector b̃ = (b̃1, . . . , b̃961) which gives
homogeneous light intensity ( fi = 1/N) in all directions (except m1) within 10% for the
output array Ω∗961, corresponding to n = 30. This computation, with δ = 10−4 and
M = 300, took about 15 hours. The vector b̃ is then used as starting point by any
quasi-Newtonian method to find the desired vector b∗ = (b1, . . . , b961) such that
max1≤i≤961

∣∣∣GR(b)(mi) − 1/N
∣∣∣ < ε over the array Ω∗961 and any (reasonable) ε. With

this method, it takes only about 25 minutes to find, starting from the vector b̃, a
vector b∗ giving rise to a homogeneous distribution of light ( fi = 1/N) in all the
directions of the array Ω∗961 within 10%!

We now use the vector b∗ as a pivot in a concrete case; namely, to produce a lens
that yields an image of a famous portrait of Descartes by Frans Hals on the array
of refracted directions Ω∗14641, corresponding to n = 120. The images produced
with the lens using LuxRender are shown in Fig. 3 for various resolutions. First
of all, we need to extract from a digital version of the original picture the output
intensities fi, 1 ≤ i ≤ 14641. For this purpose we use Imlib2, a general purpose
open source C library aimed at images manipulation. Our final goal is finding a
vector b so that the refractor R(b) satisfies the inequalities

(6.3) max
1≤i≤14641

∣∣∣GR(b)(mi) − fi

∣∣∣ ≤ min
1≤i≤14641

{ fi}/10.

Note that, since the naked eye cannot usually detect nuances of black within a
complex picture, and since for large arrays the amount of light in dark spots is
very low, it is actually enough for us that the max and min in (6.3) are taken only
over i such that fi is sufficiently large when N is large ( fi small corresponds with
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a) Rendering (VTK 41x41) b) Rendering (CGAL 71x71)

c) Rendering (VTK 121x121) d) Rendering (CGAL 121x121)

Figure 3. Rendering of Descartes’ image from 3D models generated by
the graphic libraries VTK and CGAL. The rendering has been done via
LuxRender, a physically accurate raytracer engine, through the modeling
package Blender.

dark spots). Heuristically for this particular case we set this number to be 30% of
the total number of refracted directions.

Now we evaluate the coefficients fi corresponding to Descartes’ picture for the
array Ω∗961. Next using b∗, calculated in the first step, as a starting point in the
quasi-Newtonian algorithm, we find the corresponding b giving rise to the fi.
It takes about 23 minutes to get a b such that all GR(b)(mi) are within 10% from
the fi; all but one within 1%, and 96% of them are within .1%. At this point, we
consider the array Ω∗1681, corresponding to n = 40, evaluate the fi’s corresponding
to Descartes’ picture on this array and use a standard interpolation algorithm (in
concrete we use an implementation available in the GSL) to interpolate the values
of (b1, . . . , b961) into a new vector (b̃1, . . . , b̃1681) and finally use this as starting point
for the quasi-Newtonian code to find a vector b = (b1, . . . , b1681) giving rise to the
fi, 1 ≤ i ≤ 1681, within 10%. It takes about 28 minutes to find a b such that all
GR(b)(mi) but three are within 10% from the corresponding fi (and 98% of them
is actually within 1%). From this we move to the array Ω∗2601, interpolate the
previous b = (b1, . . . , b1681) to a new b̃ = (b1, . . . , b2601) and use it as a starting point
for the quasi-Newtonian algorithm, that in about 3 hours is able to find a b such
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that all GR(b)(mi) but five are within 10% from the corresponding fi. We continue
with this process by increasing n by 10 at every step until we arrive to n = 120,
which provides the final b (see Fig. 3c,d) so that the 70% of the GR(b)(mi) are within
10% from the corresponding fi. The last computational step took about 2 days.
The process can be continued to obtain higher resolution pictures.

7. Conclusion

We have obtained a numerical procedure to find far field refractors with arbi-
trary precision when the target is discrete composed of N directions, and radiation
emanates from one source point. The density of the incoming radiation is assumed
only bounded away from zero and infinity, and the domains Ω are general subsets
of the unit sphere having boundary with surface measure zero. The procedure
converges in a finite number of steps and an estimate of this number is given
in terms of N, the angles between the different directions in the target, and the
required approximation. To show the convergence we prove a Lipschitz estimate
of the refractor map. A numerical implementation of the algorithm is carried out
by using C/C++ programming language, and concrete examples of refractors for
a given output image are provided. The near field case can be treated with similar
methods and we will return to this problem in the near future.
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[Kit14] Jun Kitagawa, An iterative scheme for solving the optimal transportation problem, Calc. Var.
PDEs 51 (2014), no. 1-2, 243–263.

[MTW05] Xi-Nan Ma, N. Trudinger, and Xu-Jia Wang, Regularity of potential functions of the optimal
transportation problem, Arch. Rational Mech. Anal. 177 (2005), no. 2, 151–183.

Department ofMathematics, Howard University, Washington, D.C. 20059
E-mail address: roberto.deleo@howard.edu, henok.mawi@howard.edu

Department ofMathematics, Temple University, Philadelphia, PA 19122
E-mail address: gutierre@temple.edu


	1. Introduction
	2. Set up, definitions, and statement of results
	3. Preliminary results
	3.1. Lemmas for the tracing map and refractor measures
	3.2. Geodesic disks

	4. The algorithm
	4.1. The set W of admissible vectors
	4.2. Detailed description of the algorithm
	4.3. A Lipschitz estimate implies that the process stops
	4.4. Limit as n of the sequence (4.9)

	5. A Lipschitz estimate of Gi
	6. Numerical analysis
	7. Conclusion
	References

