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Rungs 1 to 4 of DFT Jacob’s ladder: extensive test on the lattice constant, bulk

modulus, and cohesive energy of solids
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A large panel of old and recently proposed exchange-correlation functionals belonging to rungs
1 to 4 of Jacob’s ladder of density functional theory are tested (with and without a dispersion
correction term) for the calculation of the lattice constant, bulk modulus, and cohesive energy of
solids. Particular attention will be paid to the functionals MGGA MS2 [J. Sun et al., J. Chem.
Phys. 138, 044113 (2013)], mBEEF [J. Wellendorff et al., J. Chem. Phys. 140, 144107 (2014)],
and SCAN [J. Sun et al., Phys. Rev. Lett. 115, 036402 (2015)] that are approximations of the
meta-generalized gradient type and were developed with the goal to be universally good. Another
goal is also to determine for which semilocal functionals and groups of solids it is beneficial (or not
necessary) to use the Hartree-Fock exchange or a dispersion correction term.

PACS numbers: 61.50.Lt, 71.15.Mb, 71.15.Nc

I. INTRODUCTION

Starting in the mid 1980’s,1,2 there has been a con-
stantly growing interest in the development of exchange-
correlation (xc) functionals Exc = Ex + Ec in the Kohn-
Sham (KS) density functional theory (DFT),3,4 and the
number of functionals that have been proposed so far
is rather huge (see, e.g., Refs. 5–8 for recent reviews).
This is understandable since KS-DFT is the most used
method for the theoretical modeling of solids, surfaces,
and molecules at the quantum level, and the accuracy of
a KS-DFT calculation depends to a large extent on the
chosen approximation for Exc. Over the years, the de-
gree of sophistication of the functionals (and their accu-
racy) has increased and most of the functionals belong to
one of the rungs of Jacob’s ladder.9,10 On the first three
rungs there are the so-called semilocal (SL) approxima-
tions which consist of a single integral for Exc,

ESL
xc =

∫

ǫxc(r)d
3r, (1)

and where ǫxc, the exchange-correlation energy density
per volume, is a function of (a) the electron density

ρ =
∑N

i=1 |ψi|
2
in the local density approximation (LDA,

first rung), (b) ρ and its first derivative ∇ρ in the gen-
eralized gradient approximation (GGA, second rung),
and (c) ρ, ∇ρ, and the kinetic-energy (KE) density

t = (1/2)
∑N

i=1 ∇ψ
∗

i · ∇ψi and/or ∇
2ρ in the meta-GGA

approximation (MGGA, third rung). On the fourth rung
there are the functionals which make use of the (short-
range, SR) Hartree-Fock (HF) exchange, like the hybrid
functionals11

Ehybrid
xc = ESL

xc + αx

(

E(SR-)HF
x − E(SR-)SL

x

)

, (2)

where αx (∈ [0, 1]) is the fraction of HF exchange energy

E
(SR-)HF
x which is a double integral:

E(SR-)HF
x = −

1

2

N
∑

i=1

N
∑

j=1

δσiσj

∫ ∫

ψ∗

i (r)ψj(r)

×v (|r− r
′|)ψ∗

j (r
′)ψi(r

′)d3rd3r′, (3)

where the indices i and j run over the occupied orbitals
and v is the Coulomb potential 1/ |r− r

′| or only the SR
part of it12,13 (i.e., a screened potential). On the fifth
rung of Jacob’s ladder there are the functionals which
utilize all (occupied and unoccupied) orbitals, like the
random phase approximation (RPA, see, e.g., Refs. 14
and 15).

The functionals of the first four rungs have been ex-
tremely successful in describing the properties of all kinds
of electronic systems, ranging from atoms to solids.5–7

However, a well-known problem common to all these
functionals is that the long-range London dispersion in-
teractions (always attractive and resulting from the inter-
action between non-permanent multipoles) are formally
not included. In the case of two nonoverlapping spher-
ical atoms, these functionals give an interaction energy
of strictly zero, which is not the case in reality because
of the attractive London dispersion interactions. As a
consequence, the results obtained with the semilocal and
hybrid functionals on systems where the London disper-
sion interactions play a major role can be qualitatively
wrong.16 Nevertheless, as underlined in Ref. 17, at equi-
librium geometry the overlap between two interacting
entities is not zero, such that a semilocal or hybrid xc-
functional can eventually lead to a non-zero contribution
to the interaction energy and therefore, possibly useful
results (see, e.g., Ref. 18). In order to improve the relia-
bility of KS-DFT calculations for such systems, function-
als including the dispersion interactions in their construc-
tion were proposed. A simple and widely used method
consists of adding to the semilocal or hybrid functional
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an atom-pairwise (PW) term of the form

EPW
c,disp = −

∑

A<B

∑

n=6,8,10,...

fdamp
n (RAB)

CAB
n

Rn
AB

, (4)

where CAB
n are the dispersion coefficients for the atom

pair A and B separated by the distance RAB and fdamp
n

is a damping function preventing Eq. (4) to become too
large for small RAB. The coefficients CAB

n can be either
precomputed (see, e.g., Refs. 19–24) or calculated using
properties of the system like the atomic positions or the
electron density (see, e.g., Refs. 25–27). The other group
of well-knownmethods accounting explicitly of dispersion

interactions consists of adding to E
SL/hybrid
xc a nonlocal

(NL, in the sense of being a double integral) term of the
form28

ENL
c,disp =

1

2

∫ ∫

ρ(r)Φ (r, r′) ρ(r′)d3rd3r′, (5)

where the kernel Φ depends on ρ and ∇ρ at r and
r
′ as well as on |r− r

′|. Several functionals of the
form of Eq. (5) are available in the literature28–33 and
good results can be obtained if the proper combination

E
SL/hybrid
xc + ENL

c,disp is used (see, e.g., Refs. 29, 31, and

34). Overall, the KS-DFT+dispersion methods produce
results which are more reliable when applied to systems
where the dispersion play a major role, and therefore,
the very cheap atom-pairwise and not-too-expensive non-
local methods are nowadays routinely applied (see Refs.
16, 35, and 36 for recent reviews).
At this point we should certainly also mention that

truly ab initio (beyond DFT) methods have been used
for the calculation of geometrical and energetic properties
of solids (the focus of the present work). This includes
RPA, which has been shown during these last few years
to be quite reliable in many situations (see, e.g., Refs.
15, 37–39 for extensive tests), the quantum Monte Carlo
methods as exemplified in Ref. 40 for the calculation of
the lattice and bulk modulus of a set of solids, and the
post-HF methods which, as expected, should converge to
the exact results.41

Another well-known problem in KS-DFT, that we
will not address in this work, is the inadequacy of the
semilocal functionals (or more precisely of the potential
vxc = δExc/δρ) for the calculation of band gaps, while
the hybrid functionals work reasonably well in this re-
spect thanks to the nonlocal HF exchange (see, e.g., Refs.
42–44).
In the present work, a large number of functionals

of rungs 1 to 4 of Jacob’s ladder, with or without a
dispersion term, are tested on solids for the calcula-
tion of lattice constant, bulk modulus, and cohesive en-
ergy. A particular focus will be on the MGGA func-
tionals recently proposed by Perdew and co-workers,
namely MGGA MS (MGGA made simple)18,45,46 and
SCAN (strongly constrained and appropriately normed
semilocal density functional),47 and by Wellendorff et

al.,48 mBEEF (model Bayesian error estimation func-
tional), which should in principle be accurate semilocal
functionals for both finite and infinite systems, and to
bind systems bound by weak interactions. Two testing
sets of solids will be considered. The first one consists
of cubic elemental solids and binary compounds bound
by relatively strong interactions, while the second set
is composed of systems bound mainly by weak interac-
tions (e.g., dispersion). This extensive study of function-
als performance on solids complements previous works,
which include Refs. 49–59 for semilocal functionals, Refs.
42–44, 60–63 for tests including hybrid functionals, Refs.
15, 37, and 38 for RPA, and Refs. 48, 64–69 for a focus
on functionals including dispersion via an atom-pairwise
term or a nonlocal term.
The paper is organized as follows. The computational

details are given in Sec. II. In Sec. III, the tested function-
als are presented and some of their features are discussed.
The results are presented and discussed in Sec. IV, while
Sec. V gives a brief literature overview of the accuracy
of functionals for the energetics of molecules. Finally,
Sec. VI gives a summary of this work.

II. COMPUTATIONAL DETAILS

All calculations were done with the WIEN2k code,70

which uses the full-potential (linearized) augmented
plane-wave plus local orbitals method71 to solve the KS
equations. The parameters of the calculations like the
number of k-points for the integration of the Brillouin
zone or size of the basis set were chosen to be large enough
such that the results are well converged.
In order to make the testing of the numerous func-

tionals tractable (especially for the hybrids which use
the expensive HF exchange), the results on the strongly
bound solids (listed in Table I) were obtained non-self-
consistently by using the PBE72 orbitals and densities.
According to tests, the error in the lattice constant in-
duced by this non-self-consistent procedure should be in
most cases below 0.005 Å. The worst cases are the very
heavy alkali and alkali-earth metals (Cs in particular) for
which the error can be of the order of ∼ 0.02 Å. Errors
in the range 0.005-0.015 Å can eventually be obtained
in the case of metals with hybrid functionals (a compar-
ison can be done with our self-consistent hybrid calcu-
lations reported in Refs. 73 and 74). For the cohesive
energy the effect should not exceed 0.05 eV/atom except
in the eventual cases where self-consistency would lead to
an atomic electronic configuration for the isolated atom
that is different from the one obtained with PBE. For
the very weakly bound rare-gas solids Ne, Ar, and Kr
and layered solids graphite and h-BN we observed that
self-consistency may have a larger impact on the results
(up to a few 0.1 Å in the case of very shallow total-
energy curves), therefore the calculations were done self-
consistently for LDA/GGA, but not for the MGGA func-
tionals (not implemented self-consistently in WIEN2k) as
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TABLE I. The test set of 44 strongly and 5 weakly bound solids considered in this work. The space group is indicated in
parenthesis. With the exception of hexagonal graphite and h-BN, all solids are cubic.

Strongly bound solids
C (Fd3m), Si (Fd3m), Ge (Fd3m), Sn (Fd3m)
SiC (F43m), BN (F43m), BP (F43m), AlN (F43m), AlP (F43m), AlAs (F43m)
GaN (F43m), GaP(F43m), GaAs (F43m), InP (F43m), InAs (F43m), InSb (F43m)
LiH (Fm3m), LiF (Fm3m), LiCl (Fm3m), NaF (Fm3m), NaCl (Fm3m), MgO (Fm3m)
Li (Im3m), Na (Im3m), Al (Fm3m), K (Im3m), Ca (Fm3m), Rb (Im3m), Sr (Fm3m), Cs (Im3m), Ba (Im3m)
V (Im3m), Ni (Fm3m), Cu (Fm3m), Nb (Im3m), Mo (Im3m), Rh (Fm3m), Pd (Fm3m), Ag (Fm3m)
Ta (Im3m), W (Im3m), Ir (Fm3m), Pt (Fm3m), Au (Fm3m)
Weakly bound solids
Ne (Fm3m), Ar (Fm3m), Kr (Fm3m), graphite (P63/mmc), h-BN (P63/mmc)

well as the very expensive hybrid functionals.
The results of our calculations for the strongly bound

solids were compared with experimental results that were
corrected for thermal and zero-point vibrational effects
(see Refs. 43 and 75). For the weakly bound systems,
the results were compared with accurate ab initio results;
coupled cluster with singlet, doublet, and perturbative
triplet [CCSD(T)] for the rare gases76 and RPA for the
layered solids.77,78

At this point we should remind that in general, the
observed trends in the relative performance of the func-
tionals may depend on the test set and more particularly
on the diversity of solids. Since our test set contains
elements from all parts of the periodic table except lan-
thanides and actinides, our results should give a rather
fair and unbiased overview of the accuracy of the func-
tionals.
Finally, we mention that we did not include ferromag-

netic bcc Fe in our test set of solids, since the total-energy
curves exhibit a discontinuity at the lattice constant of
∼ 2.94 Å (same value as found in Ref. 38), that is due to
a change in orbitals occupation with PBE. This disconti-
nuity is very large when the HF exchange is used, making
an unambiguous determination of the equilibrium volume
not possible with some of the hybrid functionals.

III. THE FUNCTIONALS

The exchange-correlation functionals that were tested
for the present work are listed in Table II. They are
grouped into families, namely, LDA, GGA, and MGGA,
and their extensions that use the HF exchange, Eq. (2),
[hybrid-. . . ], a dispersion correction of the atom-pairwise
type as given by Eq. (4) [. . . +D], or both. Among the
GGA functionals, BLYP92,93 and PBE72 have been the
most used in chemistry and physics, respectively. PBE
leads to reasonable results for solids (lattice constant and
cohesive energy), while BLYP is much more appropriate
for the atomization energy of molecules. More recent
GGA functionals are AM05,83 WC,80 SOGGA,81 and
PBEsol,82 which are more accurate for the lattice con-
stant of solids (see, e.g., Ref. 53), but severely overbind

molecules.88 Other recent GGA functionals that were
also tested are PBEint,84 PBEfe,89 and SG4.59 In the
group of MGGA functionals, there are the relatively old
functionals PKZB97 and TPSS,96 as well as the very
recent ones MGGA MS2,18,46 mBEEF,48 and SCAN,47

which should be among the most accurate semilocal func-
tionals for molecules and solids and also provide (possi-
bly) useful results for weakly bound systems. The other
recent MGGA MVS95 is also among the tested function-
als.
A semilocal functional can be defined by its xc-

enhancement factor Fxc:

Fxc(r) =
ǫxc(r)

ǫLDA
x (r)

=
ǫx(r) + ǫc(r)

ǫLDA
x (r)

= Fx(r) + Fc(r), (6)

where ǫLDA
x = − (3/4) (3/π)

1/3
ρ4/3 is the ex-

act exchange-energy density for constant electron
densities.4,109,110 For convenience, Fxc is usually ex-

pressed as a function of the variables rs = (3/ (4πρ))1/3

(the radius of the sphere which contains one elec-

tron), s = |∇ρ| /
(

2
(

3π2
)1/3

ρ4/3
)

(the reduced den-

sity gradient), and α =
(

t− tW
)

/tTF where tW =

|∇ρ|
2
/ (8ρ) is the von Weizsäcker111 KE density (ex-

act for systems with only one occupied orbital) and

tTF = (3/10)
(

3π2
)2/3

ρ5/3 is the Thomas-Fermi KE

density112,113 (exact for constant electron densities).
Note that the exchange part Fx does not depend on rs,
but only on s (and α for MGGAs).
Figures 1 and 2 show the enhancement factor of most

GGA and MGGA functionals tested in this work. Now,
we summarize the trends in the performances of GGA
functionals and how their are related to the shape of Fxc

(mainly determined by the dominating exchange part Fx,
see upper panel of Fig. 1). LDA, which has the weakest

enhancement factor underestimates the equilibrium lat-
tice constant a0 of solids. Since large unit cells contain
more density gradient (i.e., larger s) than small unit cells,
then a stronger Fxc (any GGA, see Fig. 1) will lower the
total energy more for large unit cells than for smaller ones
(a stronger Fxc makes the total energy more negative),
and therefore reduce the underestimation of a0 obtained
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TABLE II. The ME, MAE, MRE, and MARE on the testing set of 44 strongly bound solids for the lattice constant a0,
bulk modulus B0, and cohesive energy Ecoh. The units of the ME and MAE are Å, GPa, and eV/atom for a0, B0, and
Ecoh, respectively, and % for the MRE and MARE. All results were obtained non-self-consistently using PBE orbitals/density.
Within each group, the functionals are ordered by increasing value of the MARE of a0. For hybrid functionals, the fraction αx

of HF exchange is indicated in parenthesis.

a0 B0 Ecoh
Functional ME MAE MRE MARE ME MAE MRE MARE ME MAE MRE MARE

LDA

LDA79
−0.071 0.071 −1.5 1.5 10.1 11.5 8.1 9.4 0.77 0.77 17.2 17.2

GGA

SG459 0.005 0.026 0.0 0.6 1.7 7.9 −2.2 7.8 0.19 0.28 3.5 7.0

WC80 0.002 0.029 0.0 0.6 −0.2 7.6 −2.6 7.4 0.22 0.26 4.2 6.2

SOGGA81
−0.012 0.027 −0.3 0.6 4.1 8.9 0.6 7.4 0.39 0.41 8.8 9.2

PBEsol82 −0.005 0.030 −0.1 0.6 0.7 7.8 −1.4 7.0 0.29 0.31 6.1 6.9

AM0583 0.014 0.037 0.2 0.8 −0.3 8.8 −4.0 9.2 0.30 0.45 7.6 12.6

PBEint84 0.026 0.039 0.5 0.8 −3.0 8.4 −5.3 8.7 0.10 0.20 1.5 4.7

PBEalpha85 0.021 0.042 0.4 0.9 −6.0 8.4 −5.0 7.6 0.10 0.18 1.8 4.1

RGE286 0.043 0.051 0.8 1.0 −4.3 9.0 −7.3 10.2 −0.00 0.20 −1.2 5.0

PW9187 0.053 0.059 1.1 1.2 −11.0 12.1 −9.8 10.9 −0.12 0.18 −3.5 4.6

PBE72 0.056 0.061 1.1 1.2 −11.2 12.2 −9.8 11.0 −0.13 0.19 −3.9 5.0

HTBS88 0.068 0.077 1.3 1.6 −4.0 9.9 −9.4 12.7 −0.14 0.23 −4.5 6.2

PBEfe89 0.002 0.082 0.1 1.7 −10.0 12.6 −3.3 11.2 0.15 0.22 3.4 5.0

revPBE90 0.106 0.107 2.2 2.2 −17.1 17.5 −16.0 16.4 −0.48 0.48 −12.6 12.6

RPBE91 0.119 0.119 2.4 2.4 −19.0 19.3 −17.2 17.5 −0.52 0.52 −13.2 13.2

BLYP92,93 0.118 0.120 2.5 2.5 −25.1 25.2 −19.9 20.3 −0.69 0.69 −20.3 20.3

MGGA

MGGA MS246 0.016 0.029 0.2 0.6 4.1 7.6 0.2 6.8 0.06 0.21 0.9 5.2

SCAN47 0.018 0.030 0.3 0.6 3.5 7.4 −0.4 6.5 −0.02 0.19 −0.7 4.9

revTPSS94 0.023 0.039 0.4 0.8 −0.1 9.6 −3.4 9.4 0.05 0.22 1.2 5.1

MGGA MS045 0.032 0.044 0.5 0.9 4.2 8.3 −0.9 7.3 −0.02 0.22 −1.2 5.2

MVS95 −0.008 0.043 −0.3 0.9 12.3 13.3 8.2 12.7 0.21 0.37 5.8 9.3

mBEEF48 0.033 0.050 0.5 1.0 1.4 7.9 −1.4 7.8 −0.13 0.21 −3.0 4.6

MGGA MS146 0.045 0.054 0.8 1.1 1.8 8.1 −3.1 8.0 −0.10 0.24 −3.3 5.9

TPSS96 0.045 0.054 0.9 1.1 −4.6 9.6 −6.7 10.3 −0.09 0.20 −2.3 4.9

PKZB97 0.086 0.088 1.7 1.8 −8.1 11.0 −10.0 12.4 −0.30 0.34 −7.2 8.1

hybrid-LDA

LDA079,98 (0.25) −0.036 0.037 −0.8 0.9 12.0 12.6 7.2 8.7 0.03 0.31 0.1 7.5

YSLDA079,98 (0.25) −0.041 0.041 −0.9 0.9 11.7 12.2 7.2 8.6 0.16 0.30 3.6 6.8

hybrid-GGA

YSPBEsol043 (0.25) 0.002 0.021 −0.0 0.5 6.9 8.7 1.5 6.9 −0.17 0.27 −4.0 6.0

PBEsol082,98 (0.25) −0.011 0.021 −0.3 0.5 10.3 11.1 4.4 7.9 −0.13 0.28 −3.3 6.5

PBE099,100 (0.25) 0.032 0.038 0.6 0.8 1.7 7.5 −1.8 6.9 −0.45 0.46 −10.7 10.9

B3PW9111 (0.20) 0.047 0.050 0.9 1.0 −3.0 7.5 −5.8 8.3 −0.55 0.55 −14.1 14.1

YSPBE073,101 (0.25) 0.054 0.056 1.0 1.1 −3.3 8.0 −5.9 8.6 −0.55 0.55 −12.9 12.9

B3LYP102 (0.20) 0.082 0.084 1.7 1.7 −13.3 14.5 −12.2 13.1 −0.84 0.84 −22.9 22.9

hybrid-MGGA

MGGA MS2h46 (0.09) 0.012 0.027 0.1 0.6 7.4 8.8 2.2 7.1 −0.07 0.21 −2.0 5.1

revTPSSh103 (0.10) 0.018 0.033 0.3 0.7 3.8 8.8 −1.0 8.1 −0.09 0.18 −2.0 4.1

TPSS096,98 (0.25) 0.025 0.039 0.4 0.8 6.6 9.2 0.5 8.1 −0.41 0.42 −9.3 9.4

TPSSh104 (0.10) 0.037 0.044 0.7 0.9 −0.1 7.7 −3.8 8.4 −0.22 0.25 −5.2 5.7

MVSh95 (0.25) −0.013 0.055 −0.4 1.2 19.5 20.3 11.8 16.2 −0.19 0.39 −3.4 8.7

GGA+D

PBEsol-D3105 −0.031 0.039 −0.7 0.9 5.9 10.0 2.7 7.3 0.50 0.50 11.7 11.7

PBE-D327 0.022 0.042 0.4 0.9 −4.8 8.7 −5.0 8.3 0.12 0.16 2.9 3.9

PBE-D3(BJ)106 −0.002 0.042 −0.1 0.9 −3.1 7.5 −2.1 7.4 0.20 0.21 4.8 5.2

revPBE-D3(BJ)106 −0.011 0.043 −0.4 1.0 −0.4 8.5 −1.4 8.6 0.18 0.21 4.2 5.2

revPBE-D327 0.042 0.060 0.7 1.2 −6.9 11.9 −7.4 13.4 −0.02 0.18 −0.3 4.4

PBEsol-D3(BJ)105 −0.060 0.061 −1.3 1.3 8.6 11.2 6.2 8.7 0.62 0.62 14.9 14.9

RPBE-D3107 0.063 0.070 1.2 1.4 −13.9 15.2 −10.6 14.1 −0.14 0.20 −2.9 5.0

BLYP-D327 0.043 0.070 0.7 1.4 −12.3 16.1 −10.5 15.6 −0.18 0.24 −6.6 7.7

BLYP-D3(BJ)106 −0.034 0.074 −0.8 1.6 −5.7 10.8 −1.0 10.6 0.11 0.21 0.8 6.1

MGGA+D

MGGA MS2-D346 0.002 0.030 −0.1 0.6 7.5 9.9 2.7 8.1 0.17 0.25 3.7 5.8

MGGA MS0-D346 0.019 0.040 0.2 0.8 7.6 10.5 1.5 8.9 0.08 0.21 1.5 4.9

MGGA MS1-D346 0.026 0.047 0.4 1.0 6.4 10.5 0.2 8.9 0.05 0.20 0.5 4.6

TPSS-D327 −0.004 0.045 −0.3 1.0 5.9 14.0 0.9 11.2 0.27 0.30 7.5 8.1

TPSS-D3(BJ)106 −0.042 0.049 −1.0 1.1 8.7 12.9 5.1 10.3 0.42 0.42 11.0 11.1

hybrid-GGA+D

PBE0-D327 (0.25) −0.005 0.027 −0.3 0.6 9.3 11.7 4.0 9.0 −0.16 0.23 −2.9 4.8

YSPBE0-D3(BJ)107 (0.25) −0.023 0.030 −0.6 0.7 7.8 9.9 4.4 7.7 −0.10 0.22 −0.9 5.2

PBE0-D3(BJ)106 (0.25) −0.030 0.035 −0.7 0.8 11.3 12.2 7.2 9.3 −0.07 0.24 −0.7 5.2

YSPBE0-D3107 (0.25) 0.035 0.042 0.6 0.8 0.8 7.4 −3.0 7.5 −0.41 0.41 −9.3 9.4

B3LYP-D327 (0.20) 0.018 0.047 0.2 1.0 −1.3 10.5 −3.1 11.3 −0.38 0.38 −10.2 10.4

B3LYP-D3(BJ)106 (0.20) −0.043 0.055 −1.0 1.2 4.0 8.7 4.9 8.7 −0.15 0.22 −4.6 6.4

hybrid-MGGA+D

MGGA MS2h-D346 (0.09) −0.002 0.030 −0.2 0.7 10.9 11.7 4.7 9.1 0.04 0.21 0.8 5.1

TPSSh-D3105 (0.10) −0.013 0.040 −0.5 0.9 10.6 14.5 4.1 11.1 0.16 0.19 5.0 5.7

TPSS0-D327 (0.25) −0.023 0.045 −0.7 1.1 17.6 18.7 8.6 13.4 −0.03 0.20 0.9 5.1

TPSSh-D3(BJ)108 (0.10) −0.049 0.054 −1.2 1.2 13.5 15.0 8.3 11.4 0.30 0.30 8.5 8.5

TPSS0-D3(BJ)106 (0.25) −0.064 0.068 −1.5 1.6 20.9 21.0 14.0 15.3 0.13 0.24 4.9 7.0

with LDA. A good balance is obtained with weak GGAs
like AM05 or PBEsol (see Fig. 1) that are among the
most accurate for lattice constants. Concerning the co-
hesive energy Ecoh of solids, LDA overestimates the val-
ues. Since an isolated atom contains much more density

gradient than the solid, then a GGA (w.r.t. LDA) lowers
the total energy of the atom by a larger amount than for
the solid, thus reducing the overestimation of Ecoh. In
this respect, functionals with a medium Fxc like PBE do
a pretty good job. GGAs with a strong Fxc like B88 or
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FIG. 1. GGA enhancement factors Fx (upper panel) and Fc

(lower panel, for rs = 1 bohr) plotted as a function of s.

RPBE overcorrect LDA and lead to overestimation and
underestimation of a0 and Ecoh, respectively. LDA over-
estimates the atomization energies of molecules as well,
and, using the same argument as for Ecoh, a GGA low-
ers (w.r.t. LDA) the total energy more for the atoms
than for the molecule. However, in this case, function-
als with a strong enhancement factor (e.g., B88) are the
best performing GGAs, while weaker GGAs reduce only
partially the LDA overestimation. One may ask the fol-
lowing question: Why is it necessary to use a Fxc that
is stronger for the atomization energy of molecules than
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FIG. 2. MGGA enhancement factors Fxc plotted as a function
of s for three values of α (left panels) and as a function of α
for three values of s (right panels). rs is kept fixed to 1 bohr.
The Fxc for LDA is also shown.

for the cohesive energy of solids? The reason is that
the degrees of ρ-inhomogeneity in the solid and atom
(both used to calculate Ecoh) are very different, such
that the appropriate difference (between the solid and
atom) in the lowering of the total energy (w.r.t. LDA)
is already achieved with a weak Fxc. Since the atom-
ization energy of molecules requires calculations on the
atoms and molecule, which have more similar inhomo-
geneities (slightly larger in atoms than in molecule), then
a stronger Fxc is required to achieve the desired difference
(between the atoms and the molecule) in the lowering of
the total energy (w.r.t. LDA).
The above trends hold for GGA functionals that are

conventional in the sense that Fxc does not exhibit a
strange behavior like oscillations or a suddenly large slope
∂Fxc/∂s in a small region of s. More unconventional
forms for Fxc are usually obtained when Fxc contains
empirical parameters that are determined by a fit of ref-



6

erence data. The problem of such functionals is a re-
duced degree of transferability and clear failures in par-
ticular cases. An example of such a functional is given
by the GGA exchange HTBS88 (shown in Fig. 1) that
was an attempt to construct a functional which leads to
good results for both the lattice constants of solids and
atomization energies of molecules: FHTBS

x = FWC
x for

s < 0.6 (weak GGA for s values relevant for solids) and
FHTBS
x = FRPBE

x for s > 2.6 (strong GGA for s values
relevant for finite systems), while a linear combination
of WC and RPBE is used for s ∈ [0.6, 2.6]. The re-
sults were shown to be very good except for systems con-
taining alkali metals whose lattice constants are largely
overestimated,88 which is due to the large values of s
in the core-valence separation region of the alkali metals
(see Ref. 114).

Concerning the correlation enhancement factor Fc (see
lower panel of Fig. 1), we just note that for LYP it be-
haves differently from the others and that the LDA limit
is not recovered, since LYP was designed to reproduce
the correlation energy of the helium atom and not of a
constant electron density.93

In Fig. 2, the total enhancement factor Fxc of MGGAs
is plotted as a function of s for three values of α (on the
left panels) and as a function of α for three values of s (on
the right panels). The three values of α correspond to re-
gions dominated by a single orbital (α = 0), of constant
electron density (α = 1), and of overlap of closed shells
(α ≫ 5).18 A few comments can be made. As mentioned
above, it can happen for parameterized functionals, like
the Minnesota suite of functionals,115 to have an enhance-
ment factor that shows features like bumps or oscillations
that are unphysical and may lead to problems of transfer-
ability of the functional. Furthermore, such features lead
to numerical noise.116,117 The mBEEF is such a highly
parameterized functional, however, since its parameters
were fitted with a regularization procedure48 the bump
visible in Fig. 2 is moderate. A particularity of the SCAN
and MVS enhancement factors is to be much more a de-
creasing function of s and α than the other functionals.
Note also the very weak variation of Fxc with respect
to α for the TPSS, revTPSS, and MGGA MS2 function-
als. For MGGA functionals, it is maybe more difficult
than for GGAs to establish simple relations between the
shape of Fxc and the trends in the results. Anyway, it is
clear that the additional dependency on the KE density
leads to more flexibility and therefore potentially more
universal functionals. Finally, we mention Refs. 18 and
118, where it was argued that at small s the enhance-
ment factor should be a decreasing function of α in order
to obtain a binding between weakly interacting systems,
which is the case for MGGA MS2, MVS, and SCAN as
shown in Fig. 2.

The hybrid functionals can be split into two groups
according to the type of HF exchange that is used: the
ones that use the unscreened HF exchange and those us-
ing only the SR part that was obtained by means of the
screened Yukawa potential (details of the implementation

can be found in Ref. 73). The screened hybrid functionals
in Table II are those whose name starts with YS (Yukawa
screened), and among them, YSPBE073 is based on the
popular functional of Heyd et al.13,101 HSE06 and dif-
fers from it by the screening (Yukawa in YSPBE0 versus
error function in HSE06) and the way the screening is ap-
plied in the semilocal exchange (via the exchange hole13

or via the GGA enhancement factor119). As noticed in
Ref. 120, the error function- and Yukawa-screened po-
tentials are very similar if the screening parameter in the
Yukawa potential is 3/2 larger than in the error func-
tion. In Ref. 73 it was shown that HSE06 and YSPBE0
lead to basically the same band gaps, while non-negligible
differences were observed for the lattice constants. A
comparison between the YSPBE0 results obtained in the
present work and the HSE06 results reported in Ref. 43
shows that the YSPBE0 lattice constants are in most
cases slightly larger by 0.01-0.02 Å, while the atomiza-
tion energies can differ by 0.05-0.2 eV/atom. Similarly,
YSPBEsol0 uses the same underlying semilocal func-
tional (PBEsol94) and fraction of HF exchange (0.25) as
HSEsol (Ref. 43). For all screened hybrid functionals
tested in this work, a screening parameter λ = 0.165
bohr−1 was used, which is 3/2 of the value used in
HSE06 with the error function.101 The fraction αx of
HF exchange (indicated in Table II) varies between 0.09
(MGGA MS2h) and 0.25 (e.g., PBE0). Among the un-
screened hybrid functionals in Table II, the two most
well-known are B3LYP11,102 and PBE0.99,100 Note that
in Refs. 74, 121, and 122, the use of hybrid functionals
for metals has been severely criticized, since qualitatively
wrong results (e.g., incorrect prediction for the ground
state or largely overestimated magnetic moment) were
obtained for simple transition metals like Fe or Pd.

The two variants of atom-pairwise dispersion correc-
tion [Eq. (4)] that are considered were proposed by
Grimme and co-workers.27,106 The two schemes, which
use the position of atoms to calculate the dispersion co-
efficients CAB

n , differ in the damping function fdamp
n . In

the first scheme (DFT-D3, Ref. 27), the dispersion en-
ergy EPW

c,disp goes to zero when RAB → 0, while with the

Becke-Johnson (BJ) damping function123 that is used in
DFT-D3(BJ),106 EPW

c,disp goes to a nonzero value, which

is theoretically correct.124 All DFT-D3/D3(BJ) calcula-
tions were done with and without the three-body non-
additive dispersion term,27 which has little influence on
the results for the strongly bound and rare-gas solids.
For the layered compounds, however, the effect is larger
since adding the three-body term increases the equilib-
rium lattice constant c0 by ∼ 0.1 Å and decreases the in-
terlayer binding energy by∼ 10 meV/atom, which for the
latter quantity leads to better agreement with the refer-
ences results in most cases. In the following, only the re-
sults including the three-body term will be shown. Note
that in the case of YSPBE0-D3/D3(BJ), the parameters
of the D3/D3(BJ) corrections are those that were pro-
posed for the HSE06 functional. The DFT-D3/D3(BJ)
dispersion energies were evaluated by using the package
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provided by Grimme107 that supports periodic boundary
conditions.125,126

IV. RESULTS AND DISCUSSION

A. Strongly bound solids

Table II shows the mean error (ME), mean absolute
error (MAE), mean relative error (MRE), and mean ab-
solute error (MARE) on the equilibrium lattice constant
a0, bulk modulus B0, and cohesive energy Ecoh for the 44
strongly bound solids. Most of the results are also shown
graphically in Figs. 3, and 4, which provide a convenient
way to compare the performance of the functionals. The
values of a0, B0, and Ecoh for all solids and function-
als can be found in the supplementary material (SM).127

Since the trends in the MRE/MARE are similar as for
the ME/MAE, the discussion of the results will be based
mainly on the ME and MAE.
We start with the results for the lattice constant and

bulk modulus. These two properties are quite often de-
scribed with the same accuracy by a functional, but with
opposite trends (i.e., an underestimation of a0 is accom-
panied by an overestimation of B0 or vice-versa), as seen
in Figs. S1-S62 of the SM where the curves for the rela-
tive error for a0 (left panel) and B0 (middle panel) are
approximately like mirror images. The smallest MAE
for a0, 0.021 Å, is obtained by the hybrid-GGA function-
als YSPBEsol0 and PBEsol0, which is in line with the
conclusion of Ref. 43 that combining PBEsol with 25%
of HF exchange improves over PBEsol (one of the most
accurate GGA functionals for this quantity), PBE, and
HSE06 (≈YSPBE0). YSPBEsol0 performs rather well
also for B0 with a MAE of 8.7 GPa, but is not the best
method since a couple of other functionals lead to a MAE
around 7.5 GPa, like for example WC, MGGA MS2,
SCAN, PBE0, and PBE-D3(BJ). Note that four func-
tionals (PBEsol, MGGA MS2, SCAN, and YSPBEsol0)
lead to a MARE for B0 below 7%. The functionals
which perform very well for both a0 (MAE not larger
than ∼ 0.03 Å) and B0 (MAE below 9 GPa) are the
GGAs WC, SOGGA, PBEsol, and SG4, the MGGAs
MGGA MS2 and SCAN, and the hybrids YSPBEsol0
and MGGA MS2h.
Turning now to the results for the cohesive energy

Ecoh, we can see that the MAE is below ∼ 0.2 eV/atom
for a dozen of functionals, e.g., the GGAs PW91,
PBE, and PBEalpha, the MGGA SCAN, the hybrid-
MGGA revTPSSh, and a few DFT-D3/D3(BJ) meth-
ods. The MAE obtained with YSPBEsol0 and PBEsol0
(the best for the lattice constant) are slightly larger
(∼ 0.27 eV/atom).
Overall, by considering the results for the three proper-

ties (a0, B0, and Ecoh), the recent MGGAs MGGA MS2
and SCAN seem to be the most accurate functionals.
They are among the very best functionals for B0 and
Ecoh, and only YSPBEsol0, PBEsol0, and SG4 are more

accurate for a0. Other functionals which are also con-
sistently good for the three properties are the GGAs
WC, PBEsol, PBEalpha, PBEint, and SG4, the hy-
brids YSPBEsol0, MGGA MS2h, and revTPSSh, and
the dispersion-corrected PBE-D3 and PBE-D3(BJ).

It does not seem to be always necessary to use a
functional with an atom-pairwise dispersion term [D3 or
D3(BJ)] for the strongly bound solids. Actually, adding
a dispersion term does not systematically improve the re-
sults (we remind that adding a dispersion term should, in
principle, shorten bond lengths since the London disper-
sion interactions are attractive). This is for instance the
case with TPSS, TPSSh, and TPSS0, for which the addi-
tion of D3(BJ) strongly overcorrects the overestimation
of a0, leading to large negative ME (and large positive
ME for B0). In the case of PBEsol (very small ME for
a0 and B0), adding D3 or D3(BJ) can only deteriorate
the results since this functional alone does not overesti-
mate the lattice constant on average. However, a clear
improvement is obtained with PBE, revPBE, and BLYP.
We note that none of these dispersion-corrected meth-
ods lead, for instance, to MAE below 0.040 Å for a0 and
8 GPa for B0 at the same time. Furthermore, the MAE
for B0 is rather large (above 10 GPa) for many of the dis-
persion corrected functionals, including PBE0-D3, which
leads to a large MAE of 11.7 GPa despite its MAE for
a0 is only 0.027 Å.

Regarding the hybrid functionals, it is instructive to
look at how the MRE and MARE for a0 and Ecoh vary
as functions of the fraction αx of HF exchange in Eq. (2).
This is shown in Fig. 5 for most screened and unscreened
hybrid functionals without D3 term, where αx is varied
between 0 and 0.5 with steps of 0.05. The trends ob-
served in Fig. 5(a) for the MRE show two different be-
haviors. For the LDA-based and YSPBEsolh function-
als, the value of the MRE for a0 goes in the direction
of the positive values when αx is increased, while the
opposite is observed with the other functionals. Interest-
ingly, in most cases except PBEsolh and MVSh, adding
a fraction of HF exchange reduces the magnitude of the
MRE with respect to the case αx = 0. For the MARE
[Fig. 5(b)] the main observations are the following: the
smallest MARE for a0 and Ecoh are obtained simultane-
ously with more or less the same value of αx in the case
of PBEsolh, YSPBEsolh, revTPSSh, MGGA MS2h, and
SCANh. This optimal αx is ∼ 0 for MGGA MS2h and
SCANh and ∼ 0.15 for the others. For MGGA MS2h and
SCANh, it can be argued that since MGGA functionals
are more nonlocal than LDA/GGA (in the sense that the
KE density t is probably a truly nonlocal functional of ρ),
then less HF exchange is required when combined with a
MGGA. For all other functionals except MVSh, the op-
timal αx is larger for a0 than for Ecoh. The exception
observed with MVSh should be related to the behavior
of its enhancement factor Fxc, which has by far the most
negative slope as function of s and α, as noticed above
in Fig. 2.

A few words about the functionals that were not con-
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FIG. 3. MRE of a0 versus MRE of Ecoh for the (a) LDA and GGA, (b) MGGA, (c) hybrid, and (d) DFT-D3(BJ) functionals.

sidered in this work should also be added, and in partic-
ular about the so-called nonlocal van der Waals (vdW)
functionals,28 which include a term of the form given
by Eq. (5). The first of these functionals which were
shown to be, at least, as accurate as PBE for strongly
bound solids, namely optPBE-vdW, optB88-vdW, and
optB86b-vdW, were proposed in Refs. 34 and 64. In
Refs. 38, 40, 64, and 69 it was shown that compared to
PBE, optB88-vdW and optPBE-vdW are slightly better
for the cohesive energy, while optB86b-vdW is slightly
better for the lattice constant. In order to make the
SCAN functional more accurate for the treatment of
weak interactions, Peng et al.128 proposed to add a refit-
ted version of the nonlocal vdW functional rVV10.31,32

For a test set of 50 solids, SCAN+rVV10 was shown to
perform similarly as SCAN for the lattice constant, but
to increase by about 1% the MARE for the cohesive en-
ergy.

The detailed results for every solid and functional are

shown in the SM,127 and Fig. 6 gathers the results for
some of the most accurate functionals compared to the
standard PBE. In order to avoid a lengthy discussion,
only the most interesting observations are now discussed.
By looking at Figs. S1-S62, which show the MRE (in %)
for the lattice constant, bulk modulus, and cohesive en-
ergy, we can immediately see that for many functionals,
some of the largest MRE for a0 and B0 are found for
alkali metals (K, Rb, and Cs), alkali-earth metals (Ca,
Sr, and Ba), and the transition metal V. For these solids,
the MRE for a0 increases with the nuclear charge and can
reach 4%-8% for Cs. Such large MRE for a0 are negative
for LDA (accompanied by an overbinding) and positive
(underbinding) for several GGAs like revPBE or HTBS
and, quite interestingly, all (hybrid)-MGGAs. Such very
large overestimations for the heavy alkali metals with
TPSS and revTPSS were already reported.38,52,94,129 As
argued in Ref. 129, the alkali metals are very soft (B0 is
below 5 GPa) and have a large polarizable core, such that
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FIG. 4. MARE of a0 versus MARE of Ecoh for the (a) LDA and GGA, (b) MGGA, (c) hybrid, and (d) DFT-D3(BJ) functionals.

the long-range core-core dispersion interactions, missing
in non-dispersion corrected functionals, should have a
non-negligible effect on the results. Therefore, it is maybe
for the right reason that a semilocal/hybrid functional,
in particular if it is constructed from first-priciples, un-
derbinds the alkali metals. Adding a D3/D3(BJ) term
reduces the error for the alkali metals, but overcorrects
strongly in some cases [e.g., BLYP-D3(BJ) in Fig. S47].
The results with the DFT-D3/D3(BJ) methods could
easily be improved by tuning the coefficients CAB

n in
Eq. (4). In the case of PBE-D3, for instance, it would
be possible to strongly reduce the errors involving the Li
atoms by using smaller value for the coefficients, while for
all systems with the diamond or zincblende structures,
larger coefficients would be required. Such underbinding
with the semilocal/hybrid functionals is not observed in
the case of the similar alkali-earth metals, which should
be due to the following reasons: they are slightly less van
der Waals like (B0 is above 10 GPa) and the additional

valence s-electron should reduce the inhomogeneity in ρ,
making the semilocal functionals more appropriate. The
ionic solids LiX and NaX are systems for which the MRE
can also very large.
Looking at the trends for the 3d, 4d, and 5d transi-

tion metals, most functionals show the same behavior
for the lattice constant; from left to right within a row
(e.g., from Nb to Ag), the MRE goes in the direction
of the positive values.38,50,62 This behavior is the most
pronounced for the strong GGAs like revPBE or BLYP
[also if D3/D3(BJ) is included], while it can be strongly
reduced with some of the MGGA and hybrid functionals,
similarly as RPA does.38

A summary of this section on the strongly bound
solids is the following. Among the tested functionals,
about 12 of them are in the group of the best per-
forming for all three properties (a0, B0, and Ecoh) at
the same time. This includes GGAs (WC, PBEsol,
PBEalpha, PBEint, and SG4), MGGAs (MGGA MS2
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FIG. 5. (a) MRE of a0 versus MRE of Ecoh and (b) MARE
of a0 versus MARE of Ecoh for hybrid functionals with the
fraction of HF exchange αx varied between 0 and 0.5 with
steps of 0.05. The lines connecting the data points are guide
to the eyes.

and SCAN), hybrids (YSPBEsol0, MGGA MS2h, and
revTPSSh), and dispersion-corrected methods [PBE-
D3/D3(BJ)]. Therefore, as also shown more clearly in
Figs. 3 and 4, for every type of approximations except
LDA, there are a few functionals belonging to the group
of the best ones. Furthermore, we have also noticed that
MGGA MS2 and SCAN give the best results when they
are not mixed with HF exchange, which is a very in-
teresting property from the practical point of view since
the calculation of the HF exchange is very expensive for
solids.
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FIG. 6. Relative error (in %) in the calculated lattice con-
stant (left panel) and cohesive energy (right panel) for the 44
strongly bound solids.

B. Weakly bound solids

In this section, the results for rare-gas solids (Ne,
Ar, and Kr) and layered solids (graphite and h-BN)
are discussed. Rare-gas dimers and solids, which are
bound by the dispersion interactions, have been com-
monly used for the testing of theoretical methods (see
Refs. 126, 130, 133, 137–139 for the most recent works).
The same is true for graphite and h-BN which are stacks
of weakly bound hexagonal layers.65–67,78,132,135,140,141

As mentioned in Sec. II, the results for such weakly
bound systems are more sensitive to self-consistency
effects than for the strongly bound solids. Figure 7
shows the example for Ar, where the MGGA MS2 total-
energy curves were obtained with four different sets of
orbitals/density. Actually, this is a particularly bad case
where the spread in the values for a0 (5.4-5.7 Å) is two
orders of magnitude larger than for most strongly bound
solids and the spread for Ecoh is of the same magnitude
as Ecoh itself. We observed that in general the spread in
a0 is larger for functionals which lead to shallow mini-
mum. This shows that there is some non-negligible de-
gree of uncertainty in the results for the MGGA and hy-
brid functionals of Tables III and IV that were obtained
non-self-consistently with PBE orbitals/density instead
of self-consistently as it should be. Thus, for these func-
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TABLE III. Equilibrium lattice constant a0 (in Å) and cohesive energy Ecoh (in meV/atom and with opposite sign) of rare-gas
solids calculated from various functionals and compared to reference [CCSD(T), very close to experiment] as well as other
methods. The results for the LDA, GGA, and GGA+D functionals were obtained from self-consistent calculations, while the
PBE orbitals/density were used for the other functionals. Within each group, the functionals are ordered by increasing overall
error. For hybrid functionals, the fraction αx of HF exchange is indicated in parenthesis.

Ne Ar Kr
Functional a0 Ecoh a0 Ecoh a0 Ecoh
LDA

LDA79 3.86 (-10%) 87 (234%) 4.94 (-6%) 138 (57%) 5.33 (-5%) 169 (39%)

GGA

PBEalpha85 4.39 (2%) 23 (-10%) 5.59 (6%) 33 (-62%) 5.97 (7%) 43 (-65%)

SOGGA81 4.52 (5%) 23 (-11%) 5.77 (10%) 29 (-67%) 6.14 (10%) 35 (-71%)

RPBE91 4.74 (10%) 26 (0%) 6.25 (19%) 28 (-68%) 6.83 (22%) 29 (-76%)

PBE72 4.60 (7%) 19 (-26%) 5.96 (13%) 23 (-73%) 6.42 (15%) 27 (-78%)

HTBS88 4.80 (12%) 23 (-12%) 6.34 (21%) 25 (-72%) 6.93 (24%) 26 (-79%)

PW9187 4.62 (7%) 47 (82%) 6.05 (15%) 49 (-44%) 6.55 (17%) 51 (-58%)

PBEsol82 4.70 (9%) 12 (-54%) 5.88 (12%) 17 (-81%) 6.13 (10%) 23 (-81%)

PBEint84 4.78 (11%) 14 (-46%) 6.21 (18%) 17 (-81%) 6.67 (19%) 20 (-84%)

RGE286 4.92 (14%) 14 (-45%) 6.43 (23%) 16 (-81%) 6.99 (25%) 18 (-85%)

WC80 4.87 (13%) 12 (-54%) 6.34 (21%) 14 (-84%) 6.86 (23%) 16 (-87%)

PBEfe89 3.88 (-10%) 99 (280%) 5.00 (-5%) 152 (73%) 5.42 (-3%) 184 (51%)

SG459 5.25 (22%) 9 (-67%) > 6.6 (> 26%) > 7.1 (> 27%)

revPBE90 5.31 (24%) 7 (-74%) > 6.6 (> 26%) > 7.1 (> 27%)

BLYP92,93 > 5.6 (> 31%) > 6.6 (> 26%) > 7.1 (> 27%)

AM0583 > 5.6 (> 31%) > 6.6 (> 26%) > 7.1 (> 27%)

MGGA

MGGA MS246 4.31 (0%) 26 (1%) 5.48 (4%) 30 (-66%) 5.96 (6%) 45 (-63%)

MGGA MS146 4.34 (1%) 26 (0%) 5.58 (6%) 27 (-69%) 6.10 (9%) 40 (-67%)

MGGA MS045 4.16 (-3%) 40 (53%) 5.41 (3%) 46 (-47%) 5.89 (5%) 61 (-50%)

SCAN47 4.03 (-6%) 54 (107%) 5.31 (1%) 61 (-30%) 5.74 (2%) 72 (-41%)

PKZB97 4.66 (9%) 27 (2%) 6.20 (18%) 26 (-70%) 6.76 (21%) 30 (-75%)

MVS95 4.02 (-6%) 59 (125%) 5.41 (3%) 56 (-37%) 5.79 (3%) 69 (-43%)

TPSS96 4.92 (15%) 11 (-59%) 6.45 (23%) 11 (-87%) 6.98 (25%) 15 (-88%)

mBEEF48 3.92 (-9%) 134 (416%) 5.26 (0%) 142 (62%) 5.75 (3%) 161 (32%)

revTPSS94 5.05 (17%) 7 (-72%) > 6.6 (> 26%) 7.04 (26%) 12 (-90%)

hybrid-LDA

LDA079,98 (0.25) 4.00 (-7%) 51 (96%) 5.18 (-1%) 71 (-19%) 5.57 (0%) 90 (-26%)

YSLDA079,98 (0.25) 3.96 (-8%) 60 (131%) 5.12 (-2%) 86 (-2%) 5.51 (-1%) 108 (-11%)

hybrid-GGA

PBE099,100 (0.25) 4.61 (7%) 11 (-57%) 5.96 (14%) 15 (-83%) 6.41 (15%) 19 (-84%)

PBEsol082,98 (0.25) 4.66 (8%) 7 (-75%) 5.79 (10%) 12 (-86%) 6.06 (8%) 20 (-84%)

YSPBE073,101 (0.25) 4.76 (11%) 10 (-60%) 6.21 (18%) 14 (-84%) 6.69 (19%) 17 (-86%)

YSPBEsol043 (0.25) 4.93 (15%) 5 (-81%) 6.26 (19%) 8 (-91%) 6.55 (17%) 11 (-91%)

B3LYP102 (0.20) > 5.6 (> 31%) > 6.6 (> 26%) > 7.1 (> 27%)

B3PW9111 (0.20) > 5.6 (> 31%) > 6.6 (> 26%) > 7.1 (> 27%)

hybrid-MGGA

MGGA MS2h46 (0.09) 4.31 (0%) 23 (-11%) 5.48 (4%) 27 (-70%) 5.97 (7%) 41 (-67%)

MVSh95 (0.25) 4.05 (-6%) 40 (55%) 5.44 (4%) 40 (-55%) 5.83 (4%) 52 (-58%)

TPSSh104 (0.10) 4.93 (15%) 8 (-67%) 6.46 (23%) 9 (-90%) 6.98 (25%) 13 (-90%)

TPSS096,98 (0.25) 4.96 (15%) 5 (-80%) 6.47 (23%) 6 (-93%) 6.98 (25%) 9 (-92%)

revTPSSh103 (0.10) 5.06 (18%) 5 (-79%) > 6.6 (> 26%) 7.03 (26%) 10 (-92%)

GGA+D

revPBE-D3(BJ)106 4.80 (12%) 25 (-2%) 5.67 (8%) 82 (-7%) 5.96 (7%) 126 (3%)

PBEsol-D3(BJ)105 4.59 (7%) 22 (-16%) 5.46 (4%) 71 (-19%) 5.69 (2%) 116 (-5%)

revPBE-D327 4.73 (10%) 25 (-4%) 5.64 (7%) 68 (-23%) 5.85 (5%) 109 (-11%)

PBE-D3(BJ)106 4.46 (4%) 37 (42%) 5.49 (5%) 86 (-2%) 5.85 (5%) 117 (-4%)

PBEsol-D3105 4.53 (5%) 29 (13%) 5.37 (2%) 61 (-31%) 5.58 (0%) 102 (-17%)

BLYP-D327 4.25 (-1%) 16 (-38%) 5.35 (2%) 70 (-21%) 5.70 (2%) 127 (4%)

PBE-D327 4.39 (2%) 46 (78%) 5.58 (6%) 83 (-6%) 5.90 (5%) 113 (-8%)

BLYP-D3(BJ)106 4.58 (7%) 3 (-89%) 5.37 (2%) 71 (-19%) 5.67 (1%) 134 (10%)

RPBE-D3107 4.49 (4%) 52 (101%) 5.66 (8%) 91 (3%) 6.03 (8%) 116 (-5%)

MGGA+D

TPSS-D3(BJ)106 4.69 (9%) 28 (7%) 5.67 (8%) 78 (-11%) 5.97 (7%) 118 (-3%)

TPSS-D327 4.53 (6%) 36 (39%) 5.69 (8%) 76 (-14%) 5.99 (7%) 111 (-9%)

MGGA MS2-D346 4.19 (-3%) 55 (113%) 5.43 (3%) 83 (-6%) 5.91 (5%) 105 (-14%)

MGGA MS1-D346 4.14 (-4%) 60 (132%) 5.37 (2%) 96 (9%) 5.83 (4%) 121 (-1%)

MGGA MS0-D346 4.10 (-5%) 70 (170%) 5.38 (2%) 98 (11%) 5.85 (4%) 120 (-2%)

hybrid-GGA+D

PBE0-D3(BJ)106 (0.25) 4.45 (4%) 28 (7%) 5.46 (4%) 82 (-7%) 5.79 (3%) 121 (-1%)

B3LYP-D327 (0.20) 4.25 (-1%) 23 (-10%) 5.30 (1%) 68 (-23%) 5.61 (0%) 129 (5%)

YSPBE0-D3(BJ)107 (0.25) 4.62 (8%) 23 (-11%) 5.66 (8%) 75 (-15%) 5.98 (7%) 116 (-5%)

PBE0-D327 (0.25) 4.39 (2%) 36 (40%) 5.45 (4%) 74 (-16%) 5.71 (2%) 114 (-6%)

B3LYP-D3(BJ)106 (0.20) 4.39 (2%) 12 (-52%) 5.32 (1%) 78 (-12%) 5.65 (1%) 135 (11%)

YSPBE0-D3107 (0.25) 4.46 (4%) 33 (25%) 5.75 (9%) 60 (-32%) 6.21 (11%) 74 (-39%)

hybrid-MGGA+D

TPSSh-D3(BJ)108 (0.10) 4.69 (9%) 25 (-3%) 5.65 (8%) 79 (-10%) 5.94 (6%) 122 (0%)

TPSS0-D327 (0.25) 4.53 (5%) 29 (13%) 5.64 (7%) 66 (-25%) 5.78 (3%) 108 (-12%)

TPSS0-D3(BJ)106 (0.25) 4.66 (8%) 21 (-18%) 5.57 (6%) 70 (-21%) 5.81 (4%) 112 (-8%)

TPSSh-D3105 (0.10) 4.55 (6%) 33 (28%) 5.70 (9%) 70 (-20%) 5.91 (6%) 108 (-12%)

MGGA MS2h-D346 (0.09) 4.18 (-3%) 52 (100%) 5.44 (4%) 79 (-10%) 5.91 (5%) 101 (-17%)

Previous works

optB88-vdW34 (Ref. 130) 4.24 (-1%) 59 (127%) 5.24 (0%) 143 (62%) 5.63 (1%) 181 (48%)

C09x-vdW131 (Ref. 130) 4.50 (5%) 62 (138%) 5.33 (2%) 128 (45%) 5.64 (1%) 163 (34%)

rVV1031,32 (Ref. 130) 4.19 (-2%) 49 (88%) 5.17 (-2%) 117 (33%) 5.53 (-1%) 162 (33%)

rev-vdW-DF2132 (Ref. 133) 4.43 (3%) 30 (15%) 5.35 (2%) 90 (2%) 5.71 (2%) 120 (-2%)

PBE+TS26 (Ref. 134) 4.42 (3%) 43 (65%) 5.51 (5%) 83 (-6%) 5.90 (5%) 97 (-20%)
RPA (Ref. 14) 4.5 (5%) 17 (-35%) 5.3 (1%) 83 (-6%) 5.7 (2%) 112 (-8%)
Expt. (Ref. 76) 4.29 26 5.25 88 5.63 122
CCSD(T) (Ref. 76) 4.30 26 5.25 88 5.60 122
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TABLE IV. Equilibrium lattice constant c0 (in Å) and interlayer binding energy Eb (in meV/atom and with opposite sign)
of layered solids calculated from various functionals and compared to reference (RPA) as well as other methods. The results
for the LDA, GGA, and GGA+D functionals were obtained from self-consistent calculations, while the PBE orbitals/density
were used for the other functionals. Within each group, the functionals are ordered by increasing overall error. For hybrid
functionals, the fraction αx of HF exchange is indicated in parenthesis.

Graphite h-BN
Functional c0 Eb c0 Eb
LDA

LDA79 6.7 (0%) 24 (-50%) 6.5 (-3%) 28 (-28%)

GGA

PBEfe89 7.0 (5%) 21 (-57%) 6.9 (3%) 24 (-39%)

SOGGA81 7.3 (9%) 4 (-91%) 7.0 (5%) 7 (-83%)

PBEsol82 7.3 (9%) 4 (-92%) 7.0 (6%) 6 (-84%)

PBEalpha85 7.6 (14%) 4 (-91%) 7.3 (10%) 6 (-84%)

PBE72
∼ 8.8 (31%) 1 (-97%) ∼ 8.5 (28%) 2 (-94%)

PW9187 ∼ 9.3 (38%) 2 (-95%) ∼ 9.0 (36%) 3 (-93%)

PBEint84 ∼ 9.3 (39%) 1 (-98%) ∼ 9.0 (35%) 2 (-96%)

WC80
∼ 9.7 (45%) 1 (-99%) ∼ 9.5 (42%) 1 (-97%)

RPBE91
∼ 9.8 (46%) 1 (-97%) ∼ 9.8 (47%) 2 (-96%)

HTBS88 ∼ 9.9 (48%) 1 (-98%) ∼ 9.9 (49%) 2 (-96%)

RGE286 ∼ 10.0 (49%) 1 (-99%) ∼ 10.0 (49%) 1 (-97%)

SG459 ∼ 11.0 (64%) 0 (-99%) ∼ 11.0 (65%) 1 (-98%)

revPBE90
∼ 11.3 (69%) 0 (-99%) ∼ 11.3 (70%) 1 (-98%)

AM0583 > 19 (> 176%) > 19 (> 188%)

BLYP92,93 > 19 (> 176%) > 19 (> 188%)

MGGA

MVS95 6.6 (-1%) 32 (-34%) 6.4 (-4%) 38 (-4%)

SCAN47 6.9 (3%) 20 (-59%) 6.8 (2%) 21 (-46%)

mBEEF48 7.8 (16%) 13 (-72%) 7.7 (16%) 14 (-63%)

MGGA MS246 7.2 (7%) 8 (-83%) 7.0 (5%) 10 (-74%)

MGGA MS045 7.4 (11%) 8 (-83%) 7.3 (9%) 9 (-76%)

MGGA MS146 7.8 (16%) 5 (-90%) 7.7 (16%) 6 (-86%)

PKZB97 7.9 (19%) 4 (-91%) 7.9 (18%) 5 (-88%)

revTPSS94 > 19 (> 176%) ∼ 9.8 (47%) 1 (-98%)

TPSS96 > 19 (> 176%) ∼ 9.9 (49%) 1 (-98%)

hybrid-LDA

YSLDA079,98 (0.25) 7.0 (4%) 15 (-70%) 6.7 (1%) 18 (-53%)

LDA079,98 (0.25) 7.1 (5%) 12 (-74%) 6.8 (2%) 16 (-60%)

hybrid-GGA

PBEsol082,98 (0.25) 7.3 (9%) 5 (-90%) 7.0 (5%) 7 (-81%)

YSPBEsol043 (0.25) ∼ 7.8 (17%) 1 (-97%) ∼ 7.3 (10%) 3 (-92%)

PBE099,100 (0.25) ∼ 8.4 (25%) 2 (-97%) ∼ 8.0 (20%) 3 (-94%)

YSPBE073,101 (0.25) ∼ 9.3 (39%) 1 (-98%) ∼ 9.0 (36%) 1 (-97%)

B3LYP102 (0.20) > 19 (> 176%) > 19 (> 188%)

B3PW9111 (0.20) > 19 (> 176%) > 19 (> 188%)

hybrid-MGGA

MVSh95 (0.25) 6.7 (0%) 25 (-48%) 6.5 (-3%) 31 (-22%)

MGGA MS2h46 (0.09) 7.2 (7%) 8 (-83%) 7.0 (5%) 10 (-74%)

revTPSSh103 (0.10) > 19 (> 176%) ∼ 9.4 (41%) 1 (-98%)

TPSSh104 (0.10) > 19 (> 176%) ∼ 9.8 (48%) 1 (-98%)

TPSS096,98 (0.25) > 19 (> 176%) ∼ 9.6 (44%) 1 (-98%)

GGA+D

RPBE-D3107 6.8 (1%) 39 (-19%) 6.7 (0%) 39 (0%)

PBE-D3(BJ)106 6.8 (2%) 43 (-10%) 6.7 (0%) 44 (12%)

PBEsol-D3105 6.7 (0%) 38 (-20%) 6.6 (-2%) 42 (8%)

PBE-D327 7.1 (5%) 39 (-19%) 6.8 (3%) 41 (5%)

PBEsol-D3(BJ)105 6.7 (-1%) 52 (8%) 6.5 (-3%) 53 (36%)

revPBE-D327 6.6 (-2%) 53 (10%) 6.5 (-2%) 52 (33%)

BLYP-D327 6.8 (1%) 59 (22%) 6.7 (0%) 58 (49%)

revPBE-D3(BJ)106 6.5 (-4%) 67 (41%) 6.3 (-5%) 69 (77%)

BLYP-D3(BJ)106 6.6 (-2%) 70 (46%) 6.5 (-3%) 71 (83%)

MGGA+D

MGGA MS1-D346 6.9 (2%) 46 (-4%) 6.8 (2%) 44 (12%)

MGGA MS2-D346 6.8 (2%) 45 (-6%) 6.6 (-1%) 46 (17%)

MGGA MS0-D346 7.0 (5%) 42 (-13%) 6.8 (3%) 42 (7%)

TPSS-D327 6.7 (0%) 47 (-1%) 6.5 (-2%) 50 (28%)

TPSS-D3(BJ)106 6.5 (-3%) 58 (21%) 6.3 (-5%) 60 (53%)

hybrid-GGA+D

YSPBE0-D3(BJ)107 (0.25) 7.0 (4%) 46 (-5%) 6.8 (2%) 46 (19%)

PBE0-D327 (0.25) 6.9 (2%) 41 (-14%) 6.7 (0%) 45 (16%)

PBE0-D3(BJ)106 (0.25) 6.7 (0%) 50 (3%) 6.5 (-2%) 51 (31%)

B3LYP-D327 (0.20) 6.8 (2%) 50 (5%) 6.7 (1%) 54 (38%)

YSPBE0-D3107 (0.25) 7.3 (9%) 30 (-36%) 7.1 (6%) 30 (-23%)

B3LYP-D3(BJ)106 (0.20) 6.7 (-1%) 62 (29%) 6.5 (-3%) 64 (64%)

hybrid-MGGA+D

MGGA MS2h-D346 (0.09) 6.8 (2%) 45 (-7%) 6.6 (-1%) 46 (18%)

TPSSh-D3105 (0.10) 6.7 (0%) 47 (-2%) 6.5 (-2%) 51 (30%)

TPSS0-D327 (0.25) 6.6 (-1%) 48 (0%) 6.5 (-3%) 53 (35%)

TPSS0-D3(BJ)106 (0.25) 6.5 (-3%) 56 (17%) 6.2 (-6%) 60 (54%)

TPSSh-D3(BJ)108 (0.10) 6.5 (-3%) 61 (28%) 6.3 (-5%) 63 (62%)

Previous works

optB88-vdW34 (Ref. 67) 6.76 (1%) 66 (38%) 6.64 (1%) 67 (72%)

C09x-vdW131 (Ref. 67) 6.54 (-2%) 71 (48%) 6.42 (-3%) 73 (87%)

VV1031,32 (Ref. 66) 6.68 (0%) 71 (48%) 6.57 (0%) 70 (79%)

rev-vdW-DF2132 (Ref. 132) 6.64 (-1%) 60 (25%) 6.56 (-1%) 57 (46%)

PW86R-VV10sol66 (Ref. 66) 6.98 (5%) 44 (-8%) 6.87 (4%) 43 (10%)

AM05-VV10sol66 (Ref. 66) 6.99 (5%) 45 (-6%) 6.84 (4%) 41 (5%)

PBE+TS26 (Ref. 135) 6.68 (0%) 82 (71%) 6.64 (1%) 87 (123%)

PBE+TS+SCS136 (Ref. 135) 6.75 (1%) 55 (15%) 6.67 (1%) 73 (87%)
RPA (Refs. 77 and 78) 6.68 48 6.60 39
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FIG. 7. MGGA MS2 total energy of Ar plotted as a function
of the lattice constant a. The MGGA MS2 total-energy func-
tional was evaluated with orbitals/densities generated from
various potentials (indicated in parenthesis). The zero of
the energy axis was chosen such that the cohesive energy of
Ar is given by the value at the minimum of a curve. The
reference CCSD(T) values for a0 and Ecoh are 5.25 Å and
88 meV/atom, respectively.

tionals the discussion should be kept at a qualitative
level. On the other hand, the main conclusions of this sec-
tion should not be affect too significantly, since for such
weakly bound systems the errors with DFT functionals
are often extremely large such that only the trends are
usually discussed.

1. Rare-gas solids

The results for the lattice constant and cohesive energy
of the rare-gas solids are shown in Table III. The error (in-
dicated in parenthesis) is with respect to accurate results
obtained from the CCSD(T) method.76 Also shown are
results taken from Refs. 14, 130, 133, and 134 that were
obtained with nonlocal dispersion-corrected functionals
[Eq. (5)], the atom-pairwise method of Tkatchenko and
Scheffler,26 and post-PBE RPA calculations. In a few
cases, no minimum in the total-energy curve was ob-
tained in the range of lattice constants that we have
considered (largest values are 5.6, 6.6, 7.1 Å for Ne,
Ar, Kr). This concerns the functionals revPBE, AM05,
SG4, revTPSS(h), and those using B88 exchange (BLYP,
B3LYP, and B3PW91). No minimum at all should exist
with the B88-based functionals (see, e.g., Refs. 20, 142–
144), while only a very weak minimum at a larger lattice
constant could eventually be expected with revPBE (see
Ref. 145) and revTPSS (see Ref. 18). Note that no or
a very weak binding is typically obtained by GGA func-
tionals which violate the local Lieb-Oxford bound146 be-

cause of an enhancement factor that is too large at large s
(s & 5) like B88 and AM05 (see Fig. 1). The importance
of the behavior of the enhancement factor at large s for
noncovalent interactions was underlined in Refs. 147 and
148.

Unsurprisingly, the best functionals are those which
include the atom-pairwise dispersion term D3/D3(BJ),
since for many of them the errors are below ∼ 8% for a0
and below ∼ 20% for Ecoh for all three rare gases. Such
results are expected since the atom-dependent parame-
ters in Eq. (4) (computed almost from first principles27)
should remain always accurate in the case of interaction
between rare-gas atoms, whether it is in the dimer or in
the solid. Note, however, that the error for the cohesive
energy of Ne is above 100% for all MGGA MSn(h)-D3
functionals, which may be due to the fact that only the
term n = 6 in Eq. (4) has been considered for these
functionals.46 All other functionals, without exception,
lead to errors for Ecoh which are above 50% for at least
two rare gases. These large errors are always due to an
underestimation for Ar and Kr, but not for Ne (overesti-
mation with the MGGAs and underestimation with the
others). For MGGA MS2 and SCAN, the largest errors
are −66% (Ar) and 107% (Ne), respectively. Note that
the GGA PBEfe and MGGA mBEEF overestimate the
cohesive energy even more than LDA does. For a0, the
values obtained with the GGA PBEalpha and all modern
(hybrid-)MGGAs like MGGA MS2, SCAN, and mBEEF
are in fair agreement with the CCSD(T) results since
the errors are of the same order as with most dispersion-
corrected functionals (below 8%).

Concerning previous works reporting tests on other
functionals, we mention Ref. 130 where several variants
of the nonlocal van der Waals functionals were tested on
rare-gas dimers (from He2 to Kr2) and solids (Ne, Ar,
and Kr). The conclusion was that rVV1031,32 leads to
excellent results for the dimers and is among the good
ones for the solids along with optB88-vdW34 and C09x-
vdW.131 However, with these three nonlocal function-
als rather large errors in Ecoh were still observed for the
solids (results shown in Table III), such that overall these
functionals are less accurate than DFT-D3/D3(BJ) for
the rare-gas solids. Another nonlocal functional, rev-
vdW-DF2, was recently proposed by Hamada,132 and the
results on rare-gas solids133 (see Table III) are as good as
the DFT-D3/D3(BJ) results and, therefore, better than
for the other three nonlocal functionals. For the Ar and
Kr dimers, the SCAN+rVV10 functional was shown to be
as accurate as rVV10,128 however it has not been tested
on rare-gas solids. Finally, we also mention the RPA
(fifth rung of Jacob’s ladder) results from Ref. 14 which
are rather accurate overall, as shown in Table III. Con-
cerning other semilocal approximations not augmented
with a dispersion correction, previous works reported un-
successful attempts to find such a functional leading to
accurate results for all rare-gas dimers at the same time
(see, e.g., Refs. 144 and 149).

The summary for the rare-gas solids is the following.
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For the cohesive energy, the functionals which include an
atom-pairwise term D3/D3(BJ) clearly outperform the
others. It was also observed that the MGGAs do not im-
prove over the GGAs for Ecoh. However, for the lattice
constant, MGGAs are superior to the GGAs and perform
as well as the dispersion corrected-functionals. Among
the previous works also considering rare-gas solids in
their test set, we noted that the rev-vdW-DF2 nonlo-
cal functional132,133 shows similar accuracy as the DFT-
D3/D3(BJ) methods.

2. Layered solids

Turning now to the layered solids graphite and h-BN,
the results for the equilibrium lattice constant c0 (the in-
terlayer distance is c0/2) and interlayer binding energy
Eb are shown in Table IV. Since for these two systems
we are interested only in the interlayer properties, the
intralayer lattice constant a was kept fixed at the exper-
imental value of 2.462 and 2.503 Å for graphite and h-
BN, respectively. As in the recent works of Björkman et

al.,65–67,78 the results from the RPA method,77,78 which
are in very good agreement with experiment and Monte-
Carlo simulation150 for graphite, are used as reference.
No experimental result for Eb for h-BN seems to be avail-
able.
The results with the GGA functionals are extremely in-

accurate since for all these methods, except PBEfe, there
is no or a very tiny binding between the layers (under-
estimation of Eb by more than 90%) and a huge overes-
timation of c0 by at least 0.5 Å. The underestimation of
Eb with PBEfe is ∼ 50% and c0 is too large by ∼ 0.3 Å.
LDA also underestimates Eb by ∼ 40%, but leads to in-
terlayer distances which agree quite well with RPA and,
actually, perfectly for graphite. The best MGGA func-
tional is MVS, whose relative error is −34% for the bind-
ing energy of graphite, but below 5% otherwise. SCAN
performs slightly worse since Eb is too small by ∼ 50%
for both graphite and h-BN, while MGGA MS2 leads to
disappointingly small binding energies. The other MG-
GAs, including mBEEF, lead to very small (large) values
for Eb (c0). Note that the results obtained with mBEEF
show totally different trends as those for the rare gases
(large overbinding for the rare gases and large under-
binding for graphite and h-BN), which is maybe due to
the nonsmooth form of this functional (see Fig. 2) such
that the results are more unpredictable. Among the hy-
brid functionals, MVSh is the only one which leads to
somehow reasonable results, with errors for Eb that are
slightly larger than for the underlying semilocal MVS.
Let us remark that all functionals without dispersion
correction underestimate the interlayer binding energy
of graphite and h-BN, while it was not the case for the
cohesive energy of the rare-gas solids.
Adding the D3 or D3(BJ) dispersion term usually im-

proves the agreement with RPA, such that for many of
these methods the magnitude of the relative error is be-

low 20% and 3% for Eb and c0, respectively. Such errors
can be considered as relatively modest. Among the com-
putationally cheap GGA+D, the accurate functionals are
PBE-D3/D3(BJ), RPBE-D3, and PBEsol-D3.

The results obtained with many other methods
are available in the literature65–67,78,132,135,140,141 (see
Ref. 141 for a collection of values for graphite), and
those obtained from the methods that were already
selected for the discussion on the rare gases are
shown in Table IV. The nonlocal functionals optB88-
vdW, C09x-vdW, VV10, and rev-vdW-DF2 as well as
PBE+TS(+SCS) lead to very good agreement with RPA
for the interlayer lattice constant (errors in the range
0-2%), however, in most cases there is a non-negligible
overbinding above 40%. Also shown in Table IV, are the
results obtained with the nonlocal functionals PW86R-
VV10 and AM05-VV10sol which contain parameters that
were fitted specifically to RPA binding energies of 26
layered solids including graphite and h-BN.66 Unsurpris-
ingly, the errors obtained with PW86R-VV10 and AM05-
VV10sol for Eb are very small (below 10%), but the price
to pay are errors for c0 that are clearly larger (∼ 5%)
than with the other nonlocal functionals. The nonlocal
functional SCAN+rVV10 has also been tested on a set of
28 layered solids, and according to Ref. 128, the MARE
(the detailed results for each system are not available)
for the interlayer lattice constant and binding energy
amount to 1.5% and 7.7%, respectively, meaning that
SCAN+rVV10 leads to very low errors for both quan-
tities, despite no parameter was tuned to reproduce the
results for the layered solids.

In summary, among the methods which do not include
an atom-pairwise dispersion correction, only a couple of
them (MVS, LDA, and PBEfe) do not severely underesti-
mate the interlayer binding energy. Adding a D3/D3(BJ)
atom-pairwise term clearly improves the results, leading
to rather satisfying values for the interlayer spacing and
binding energy. In the group of nonlocal functionals, the
recently proposed SCAN+rVV10 seems to be among the
most accurate.128

V. BRIEF OVERVIEW OF LITERATURE

RESULTS FOR MOLECULES

The results that have been presented and discussed
so far concern exclusively solid-state properties and may
certainly not reflect the trends for finite systems, as men-
tioned in Sec. III. Thus, in order to provide to the reader
of the present work a more general view on the accuracy
and applicability of the functionals, a very brief summary
of some of the literature results for molecular systems is
given below. To this end we consider the atomization en-
ergy of strongly bound molecules and the interaction en-
ergy between weakly bound molecules, for which widely
used standard testing sets exist.
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A. Atomization energy of molecules

The atomization energy of molecules is one of the most
used quantity to assess the performance of functionals for
finite systems (see, e.g., Refs. 46, 47, 57, 68, 117, and 151
for recent tests). Large testing sets of small molecules
like G3152 or W4-11153 usually involve only elements of
the first three periods of the periodic table. For such
sets, the MAE given by LDA is typically in the range
70-100 kcal/mol (atomization energies are usually ex-
pressed in these units), while the best GGAs (e.g., BLYP)
can achieve a MAE in the range 5-10 kcal/mol. MG-
GAs and hybrid can reduce further the MAE below 5
kcal/mol. At the moment, the most accurate function-
als lead to MAE in the range 2.5-3.5 kcal/mol, e.g.,
mBEEF48 (see also Refs. 57 and 117), which is not
far from the so-called chemical accuracy of 1 kcal/mol.
Concerning the best functionals for the solid-state test
sets that we have identified just above, the MGGAs
MGGA MS2 and SCAN, as well as the hybrid-MGGAs
MGGA MS2h and revTPSSh are also excellent for the
atomization energy of molecule since they lead to rather
small MAE around 5 kcal/mol.46,47,103 With the hybrid
YSPBEsol0 (∼HSEsol), which was the best functional
for the lattice constant, the MAE is larger (around 10-15
kcal/mol43). The weak GGAs WC and PBEsol improve
only slightly over LDA since their MAE are as large as 40-
60 kcal/mol,47,68 while the stronger GGA PBEint leads
to a MAE around 20-30 kcal/mol.154

Therefore, as mentioned in Sec. III, it really seems that
the kinetic-energy density is a necessary ingredient in or-
der to construct a functional that is among the best for
both solid-state properties and the atomization energy of
molecules, and some of the modern MGGAs like SCAN
look promising in this respect. With GGAs, it looks like
an unachievable task to get such universally good results.
Hybrid-GGAs can improve upon the underlying GGA,
however we have not been able to find an excellent func-
tional in our test set. For instance, YSPBEsol (∼HSEsol)
is very good for solids, but not for molecules, while the
reverse is true for PBE0 (small MAE of ∼ 7 kcal/mol for
molecules,104 but average results for solids, see Table II).

B. S22 set of noncovalent complexes

The S22 set of molecular complexes,158 which con-
sists of 22 dimers of biological-relevance molecules bound
by weak interactions (hydrogen-bonded, dispersion dom-
inated, and mixed), has become a standard set for the
testing of functionals since very accurate CCSD(T) in-
teraction energies are available.158–160 A large number of
functionals have already been assessed on the S22 set,
and Table V summarizes the results taken from the lit-
erature for many of the functionals that we have consid-
ered in the present work. Also included are results for
nonlocal van der Waals functionals (groups GGA+NL
and MGGA+NL), two atom-pairwise dispersion meth-

TABLE V. Results from the literature (reference in last col-
umn) for the MAE (in kcal/mol) on the S22 testing set.

Functional MAE Reference
LDA
LDA79 2.3 47
GGA
PBEsol82 1.8 47
PBE72 2.8 47
RPBE91 5.2 48
revPBE90 5.3 27
BLYP92,93 4.8, 8.8 106, 47
MGGA
M06-L155 0.7 156
MVS95 0.8 95
SCAN47 0.9 47
mBEEF48 1.4 48
MGGA MS045 1.8 48
MGGA MS246 2.1 48
revTPSS94 3.4 48
TPSS96 3.7 47
hybrid-GGA
HSE13 2.4 156
PBE099,100 2.5 156
B3LYP102 3.8 27
hybrid-MGGA
MVSh95 1.0 95
M06115 1.4 156
TPSS096,98 3.1 27
GGA+D
BLYP-D327 0.2 106
BLYP-D3(BJ)106 0.2 106
PBE+TS26a 0.3 156
PW86PBE-XDM(BR)157 0.3 157
revPBE-D327 0.4 106
revPBE-D3(BJ)106 0.4 106
PBE-D327 0.5 106
PBE-D3(BJ)106 0.5 106
MGGA+D
TPSS-D327 0.3 106
TPSS-D3(BJ)106 0.3 106
MGGA MS0-D346a 0.3 46
MGGA MS1-D346a 0.3 46
MGGA MS2-D346a 0.3 46
hybrid-GGA+D
B3LYP-D3(BJ)106 0.3 106
B3LYP-D327 0.4 106
PBE0-D3(BJ)106 0.5 106
PBE0-D327 0.6 106
hybrid-MGGA+D
MGGA MS2-D346a 0.2 46
TPSS0-D327 0.4 106
TPSS0-D3(BJ)106 0.4 106
GGA+NL
optB88-vdW34a 0.2 34
C09x-vdW131 0.3 131
VV1031a 0.3 31
rev-vdW-DF2132 0.5 132
vdW-DF28 1.5 34
MGGA+NL
SCAN+rVV10128 0.4 128
BEEF-vdW68 1.7 48

a One or several parameters were determined using the S22 set.
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ods [PBE+TS26 and PW86PBE-XDM(BR)157], and the
highly parameterized Minnesota functionals M06 and
M06-L115 (results for other highly parameterized func-
tionals can be found in Refs. 117, 161, and 162). Since
all these recent results are widely scattered in the liter-
ature, it is also timely to gather them in a single table
(see also Ref. 35). As indicated in Table V, some of the
functionals contain one or several parameters that were
fitted using the CCSD(T) interaction energies of the S22
set.
From the results, it is rather clear that the dispersion-

corrected functionals are more accurate. The MAE is
usually in the range 0.2-0.5 kcal/mol, while it is above
1 kcal/mol for the methods without dispersion correc-
tion term, except M06-L, MVS and SCAN (slightly be-
low 1 kcal/mol). As already observed for the layered
compounds in Sec. IVB 2, MVS is one of the best non-
dispersion corrected functionals, which is probably due to
the particular form of the enhancement factor that is a
strongly decreasing function of s and α (see Fig. 2). The
same can be said about SCAN, which is also one of the
semilocal functionals which do not completely and sys-
tematically fail for weak interactions. The MAE obtained
with MGGA MS2 is rather large (2.1 kcal/mol), despite
it was the best MGGA for the rare-gas solids. Among the
GGAs, PBEsol represents a good balance between LDA
and PBE which overestimate and underestimate the in-
teraction energies, respectively,47 but leads to a MAE
which is still rather high (1.8 kcal/mol). In the group
of nonlocal vdW functionals, the early vdW-DF and re-
cent BEEF-vdW are clearly less accurate (MAE around
1.5 kcal/mol) than the others like SCAN+rVV10. The
largest MAE obtained with an atom-pairwise dispersion
method is only 0.6 kcal/mol (PBE0-D3).
By considering all results for weak interactions dis-

cussed in this work (rare-gas solids, layered solids, and
S22 molecules), the most important comments are the
following. For the three sets of systems, the atom-
pairwise methods show a clear improvement over the
other methods. Such an improvement is (slightly) less
visible with the nonlocal vdW functionals, especially for
the rare-gas and layered solids, where only rev-vdW-DF2
seems to compete with the best atom-pairwise methods.
In Ref. 128, the recent SCAN+rVV10 nonlocal functional
has shown to be very good for layered solids and the
molecules of the S22 test set, but no results for rare-gas
solids are available yet. Among the non-dispersion cor-
rected functionals, only a few lead occasionally to more
or less reasonable results. This concerns mainly the re-
cent MGGA functionals MGGA MS2, MVS, and SCAN,
however, their accuracies are still clearly lower than the
atom-pairwise methods.

VI. SUMMARY

A large number of exchange-correlation functionals
have been tested for solid-state properties, namely, the

lattice constant, bulk modulus, and cohesive energy.
Functionals from the first four rungs of Jacob’s ladder
were considered (i.e., LDA, GGA, MGGA, and hybrid)
and some of them were augmented with a D3/D3(BJ)
term to account explicitly for the dispersion interactions.
The testing set of solids was divided into two groups: the
solids bound by strong interactions (i.e., covalent, ionic,
or metallic) and those bound by weak interactions (e.g.,
dispersion). Furthermore, in order to give a broader view
of the performance of some of the tested functionals, a
section was devoted to a summary of the literature results
on molecular systems for two properties; the atomization
energy and intermolecular binding.
One of the purposes of this work was to assess the ac-

curacy of some of the recently proposed functionals like
the MGGAs MGGA MSn, SCAN, and mBEEF, and to
identify, eventually, an universally good functional. An-
other goal was to figure out how useful it is to mix HF
exchange with semilocal exchange or to add a dispersion
correction term. An attempt to provide an useful sum-
mary of the most important observations of this work is
the following:

1. For the strongly bound solids (Table II), at least
one functional of each rung of Jacob’s ladder, ex-
cept LDA, belongs to the group of the most accu-
rate functionals. Although it is not always obvious
to decide if a functional should be a member of
this group or not, we can mention the GGAs WC,
PBEsol, PBEalpha, PBEint, and SG4, the MGGAs
MGGA MS2 and SCAN, the hybrids YSPBEsol0,
MGGA MS2h, and revTPSSh, and the dispersion
corrected methods PBE-D3/D3(BJ).

2. Thus, from point 1 it does not seem to be really
necessary to go beyond the GGA approximation for
strongly bound solids since a few of them are over-
all as accurate as the more sophisticated/expensive
MGGA and hybrid functionals. However, the use
of a MGGA or hybrid functional may be necessary
for several reasons as explained in points 3 and 4
below.

3. As well known (see Sec. VA), no GGA can be excel-
lent for both solids and molecules at the same time.
MGGAs like MGGA MS2 or SCAN are better in
this respect. Thus, the use of a MGGA should
be more recommended for systems involving both
finite and infinite systems as exemplified in, e.g.,
Ref. 163.

4. If a qualitatively more accurate prediction of the
band gap of semiconductors and insulators is also
required, then an hybrid functional should be used
since GGA band gaps are usually by far too small
compared to experiment.42–44 Note, however, that
hybrid functionals are not recommended for metal-
lic systems.74,121,122 MGGAs do not really improve
over GGAs for the band gap (see Refs. 164–166).
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5. The use of a dispersion correction for strongly
bound solids is recommended for functionals which
clearly overestimate the lattice constant (usu-
ally more pronounced for solids containing al-
kali atoms). However, it is only in the case of
PBE-D3/D3(BJ) that the overall accuracy is really
good. We also observed that many of the DFT-
D3/D3(BJ) methods lead to large errors for the
bulk modulus, despite small errors for the lattice
constant.

6. Among the functionals that were not tested in the
present work, SCAN+rVV10 should be of similar
accuracy as SCAN for strongly bound solids, but
significantly improves the results for weak interac-
tions according to Ref. 128.

7. For the weakly bound systems, namely the rare-gas
solids (Table III), layered solids (Table IV), and in-
termolecular complexes (Table V), it was observed
that none of the non-dispersion corrected function-
als is able to give qualitatively correct results in
most cases. This is expected since the physics of
dispersion is not included in the construction of
these functionals. At best, good results can oc-
casionally be expected with some of the MGGAs
(MGGA MS2, MVS, SCAN, or M06-L).

8. For weak interactions, many of the DFT-
D3/D3(BJ) methods (and some of the nonlo-

cal ones) are much more reliable. The re-
sults from the literature obtained with the recent
SCAN+rVV10128 or B97M-V117 are promising, but
since these functionals were proposed very recently,
more tests are needed in order to have a more com-
plete view of their general performance.

Finally, from the present and previously published works,
a very short conclusion would be the following. At the
present time, it seems that the only functionals which
can be among the most accurate for the geometry and
energetics in both finite and infinite systems and for both
strong and weak bondings, are MGGAs augmented with
a dispersion term. These are not bad news, since MG-
GAs functionals are barely more expensive than GGAs
and the addition of a pairwise or nonlocal dispersion term
does not significantly increases the computational time.
If qualitatively accurate band gaps are also needed, then
such functionals should be mixed with HF exchange, but
with the disadvantage of a significantly increased com-
putational cost, especially for large molecules or periodic
solids.
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89 R. Sarmiento-Pérez, S. Botti, and M. A. L. Marques, J.
Chem. Theory Comput. 11, 3844 (2015).



19

90 Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
91 B. Hammer, L. B. Hansen, and J. K. Nørskov, Phys. Rev.

B 59, 7413 (1999).
92 A. D. Becke, Phys. Rev. A 38, 3098 (1988).
93 C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785

(1988).
94 J. P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Con-

stantin, and J. Sun, Phys. Rev. Lett. 103, 026403 (2009),
106, 179902 (2011).

95 J. Sun, J. P. Perdew, and A. Ruzsinszky, Proc. Natl.
Acad. Sci. U.S.A. 112, 685 (2015).

96 J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuse-
ria, Phys. Rev. Lett. 91, 146401 (2003).

97 J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, Phys.
Rev. Lett. 82, 2544 (1999), 82, 5179(E) (1999).

98 J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem.
Phys. 105, 9982 (1996).

99 M. Ernzerhof and G. E. Scuseria, J. Chem. Phys. 110,
5029 (1999).

100 C. Adamo and V. Barone, J. Chem. Phys. 110, 6158
(1999).

101 A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E.
Scuseria, J. Chem. Phys. 125, 224106 (2006).

102 P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J.
Frisch, J. Phys. Chem. 98, 11623 (1994).

103 G. I. Csonka, J. P. Perdew, and A. Ruzsinszky, J. Chem.
Theory Comput. 6, 3688 (2010).

104 V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P.
Perdew, J. Chem. Phys. 119, 12129 (2003), 121, 11507
(2004).

105 L. Goerigk and S. Grimme, Phys. Chem. Chem. Phys. 13,
6670 (2011).

106 S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem.
32, 1456 (2011).

107 Homepage of the D3-correction. [http://www.thch.uni-
bonn.de/tc/dftd3].

108 A. Hoffmann, M. Rohrmüller, A. Jesser, I. dos San-
tos Vieira, W. G. Schmidt, and S. Herres-Pawlis, J. Com-
put. Chem. 35, 2146 (2014).

109 P. A. M. Dirac, Proc. Cambridge Philos. Soc. 26, 376
(1930).
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143 J. M. Pérez-Jordá and A. D. Becke, Chem. Phys. Lett.
233, 134 (1995).

144 X. Xu, Q. Zhang, R. P. Muller, and W. A. Goddard III,
J. Chem. Phys. 122, 014105 (2005).

145 A. Tkatchenko and O. A. von Lilienfeld, Phys. Rev. B 78,
045116 (2008).

146 E. H. Lieb and S. Oxford, Int. J. Quantum Chem. 19, 427
(1981).

147 T. A. Wesolowski, O. Parisel, Y. Ellinger, and J. Weber,
J. Phys. Chem. A 101, 7818 (1997).

148 Y. Zhang, W. Pan, and W. Yang, J. Chem. Phys. 107,
7921 (1997).

149 Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 110, 5121
(2006).

150 L. Spanu, S. Sorella, and G. Galli, Phys. Rev. Lett. 103,
196401 (2009).

151 E. Fabiano, L. A. Constantin, A. Terentjevs, F. Della Sala,
and P. Cortona, Theor. Chem. Acc. 134, 139 (2015).

152 L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A.
Pople, J. Chem. Phys. 112, 7374 (2000).

153 A. Karton, S. Daon, and J. M. L. Martin, Chem. Phys.
Lett. 510, 165 (2011).

154 E. Fabiano, L. A. Constantin, and F. Della Sala, Int. J.
Quantum Chem. 113, 673 (2013).

155 Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125, 194101
(2006).



20

156 N. Marom, A. Tkatchenko, M. Rossi, V. V. Gobre,
O. Hod, M. Scheffler, and L. Kronik, J. Chem. Theory
Comput. 7, 3944 (2011).

157 F. O. Kannemann and A. D. Becke, J. Chem. Theory
Comput. 6, 1081 (2010).
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