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CHARACTERISTIC INITIAL VALUE PROBLEM FOR
SPHERICALLY SYMMETRIC BAROTROPIC FLOW

ANDRE LISIBACH

ABSTRACT. We study the equations of motion for a barotropic fluid in spher-
ical symmetric flow. Making use of the Riemann invariants we consider the
characteristic form of these equations. In a first part, we show that the re-
sulting constraint equations along characteristics can be solved globally away
from the center of symmetry. In a second part, given data on two intersecting
characteristics, we show existence and uniqueness of a smooth solution in a
neighborhood in the future of these characteristics.

1. INTRODUCTION

The equations of motion describing a compressible inviscid fluid are of hyper-
bolic type. For such equations, along a characteristic hypersurface not all of the
unknown functions can be prescribed freely. The ones that can will be denoted in
the following as free data. When restricting the equations of motion to a character-
istic hypersurface they become the so called constraint equations. Given free data
these are equations for the remaining unknowns which will be called derived data.
This situation is in contrast to the Cauchy problem where all of the unknown func-
tions can be prescribed at ¢ = 0. The system of constraint equations is nonlinear,
therefore a solution does not exist in general. We study the constraint equations
for the Euler equations in the case of a barotropic fluid, i.e. under the assumption
that p = f(p), where p, p are the pressure and density of the fluid respectively.
In addition we assume that the flow is spherically symmetric, hence the problem
reduces to one in the ¢t-r-plane, where ¢, » denote the time and radial coordinate
respectively. We use the Riemann invariants which lead to a natural formulation of
the equations of motion along characteristics. The resulting constraint equations
form a two by two system of nonlinear ordinary differential equations. In the first
part we show existence and uniqueness of a solution of this system globally away
from the center of symmetry r = 0.

Once the constraint equations are solved and therefore characteristic data has
been established, a natural follow up question is whether one can find a solution
of the equations of motion in a neighborhood of two intersecting characteristic
hypersurfaces in the acoustical future of the intersection. This is the content of the
second part of the present work.

It is important to note that the solution thus obtained corresponds to a solution
in the t-r-plane only where the jacobian of the transformation from the charac-
teristic coordinates to the t-r-plane does not vanish (see page B2)). Such points
of vanishing jacobian represent points in the singular part of the boundary of the
maximal development (see for example chapter 2 of [3]). Therefore, such points
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and their range of influence have to be excluded from the solution. Furthermore,
in view of obtaining a physically acceptable solution, we note that an even further
restriction might apply once a shock solution beyond a point of blowup has been es-
tablished, the shock lying in the past of the boundary of the maximal development
(see [M]).

The present work can be viewed as a first step towards understanding the char-
acterisitic initial value problem for the Euler equations without any symmetry as-
sumptions.

2. EQUATIONS OF MOTION, CHARACTERISTIC SYSTEM

We review the basic equations needed for the study of a barotropic fluid in
spherical symmetry.

2.1. Equations of Motion in Spherical Symmetry. We denote by w, p, p the
fluid velocity, the density and the pressure, respectively. We assume a barotropic
equation of state, i.e. p = f(p), and we assume f € C°°, dp/dp, d*p/dp? > 0. The
adiabatic condition decouples and we are left with

2
(1) Oip + 0, (pw) = ==,
2
(2) ow + wo,w = —”—arp,
p

where we denote by 7 the sound speed, i.e. n? = dp/dp. We assume p > 0, i.e. we
exclude vacuum.

2.2. Riemann Invariants, Characteristic System. Let (see [I])

P / P /
(3a,b) Q@ d:ef/ 77(/3 )dp' + w, B def ﬁ(/j )dp' —w
and
(4a,b) Ct def oy + 7, Ly def Oy + c4.0;.
We have
a, B def
(5) Lea=15=-"10D (o 5 p(a 5.1,

Introducing the coordinates u, v such that w is constant along integral curves of L
and v is constant along integral curves of L_, (B]) becomes

da Ot o8 ot

(Gaab) % = %F(Oé,ﬂ,’l”), %_%F(aaﬂaT)'
t and r satisfy the Hodograph system

ar Ot or Ot
(7a,b) % = %c_,_(a,ﬁ), % = %c_(a,ﬁ).

In the following we refer to (6a,b), as the characteristic system of equations
(see [2)).
From (3a,b)) we have

N, B) ([ nfp 1
(®) a(p,u»‘(n/p —1>'
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Therefore,
(©) Op,w) _ (p/2n p/2n
9(e, B) /2 -1/2 )°
Let now
(10) xZa-8, X Fa+s
We have
da 0B 1
(h o2
Now,
oy _dnfopon  op 03
oxt  dp | dadxt = 9B OxT
__p &p
(12) - 4,,72 dp2 >0

Similarly we find dn/dx = 0. Therefore, n = n(x') and dn/dx' > 0.

3. CHARACTERISTIC INITIAL DATA

We look at a point (tg, ro) in the t-r-plane and denote the outgoing and incoming
characteristic originating from this point by C* and C~ respectively. We put the
origin of the u-v-coordinates at (tg,79) and we set to = 0.

In view of (h), (Th) the free data on C* consists of 87 (v) = B(0,v), tT(v) =
t(0,v) for an increasing function ¢*. We fix the coordinate v along CT by setting
t*(v) =v. Then (@h), (Th) constitute the following system of nonlinear ode for the
derived data ot (v), r*(v) on C*:

(13a) (Zl—j = —n(o;’ B) (a—B),
(13b) & = o~ B)+ (e 6),

where we omitted the superscript + on «, 8 and r.

In view of (@b), (@) the free data on C~ consists of o (u) = a(u,0), t~(u) =
t(u,0) for an increasing function ¢t~. We fix the coordinate u along C~ by setting
t~(u) = u. Then (@), (@) constitute the following system of nonlinear ode for the
derived data 8~ (u), r~(u) on C~:

ds _ nla,p)

(142 L L
(14) &~ Ho—5) (e 6),

where we omitted the superscript — on «, 8 and r. ([3), (I4) are the constraint
equations along CT, C~, respectively. The following lemma shows that there exists
derived smooth data on C* and on C~ as long as C~ stays away from r = 0.

Lemma 1. Let o, € C°(RT U{0}) and ro > 0. Then
i) the system ([I3) with B = B+, a(0) = a=(0) and r(0) = ro has a solution
for v e RT U{0},
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ii) for any e > 0 with € < ro the system @) with a = a~, 3(0) = B7(0) and
r(0) = 7o has a solution for u € [0,7), where T = sup{u’ e Rt u{0}:
Yo' e [0,u'] : r(u”) > 6}.
Proof. Part i). The only possibilities for the system (I3)) to blow up are
(15) r—0, r — 00, |a] = oo.

Using x = a — 3, the system (I3]) becomes (we omit the argument of 7)

dx n__dp
1 A d, 22
(16a) dv X
dr
(16b) EE:”+%X
From (IGa) we obtain
(17) X(v) = x(0)e=Jo (H)@)av’ _/ o fﬁ(%)(v”)dv”%(vl)dv',
0 d'U
Therefore,
(18) NI O+ [ | F )]
O U

which implies that the absolute value of x is bounded. The bound on x implies
that also a is bounded in absolute value, i.e. |a| < C. Hence also x' is bounded in
absolute value, i.e. | x| < C. From (@), (I0) we have

dlogp 1

dxt Ay’

In view of n > 0, we deduce that p < C. This in turn implies that n is bounded.
From (I6L) we have

(20) r(v) = 1o+ / "0+ 1)

Therefore, r is bounded from above.
The only possibility for blowup left to study is 7 — 0. Let us assume

(19)

(21) r—0 as v—v'.

Let 0 < v3 < v < v*. Integrating ([IGal) on [v1,v] yields

(22) X(©) > x(vr)e P IO _ oy ),
Let
def .
23 = inf 7.
( ) ﬂ [0,v*] K
We have
(24) n(v) >n > 0.

Let 0 < C < 7. Using the lower bounds for x and n as given by [22) and (24),
respectively, in (I6D) and choosing v; € (0,v*) such that

) -
(25) v 20 === 0),
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where C' is the constant appearing in (22]), we obtain

(26) d_’U( ) é % (Ul)eifjl(g)(”,)dvl,
Defining
(27) Tv) L (o )e Fa ()@
([28)) becomes

d -
) 212 €+ R0

In the case x(v1) > 0 we have X > 0 and (dr/dv)(v) > C > 0 for v € [v1,v*], which
contradicts ([2I)). We consider the case x(v1) < 0. From (27) we see that in [v1, v*],

X is monotonically increasing and ¥ < 0. We define ¢Z Lef —X. Then, on [vy,v*],
¢ > 0, ¢ is monotonically decreasing and

dr ~

—(v) > C — 56(v).

(29) 7

We look at the subcase 2C' > ¢(v1). In this subcase we have 2C > ¢(v) for
v € [v1,v*], which implies (dr/dv)(v) > 0 in [v1,v*]. Together with r(vy) > 0 this
contradicts (2I]).

We look at the subcase 2C° < ¢(v1). Since ¢ is a monotonically decreasing
function, it either drops not below 2C or it drops below 2C on [v1,v*]. In the latter
situation there is a v € [v1, v*] such that (dr/dv)(v) > 0 for v € [vg, v*] and we get
a contradiction in the same way as in the subcase studied above.

Therefore, we are left to study the situation in which q~5 does not drop below 20
n [v1,v*]. Since 6 is a decreasing function which is bounded from below by 2C, it
tends to a limit as v — v*. We have

(30) lim, d(v) > 2C.
Now,

) < 3a) - ©
(31) < 30(0n) -

Integrating this on [v,v*] for v € [v1,v*] and taking into account the assumption

1), we obtain

(32) r(v) < (%03(@1) - é) (v* — v).

Using this together with the lower bound on 7 we deduce

v v !
[ gty [ 2
V1 r 5@5(’01) — C 1 v¥ — v
(33) - %log (”*_“1).
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Recalling the definition of ¢ we get
d(v) = p(v1)e” Jo, (3)whdv!

(34) Sé(m)(v*_v)w.

V¥ —

The right hand side tends to 0 as v — v* giving us a contradiction to (B0).
Part ii). Assuming r > ¢ the only possibilities for the system (I4) to blow up
are

(35) 7 — 00, |8] = 0.

Using x = a — 3, the system (I4]) becomes (we omit the argument of 7)

dx n da
36 A _ 1 -
(362) du TX + du’
dr
(36Db) pie X -
Let 0 < u; < u < u*. Integrating ([BGal) on [uq,u] yields
(37) x(u) = R M ( () 4 Fy (),
where
e u _ 'u.l ’V_ u// u// d
(38) Fi(u) dzf/ e~ S () Nau” CX oy gy,
u du
We have
(39) |Fi(u)] < Cu —u1)
and
(40) Ix(u)] < Ceffl(g)(u/)du/'
Let us assume
(41) x| 200 as w—u".

In view of the bound (B9) we see that there exists u; € [0,u*) such that for v €
[u1,u*) we have either x(u1) + Fi(u) > 0 or x(u1) + Fi(u) < 0. Using this in (37)
we obtain that either x(u) > 0 for u € [u1,u*) and x — oo as u — u* or x(u) <0
for u € [ug,u*) and x — —o0 as u — u* respectively.

In the first case, x — o0 as u — u* implies f — —oo as u — u* which in turn
implies ! — —oc as u — u*. In view of (IZ) we then have lim, .. n(u) < C.
Using this together with 1/r < C we obtain that the right hand side of [@0) with
u = u* is bounded. This contradicts (@Il).

In the second case, y — —oo as u — u* implies, through ([@0) and 1/r < C, that

(42) / n(u)du — oo as u— u’.

1

Integrating (36h) gives
u

(43) mw:rwn+/’@xwv—mw»mt

U1
Using ([@2) together with x — —oo, we see that r(u) — 0 as u — u*, contradicting
our assumption r > 0.
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Therefore x is bounded and hence so is 3, i.e. |§| < C. The bounds on « and
imply that also 7 is bounded (see (I9)). In view of (B6L) we then obtain an upper

bound for r(u).
(]

The above lemma shows that there is no blowup of «, r along C* and of 8,
along C~ as long as C~ does not hit the center of symmetry r = 0, thus establishing
a continuously differentiable solution of the constraint equations. In the following
we show that there is also no blowup for higher order derivatives of a, 3, t and r.

We define

def Ot def Ot
(44a.b) = o0 V=g
and
def Ocx def 00
45a,b == let P
( 53,, ) ’Y au5 5 av
In the following we denote by f; : ¢ = 1,...,10 given continuously differentiable

functions. Taking the derivative of ([Bh) with respect to u and making use of ([@b),
([@b) we obtain the following equation along C'*

dy , du
(46) %—ﬁ%*'fﬂ*'fs#-

Taking the derivative of ([Bb) with respect to v and making use of (Gh), (Th) we
obtain the following equation along C'~

do dv
(47) Tu :f4@+f5V+f65-

Taking the derivative of ([Th) with respect to u and the derivative of ([@b) with
respect to v, subtracting the resulting equations from each other, we arrive at

0t 1 Ocy Oc_
(48) 8u8v+c+—c, (%V_E ) =0,

where we omitted the arguments of cy. ([@8) becomes, along CT, C~,

du

(49) el fry + fsu,
dv

(50) e Jod + frov,

respectively. ([@6), (@) constitute a system of linear equations for y, v which we
supplement with the initial conditions p(0) = 1,v(0) = (da™ /du)(0). We deduce
that p, v do not blow up on R* U {0}. (@1), (B0) constitute a system of linear
equations for v, 6 which we complement with the initial conditions v(0) = 1,(0) =
(dB7 /dv)(0). We deduce that v, § do not blow up for u € [0,u). In view of
also Or/du, Or/dv do not blow up along CT and C~. Therefore, the derivatives of
first order of o, 8, t and r do not blow up on C+, C~.

Continuing in a similar manner we see that also all derivatives of higher order
satisfy linear equations along C+ and C~. We conclude that there is also no
blowup in those quantities. We therefore have the following result which establishes
characteristic initial data.
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Proposition 1. Let 1o > ¢ > 0 and let us be given free data ﬂg,ao_,ta',ta €
C>®(R* U {0}) such that t,(0) = t=(0). Then there exist unique smooth functions
ag ali, By ﬂzi, tzi, TSE, Tii, 1> 1, such that T(j)[(()) =ro and, for f € {a,B,t,1},
the functions

5i+jf df-+
= 0.7 >
(51a) Figy (0:0) = T (v) 4. > 0,
3i+jf df-
_ Y, S
(51b) g (1 0) = 2 (u) 16,5 20,

satisfy the characteristic system and derivatives of it along C, C~ and the initial
conditions
dif— B dif+ )
+(0) = =20 . = —J0 S >
(52a,b) 17(0) Tu (0), 1 (0) Jui (0):i>0.
C* corresponds to {(0,v) : v € RY U{0}} and C~ corresponds to {(u,0) : u €
[0,7)}, where

(53) U = sup {u’ e RTU{0}:Vu" € [0,u] : ry (u") > 5}.
Remark 1. It would suffice to give ag , ty on [0,7).

4. CHARACTERISTIC INITIAL VALUE PROBLEM

In the following we establish local existence of a solution to the characteristic
initial value problem. We assume that, after giving free data, the constraint equa-
tions have been solved and in the following we are going to make use of this solution
without further reference. We focus on establishing the solution in a region adja-
cent to CT. Establishing the solution in a region adjacent to C~ is analogous. Let
us be given data along C* up to v = v* and along C~ up to u = u*.

4.1. Solution in the Corner. We define
(54) Iad:Cf (0,0)6R2:0§v§a},
(55) Habd:ef{(u,v)ERQ:OSUSQ,Ogvgb},

(see figure[I)).

FIGURE 1. The domain Il

Recall that v(0,v) = 1. Let

(56) ao “maxal, b max[8],  do = max|o|

v
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and let

(57) o & r}lin T rar & maxr.

Let I > 1 and let

(58) A¥ 900, B, D Y4,

Let us choose 0 < h < u* such that for v € [0, h] we have

(59) la(u, 0)] < A, |8(u,0)| < B, [6(u,0)| < D,
(60) 2rm < 7(u,0) < 3rar

Recall that p(u,0) = 1. In the following we generalize our discussion to the case
w(u,0) # 1, the case p(u,0) = 1 being a trivial subcase. Let

def def
(61) mo = sup |p(u,0)], g0 = sup [y(u,0)].
we0,h] ue[0,h]
Let
def

(62) R = {(a,B) eR*: |a| < A,|B| < B},
def

(63) Ql = Rl X [%Tm, %TM] .

In the following we establishes bounds on |v|, |¢| once bounds for all other
quantities have been established.
Making use of the characteristic system we obtain

0
(64a) a_z = Ay + Biud + Ch v,
ou
(64Db) 90 = Aoqvy + Bopd + Copv,
where
1
(65) Alz;{(a—ﬁ)(i—%n’)—n},
a—p
(66) Bi=2_L4+n),
a—
(67) =102 o5y,
1
(68) Ay =By = —2—77(%4-77/)7
a—p
(69) o= =0~ §)
and we denote ' = dn/dx" (see . Defining
d we d P4 i dt fi
(70) aq dZCf All/, bl dZCf 315 + Cll/,
(71) bQ d:ef AQI/, ag d:ef B25 + CQV,
we arrive at
0
(72) a—z = a1y + bip,
0
(73) I8~ g+ by

ov
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Now we define

def def .
(74) Qi< sup |, Si= sup b, i=12
(a,ﬁ,'r‘)EQl (a,ﬂ,T)GQl
i<t BEALES

Then, the system (2)), (73] implies

(75) ()] < €@ {Iv(u,O)l -5 |u|<u,v’>dv’} ,
0

(76) i, )] < €@ {Iu(u,O)l s [ Ivl(u,v’)dv’} .
0

Substituting one of these equations into the other and making use of Gronwall’s
inequality we obtain

(77) [y(u, )| < fi(v)|[y(u, 0) + fa(v)|p(u, 0)],

(78) 1(u, )] < fa(v)|p(u, 0)] + fa(v)y(u, 0)],

where

(79) fr (’U) — V@1 {1 + USIS260(Q1+Q2) /v e~ 5152 I v”e“”(Q1+Q2)dv”dv/} :
0

(80) f2(v) = vS1€"? f1(v)

and analogous expressions hold for f3, f;. We define

(81) Fi(0) E e {14 025, 5pe7(@ 4@ |
(82) Fav) E v81e" 9 7, (v)
and analogously we define f5, f,. We have
d 1 | defi 3, f4. We h
(83) fi<TF;ri=1,...,4.

We note that f, :i = 1,...,4 are strictly increasing functions satisfying
(84) lim f, =1:4i=1,3, lim f, =0:k=2,4.
v—0 v—0

We make the definitions
def = , & T ok
(85) G = f1(v")go + fa(v™)mo,
def —= * i *
(86) M = f3(v")go + f4(v*)mo.

We have proved the following:

Lemma 2. Let us be given a solution of the characteristic system in Il,, for u €
(0, h], v € (0,v*] such that this solution satisfies the bounds

(87) lv| <1, la| < A, 18| < B, 16| < D, Irm <1r < 3ray.

Then the constants G, M given by (88l), BE) respectively, satisfy G > go, M > myg
and we have

(88) <G ful <M,

with strict inequalities for v < v*. The constants G, M depend on A, B, D, I, rp,
TmMms gos Mo-
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From the characteristic system we have

(89) a(u,v) = au,0) + / (VF)(u,v")do',
0
(90) B(u0) = 50.0) + [ (uF) (! o)
0
Introducing the two functions
(91) gt 1 %7 pdet 1 ai,
cy —c— Ou cy —c— Ov

with ¢ = ¢y (o, 8) and

Ocy  Ocy Oa  Ocy op
(92) %—%(0@5)%4'%(0@5)%
and analogous for dc_ /Ov, we can rewrite (@S] as
9%t
(93) M—FKV—L/L—O.

We now construct a solution of the characteristic system as the limit of a se-
quence of functions ((ap, Bn,tn,mn);n = 0,1,2,...) defined on I;.. The sequence
is generated by the following iteration. We first define (ayg, 5o) setting

(94) ap(u,v) = a(u,0), Bo(u,v) = B(0,v),

the right hand sides being given by the initial data on C~, C'T respectively. We
then define to(u,v) to be the solution of (see ([@3))

(95) O\ Koo — Lopio = 0
Judv oo oko =Y,
together with the initial data t(u,0) and ¢(0,v) = v. We then define (see (b))
(96) ro(u,v) = r(0,v) —|—/ (poc—o) (v, v)du'.
0

Then, given the iterate (o, 5,) we define the next iterate (41, Bnt1) according
to the following. We define t,, to be the solution of (@) with n in the role of 0.
Then we define 7, to be the solution of ([@@) with n in the role of 0. Then we find

the next iterate (am41, Bnt1) according to (see (89), (@0))

(97) ant1(u,v) = a(u,0) + /OU(I/nFn)(’U,,’U/)d’U/,
(98) Bri1(u,v) = B(0,v) + /Ou(,unFn)(u/,v)du/,
where

(99) F, = —7’7(0‘:’ Bn) (0 — B).

In the following we are going to work with the differences

(100) o, (u,v) 2 a (u,v) — alu,0),

Bn(u,v) — B(0,v).

(101) B (u,v) &
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We note that o, (u,0) = £/,(0,v) = 0. Let (for the definition of ; see ([G3))

(102) F Y sup |F|.
o)

Lemma 3. Consider the closed set C in the space C'(Ilye,R?) of continuously
differentiable maps (u,v) — (o, 8')(u,v) of e into R? defined by the conditions

(103) o/ (u,0) = B/(0,v) = 0
and the inequalities
/ ! / !
(104) 99 = g ol - F 9|~ uF, 9\~ p_ g
ou u v

If h and € are sufficiently small, then the sequence ((of,, 85 );n = 0,1,2,...) is
contained in C.

The following proof is given in some detail in order to arrive at the explicit
smallness conditions on A which will then be used again in the bootstrap argument
where we continue the solution (see below).

Proof. Let (o, B],) € C. We have

/
oo,

" < /! d /
auw,)] < la(w0)| + [ |52 (w0
(105) < sup |a(u,0)| +olF,
u€[0,h]
u 6 /
|Bn(u,v)|§|ﬁ(0,v)|+/ aﬁn (', v)dut

0 u

(106) < bo+ uMF.

On the other hand

“10a! oo
< no 1 o ’
|, (u, v)] < |a(0,v)] —l—/o 5 (u',v) + 5 (u,0)| du
(107) < ap +uG,
v 8/87/1 ! 8/8 ! !
< il
8. 0)] < 13 0)] + [ |G ) + 520,09 o
(108) < sup |B(u,0)| +vD.
u€[0,h]

Therefore, if we choose € and h sufficiently small such that

B —supyejo.n 18w, 0)| A — sup,ejo,n |, 0)] }
D 3 lF )

(109) e < min{

. fJao bo
110 h<(l—-1)min{—,—,
) s (- min {0
we have that (ay,, 8,) € R;.
For the following discussion of ;1 and v we omit the index n since it would be the
only index appearing. We consider (@5]) with n in the role of 0. Integrating with
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respect to v and v we obtain (recall that v(0,v) = 1)

(111) u(u7 U) = M(uu O)efov L(U,’U/)d’vl _ / ef;’, L(u,'u”)d'u” (KI/) (u, 'U/)dU/,
0
(112) V(U,’U) —e f(;L K(u/)y)du/ +/ e f;, K(u//,v)du// (LM) (U/, 'U)dul.
0
We define
(113) Cro & Oex Cis % sup dex o,
“ R, ojet ’ 7 R aﬂ , A R, C+ —C— -
We have
1 _
IL| = e
ey —c_ | Ov
(114) < Cy (C_olF + C_D) ©'T,
1 (90_,_
K|= —_—
K] cy —c— | Ou
(115) <Oy (CyaG +CysMF) ¥R,
Therefore,
(116) ol < % (mo+ T [ iusehae').
0
(117) v (u,v)| < e“K <1 +I/ |u|(u/,v)du/) :
0
Substituting (I10) into (IT7) we obtain
(118) T(uo) < fit fo [ T,
0
where
(119) T(u,v) & sup [v(u',v)),
u’ €[0,u]
(120) fi(u,v) def guK (1 + ufe”zM) , fa(u,v) KL K HvL,
Defining
(121) S (v) d:ef/ T (u,v')dv',
0
(II8) yields
%,
(122) (v) < fi(u, v) + fa(u, v)Zu(v),

dv
which implies

(123) Zu(’U) S/ fl(u,v/)efvv/ f2(um”)dv,,dv/,
0

Using this in (II8) yields (putting back the index n)

(124) |Vn(u5 1))| < fl(ua 1)) + fQ(U,’U)/ fl(ua v/)ef;’, f2(uw””)dvﬂdv/ d:ef " (’U,,’U).
0

13
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Substituting this into (I16) gives

oudv

(125) |pon (u, )] < e’k {mo + K/ F (u,v’)dv’} def Fy(u,v).
0
We note that
(126) lim Fl = 1, lim F2 = my.
u—0 v—0
Now we choose ¢, h sufficiently small such that (recall that mg < M, 1 <)
(127a,b) < M, <1,
respectively, which implies
(128) () 1, g, 0)] < M.
Now we look at ([@f) with n in the role of 0 which is
(129) rn(u,v) = r(u,0) —|—/ (Uncin)(u,v")dv'.
0
This together with (@) with n in the role of 0 gives
(130) rn(u,v) = r(0,v) +/ (pnc—n) (', v)du'.
0
Let
(131) el 1 sup e
Ry
If we choose € and h such that
1
132 e < —min{ inf r(u,0)—ir, , 3ry — sup 7(u,0)p,
(132) cll {ue[o,h] (w,0) =3 M o] (,0)
T'm
133 h< ,
(133) ~ 2 M
we obtain
(134) %'rm <rp < %TMa
hence (ay, B, ) € i, which implies
(135) F. <.
In view of ([@7), (@), we have
Oa, — op, —
(136) 91 <I[F, ‘M < MF,
v U
respectively. From (@7)), (O8) we have
oa, v oF, 0%t
137 —t = o = Fp '
(137) ou (u,v) /0 (V Ju +8u8v )(u,v) v
0By 41 “ OF, 0%t
138 — = n—— " F, "v)du.
(138) v (u,v) /0 (M Ov +8u81} ) (', v)du
In view of (II4)), (I1H), (I2]) we see that
9%t S —
(139) <ML+IK.
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Let
of oF
(140) Fy L sup —’ cfed{a,B,r}.
o | Of
We have
oF, 0%t — = e def
141) (v, Zin g <z(FaG FsMF + F, EM) F(MT + 1K) % 1,
()V8u+8uav - + e + + 1K) !
OF, 0%t — = e def
142) |t 5"+ 2By < M (FalF + FyD + Frcll) + F(ML + 1K) ' .
(142) |ptn - + 5 F | < + F3D + Fpcl 1) + F(ML + 1K) € Hy
Choosing ¢, h sufficiently small such that (recall that G > go)
G —go D —dy
< <
(143a,b) 9 — Hl 9 h i H2 Y
respectively, we obtain
dal op!
(144) 9%t <G — go, ’Lﬂ <D —dp.
v
In view of (I36]), (I44) the proof is complete. O

Lemma 4. Let the hypotheses of lemmald be satisfied. If h and € are sufficiently
small, depending on A, B, D, G, M, ry,, vy, | then the sequence ((c,, 35,);n =
0,1,2,...) is a contractive sequence in the space C1(Iljc, R?).

Proof. We use the definition

(145) Anf d:ef fn_fnfl-
Let

def o)A o)A oA, B OA,B
(146) A S s | 25| s 2] aup | 95| |25

In the following we denote by C' a constant depending on A, B, D, G, M, 7, 7,

I. From ([@7), @8) we have

OAp 110!
(147 2251 < O8]+ Al + 18081+ B0,

N1
(145 225522 < i+ 1800 18,81+ A,
For the differences A, o, A, 5 we have

/ !/
(149) |Apa| < wvsup 92na ) |ALB| < usup 5?{;5 .
e Ipe u

For the difference A, we use (@) with n and n — 1 in the role of 0. We obtain
(150) Apr = / (UnApc— + c— o1 App) (v, v)du'.
0

In view of (I49)), we have

!
nQ

ov

oA
ou

(151) [Aper] < C (’U sup 0

he

+ u sup
Hh,s
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Now, from (@8] with n and n — 1 in the role of 0 we obtain

O?Apt
152 KAy — LnApp =,
(152) Oudv + v H
where
(153) = 1AL — vy 1 ALK

Making use of (I51) we get
ALK < ‘An ( : aﬁ)‘

¢y —c_ Ou

{ oA oA, B A OA, B }
< C<wvsup + usup
Hhs Hh,s 6” au au
(154) < CA,
NENERE
cy —c— Ov
An o A5 Ao A, 5
SC{vsup 0Ana + usup 08/ —l—‘a a —|—'a b }
. m,. | Ou ov ov
(155) < CA.
Therefore,
(156) |=.| < CA.
Integrating (I52) yields
(157) App(u,v) = — / e En ()" (¢ Ny — 2, (u, 0 ),
0
(158) Anu(uv ’U) = / e fi/ K, (u' v)du” (LnAn,UJ + En) (ul7 'U)dul.
0

Substituting (I57) into (I58]) and following a similar procedure as was carried out
in the prove of the previous lemma, we arrive at

(159) |A,v| < CuA,
(160) |Anp| < CvA.
Using this in (I50) we obtain
(161) [Apr] < Culu + v)A.
Therefore,
/ /
(162) “%gzlo‘ , ‘{mgzlﬂ ‘ < C(u+v)A.

To estimate [0A,a//Ou| and |0A, 5’ /Ov| we use (I3T), (I38). To estimate the
mixed derivative on the right hand side of the resulting difference, we observe that

from (T52), (T5), (T59), (I60) we get

O?Ant
< .
(163) Sudy | = CA
We obtain
aAn—i-lO/ aAn—i—lﬁ/
< .
(164) ’ 5 ) 5 < C(u+v)A
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In view of ([I62), (I64) and recalling that the constants in these equations depend
on A, B, D, G, M, v, rpr, I, we see that for sufficiently small h and e, depending
on A, B, D, G, M, 7, Tar, 1, the sequence contracts in C1 (I, R?). O

The two lemmas above show that the sequence (a/,, 8),) converges to (o/,5') €
C uniformly in ITj.. Therefore we also have uniform convergence of (o, 8,) to
(a, B) € C1(11pe). Now, ([I59), (I60) show the convergence of the derivatives of t,,.
Therefore, the pair of integral equations (I11]), (I12) are satisfied in the limit. We
denote by t the limit of (t,). It then follows that the mixed derivative 9%*t/Oudv
satisfies ([@3)). In view of the Hodograph system the partial derivatives of r,
converge uniformly in IT,. and the limit satisfies the Hodograph system. Let us
denote by r the limit of (r,). We have thus found a solution of the characteristic
initial value problem in II.. We note that the solution satisfies the bounds (§7),
®&Y).

The two previous lemmas establish the following proposition.
Proposition 2. Let us be given data on CT of size ag, by, do, Tm, Tar according
to (B6), BT). Let us be given a constant I > 1. Let us be given data on C'~ which
agrees with the data on Ct at (u,v) = (0,0) and is of size mo, go according to (61)).
Then, for h and € sufficiently small, depending on the size of the initial data, we
have existence of a Ct solution of the characteristic system in Il which satisfies

the bounds (&), (B8).

We supplement this proposition with the following uniqueness result.

Proposition 3. Let (ay,B1,t1,71) and (ag, B, ta,72), both in C1(Il.), be two
solutions of the characteristic system corresponding to the same initial data. Then,
for h, e sufficiently small, depending on the size of the initial data, the two solutions
coincide.

Using similar estimates as in the convergence proof above, the proof is straight-
forward.

4.2. Extension to a Strip. Now we show that the solution is actually given in
II;,,«, i.e. we have existence of a unique continuously differentiable solution in a
region adjacent to C* which extends over the full domain of the initial data and is
of thickness h, where h depends on the size of the initial data in the way given by
the above propositions.

Lemma 5. The solution in I, can be continued to 11, .

Proof. As a consequence of the results above, the solution satisfies the following
bounds in II,.:

(BAY)  |v[ <l Jo| <A |B|<B,  [§]<D, lr,<r<3n.

2
Let
(165)

Vo def sup {v € (0,v*) : (BAf) holds and the solution is unique for (u,v) € H;w}.

Let us assume vy < v*. Since the solution is continuously differentiable it is also
unique at v = v2. In the following all statements hold within Il,,. From lemma
we have

(166) <G, pl <M.
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From now on we will make use of (BAf), (I66]) without further notice. We look at

(167) 5lu.) = 50,0+ [ (uF) ' o)
0
We have
|B(u,v)| < by + hMF
(168) < by + (l - 1)b0 =[lby = B,
where for the second inequality we used ([I0). We look at
(169) r(u,v) = 7(0,v) —|—/ (c—p)(u,v)du'.
0
We have

r(u,v) < rar + het M

(170) <+ 5rm < Sru,

where for the second inequality we used ([33). Similarly we find r(u,v) > 3ry,.

Therefore,

(171) $rm <1 < 3rp
We have
(172) L= — ‘Bc__ <Cy_ (C_olF+C_4D) =T,
cy —c— | Ov
1 Ocy - =
(173) K| = o —c | ou < Cy_ (C4aG+CysMF) =K.

For the definition of L, K see (I14)), (II5)) respectively. We deduce that there exists
a constant K such that

(174) K| <K <K.
Therefore, the inequalities (IT6), (ITT) hold for u, v with K’ in the role of K. This
then implies that (I24) holds with K’ in the role of K, ie.
(175) v (u, v)| < Fi(u,v),
where by F}(u,v) we denote F(u,v) with K in the role of K. Since
Fi(u,v) < Fi(u,v)
(176) < Fi(h,v),
together with (I27b), we obtain
(177) lv(u,v)] < L.

Using (I72), (I3 together with (IGG) we obtain
‘ 9%t

(178) <ML +IK.

Oudv (u, )

We also have
or
. ov

(179) <M (Fazf + FsD + Frciz) .
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Taking the derivative of (@0) with respect to v and using the previous two estimates
we obtain (for the definition of Hs see (I42]))

(180) u%—f + %F‘ < Hs.
Therefore,
[6(u, v)| < do + hHa
(181) <D,
where for the last inequality we used (I43b). Finally we consider
(182) a(u,v) = a(0,v) + /Ouw(ul,v)du'.
We have
la(u,v)| < ap + hG
(183) <A,
where we used ([II0). We have therefore established in IIj.:
(BA) v <1, la| < A, 18| < B, 6| < D, Trm <71 < 3rag,

i.e. we have improved (BAf). Therefore, using the result from above, we can solve
an initial value problem with corner at (u,v) = (0,v2), thus establishing a unique
solution in Il (y, ), for some ¢ < v* — vy which satisfies the bounds (BAf). This
implies vy = v*. ([

4.3. Higher Regularity. We now establish uniform bounds in ITj,« for the partial
derivatives of «, (3, t and r to arbitrary order.

Lemma 6. The partial derivatives of a, 3, t, v to all order are, in absolute value,
uniformly bounded in Tlp,-.

Proof. We establish such bounds by induction. Let (P,—_1) be the proposition

n—1

(Pnfl) EL{E W(O‘aﬂatvr) §O7 i+j:n_1'

We have already established proposition (P;). Suppose that proposition (Py) holds
for k =1,...,n— 1. In the following we denote by F; a function in IIj,« which
involves only (n — 1)'th order derivatives of «, 8, ¢, r and which is, therefore,
uniformly bounded. Functions carrying the same index can change from line to
line. We first deal with the mixed derivatives of order n. Let 1 < i,5 < n — 1,
i+ j =mn. In view of ([@3) we have

ot o2
ouiovi 8ui—18vj_1(
Because the right hand side involves only derivatives of order n — 1 and lower, by
the inductive hypothesis, it is bounded. Therefore

o™t
lauiavj

(184) Lp— Kv).

(185)
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In view of ([Bh) we have

ana B anfl 8_04 B anfl (F)
Ouidvi  Outdvi—1 \ dv ) Ouidvi—1 v
ot
(186) = Fig + B

In view of (@b), the same holds for 9"3/0u’dv’. Therefore, together with (I35),
we obtain

<C.

(187)

OuiOvI

M«
Ouiovi |’

o

We turn to the pure derivatives of order n. By we have

oo ot o™t
(188) e = W) = Fig— + P,
s o ot
(189) W—W(HF) Fio— + P,

while from (89) we have

O ) = 2 w0 + /O (86:H(UF))( o)’

ot o"F ont N
(190) = Fi(u,v) —l—/o <F28 "5 + F3 S + Fy 8u”18v> (u,v")dv'.

The mixed derivative of ¢ of order n is taken care of by (I8H). For the mixed
derivative of order n 4+ 1 of ¢ we look at

8n+1t anfl

L K
durdv  oun— 1( = Kv)

ot oo o"g
(191) _F1+F28"+F38"+F48 pooh

where for the second equality we use that we already have bounds for the mixed
derivatives to order n of «, 3, t. Using also (I89) we arrive at

0 (ot ot "
192 — | =— P+ F F:
(192) au(aun) I R
This implies
ot B v " N
(193) W(u,v} = Fi(u,v) —|—/0 <F2W> (u,v")dv'.
Using now
O"F 0"a "B ot
194 =F + F F: F,
(194) R O N T
together with (I91]), (I93) in (I90) we obtain

n

" B "o ot N
(195) 8W(u,v) = Fi(u,v) —i—/o (Fg S + F3 8u”) (u,v")dv
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This together with (I93) yields the following system of inequalities

" Yo" ot
e < / e vt N g0
(196) ’aun (u,v)| <C+C /0 ( S + S ) (u,v")dv’,
o"t Yo"«
< ! ! !
(197) ’—8u” (u,v)| <C+C /0 Jun (u,v")dv’,
which implies
0" 0"t
- i <C.
(198) O )| T )| <
Similarly we obtain
o"p ot
il z <C.
(199) O] | T )| < €
In view of (I88]), (IRJ) these imply
o B "o
(200) S (u,v)|, Son (u,v)| < C
These together with (I85]), (I8T) imply proposition (P,). O

The above existence, uniqueness, continuation and regularity result can be car-
ried out for a region adjacent to C'~ as well. Together with the solution of the
constraint equations from the previous section we arrive at the following result.

Theorem 1. Let rg > 0 and let us be given free data 8%, tT € C*[0,v*], a™,t~ €
C>®[0,u*] such that t4(0) = t=(0). Then, for h', b sufficiently small depending
on the size of the data, there exists a unique smooth solution «, B, t, r of the
characteristic system of equations for (u,v) € Ilysp U Ipiry+, where

(201) Habdzef{(u,v)€R2:O§u§a,0§v§b},
such that

(202) r(0,0) = ro, t(0,v) = t*(v), t(u,0) =t (u),
(203) B(0,v) =67 (v), au,0)=a (u).

FIGURE 2. The domain II«ps U Il
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4.4. Solution in the t-r-plane. We consider the map (u,v) — (¢,7). In view of
Ot/ou (Ot/Ou)c_
ot/ov  (0t/Ov)cy

(204) = 2pwm,

a solution of the characteristic system corresponds to a solution in the ¢-r-plane as

long as

(205) v > 0.

We recall that p(u,0) = v(0,v) = 1. Let us assume that p(0,v),v(u,0) > 0. Since

we have bounds on the second derivatives of ¢ we deduce that for h’, h” sufficiently
small, the solution in IT,«ps U Ilp« corresponds to a solution in the t-r-plane.

B pe—
v veq
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