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ABSTRACT   

High flux of hyperentangled photons entails collecting the two-photon emission over relatively wide extent in frequency 

and transverse space within which the photon pairs are simultaneously entangled in multiple degrees of freedom. In this 

paper, we present a numerical approach to determining the spatial-spectral relative-phase and time-delay maps of 

hyperentangled photons all over the spontaneous parametric down conversion (SPDC) emission cone. We consider the 

hyperentangled-photons produced by superimposing noncollinear SPDC emissions of two crossed and coherently-

pumped nonlinear crystals. We adopt a vectorial representation for all parameters of concern. This enables us to study 

special settings such as the self-compensation via oblique pump incidence. While rigorous quantum treatment of SPDC 

emission requires Gaussian state representation, in low-gain regime (like the case of the study), it is well approximated to 

the first order to superposition of vacuum and two-photon states. The relative phase and time-delay maps are then 

calculated between the two-photon wavepackets created along symmetrical locations of the crystals. Assuming 

monochromatic plane-wave pump field, the mutual signal-idler relations like energy conservation and transverse-

momentum conservation define well one of the two-photon with reference to its conjugate. The weaker conservation of 

longitudinal momentum (due to relatively thin crystals) allows two-photon emission directions coplanar with the pump 

beam while spreading around the perfect phase-matching direction. While prior works often adopt first-order 

approximation, it is shown that the relative-phase map is a very well approximated to a quadratic function in the polar 

angle of the two-photon emission while negligibly varying with the azimuthal angle. 
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1. INTRODUCTION  

Simultaneous entanglement of multiple degrees of freedom, or so called “hyperentanglement”, has been widely used to 

circumvent limitations of linear
1
 and nonlinear

2
 optics in performing several quantum operations like Bell state analysis

3-

5
, superdense coding

6
, and superdense teleportation

7
. Another vital advantage emerges because the quantum logic 

between qubits in different degrees of freedom of one photon is relatively easy when compared to qubits based in 

different photons
8,9

. The noncollinear spontaneous parametric down conversion (SPDC) emission of two coherently-

pumped, crossed, and adjacent nonlinear crystals has been widely used to generate hyperentangled photons
10-18

. There 

have been several attempts
11-18

 to idealize the output of the two-crystal source by erasing the which-crystal information, 

e.g., enhancing the temporal overlap of the down-converted photons
11

, and by flattening the angle-dependent relative-

phase
12

.  

However, today, 17 years after its invention, the high-fidelity emission of the hyperentangled photons source is 

still limited to relatively small apertures, owing to the angle-dependent relative-phase. There are several simplifications 

that have been adopted to determine the relative phase of the two-photon state produced by the two-crystal emission. In 

their way to demonstrate the brightest -at that time- high-fidelity source of polarization entangled photons, Altepeter et 

al.
12

 presented the first attempt to calculate the spatial relative-phase variation which was restricted to SPDC light within 

the horizontal    plane. It was important to define and compensate for the relative-phase variations so as to enable 

                                                 
I
 sobayya@zewailcity.edu.eg 



 

 
 

 

 

 

collection over wide angles while avoiding the well-known flux-purity tradeoff. Their calculations came along with 

experimental results via quantum state tomography over 25 points spreading all over the transverse detection window. 

However, the measurements clarified a significant mismatch with the theory which was referred to the possibility of 

unjustified approximations with the calculations. After two years, an erratum
13

 was published to correct the external 

relative-phase term which apparently increased the matching with the experimental results. The revised method was 

subsequently used by Rangarajan et al.
14

 to run simultaneous compensation for spatial relative-phase variations and time 

delay between the coherent emissions of the two crystals. 

However, all of these works
12-14

 consider the phase as a function in space only (i.e., for monochromatic SPDC), 

while the phase also varies in frequency (which gains more importance when wide spectral filters are in use). Not only 

but they also double the phase accumulated by one of the two-photon to obtain the relative-phase of the two-photon state 

which was then verified invalid
18

 in their case
II
. 

An elegant method for relative-phase calculation was then presented by Cialdi et al.
16

 by approximating the phase 

to first order in a number of spatial and spectral parameters. However, the accuracy of this approach is limited to small 

ranges of emission angles and spectrum where the map linearity remains a good approximation.  

Recently, we determined the exact relative-phase as a function of frequency and angle of emission, taking into 

consideration the finite spectral width of the pump beam
18

. To illustrate the spatial-spectral phase map in this case, we 

first considered that the pump beam is monochromatic plane wave and the SPDC light emission is in directions not 

restricted to the perfect phase matching condition. This reduced the parameters with which the phase map varies to the 

frequency and the emission angle of the signal photon. The compensation for this sort of phase variations can be then 

achieved by two birefringent elements inserted within the collection angles of downconverted photons. The tunability of 

the compensated phase function was offered by tilting the two birefringent elements.  

Second, we considered the contrast situation: the pump beam is of a finite line width and the SPDC light is 

restricted to perfect phase matching directions. This alternatively reduces the phase map parameters to the frequencies of 

signal and idler photons. The variations of the phase map come then only with the sum of the downconversion 

frequencies; that is the frequency of the pump beam. To compensate for this spectral phase gradient, we offered two 

approaches, either to use different parameters of the two birefringent elements acting on the SPDC light (which is found 

a complex problem and may be unrealizable with the available birefringent materials), or to insert a third birefringent 

element to the path of the pump beam before striking the two crystals. The later approach, besides being easily 

realizable, offered the important result that the compensation for the phase gradient due to pump spectrum and under the 

perfect phase matching condition is equivalent to the compensation needed for the delay between the two-photon 

wavepackets produced in the first and the second crystals. This approach while enables the accurate calculation of the 

relative-phase over wide ranges of spectrum and emission angle, it is –like previous approaches– limited to SPDC light 

within the horizontal    plane. 

However, the detection of high-fidelity polarization entangled photons over ultra-wide apertures requires 

compensation for the angle-dependent relative-phase over all the spatial acceptance range, and therefore, necessitates 

determining the relative-phase map all over the SPDC cone. On the other hand, to verify the purity of the emission, other 

properties like the time delay between the two-photon wavepackets emerging from the 1
st
 and 2

nd
 crystals need to be 

determined all over the emission cone. 

In this paper, we adopt a vectorial representation to describe all the phase-matching parameters such as the 

wavevectors, the Poynting vectors of the ordinary and the extraordinary components of pump and SPDC light traversing 

the two crystals. This enables us to determine the maps of the relative phase and time delay over the 2D angular space 

(defined by the polar and azimuthal angles of SPDC emission). The vectorial representation enables also determining the 

relative-phase and time-delay maps in special settings such as the oblique incidence of the pump beam which can be 

used for self-compensation. 
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 For negative birefringent crystals such as BBO and LiIO3, the relative phase of the produced two-photon state can be as 

double as the phase accumulated by one of the two-photon if the principal plane of the 2
nd

 crystal is orthogonal to the 

plane where the relative phase is calculated.  



 

 
 

 

 

 

2. THE TWO-PHOTON STATE OF THE SUPERIMPOSED DOWN-CONVERSIONS 

Consider two orthogonal type-I crystals coherently pumped by diagonally polarized pump beam. The two crystals are of 

negative birefringence and infinite lateral extent. The two-photon state of the superimposed SPDC emissions is entangled 

in polarization, spatial mode, and energy-time. The polarization part of the two-photon state can be expressed as 
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where    and    are the angular frequencies of pump and signal photons, respectively,     
( )

 is the effective 

susceptibility,    is the transverse wavevector component of the signal,   is the crystal length,     is the longitudinal 

wavevector mismatch,   and   denote the horizontal and vertical polarizations,    is the phase difference initially 

existing between orthogonal pump components, and    (     ) is the relative phase associated with the 

downconversion process. In (1), the pump beam is assumed to be a monochromatic plane wave; so that the conservation 

of energy and transverse momentum reduces the integrands to be on signal parameters only. It is worth mentioning that if 

the biphoton is restricted to single-mode detection, the spatial dependence of     effectively vanishes, leaving solely the 

spectral dependence. 

3. VECTORIAL REPRESENTATION  

3.1 Normal pump-beam incidence 

It is straightforward to parameterize the two-crystal emission in the 2D angular space (   ) by adopting the vectorial 

analysis instead of the conventional scalar analysis in the case of 1D space
18

. We represent the optic-axes of the 1
st
 and 

2
nd

 crystals as the unit vectors 
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where    
     

 are (polar and azimuthal) angles of the optic axis of crystal   as shown in Fig. 1. As depicted in Fig. 1, 

the unit wavevectors of the pump photon (taken to be collinear with z axis) and the scattered ordinary signal and idler 

photons are  

   
  (     )    

  (      
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where the angles of    
  and    

 are related together via the transverse momentum conservation. After crossing the inter-

crystal interface, ordinary downconverted light turns to be extraordinarily polarized with the corresponding unit 

wavevectors 

 
Figure 1. Two crystal source in the case of normal pump incidence 
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Here while the azimuthal angles (the  ’s) are strictly the same as    
  and    

  (the rays refracted into the 2
nd 

crystal lie 

within the plane of incidence), the polar angles (the  ’s) are different due to the different refractive indices. Because the 

extraordinary refractive index itself is angle dependent, the polar angles cannot be given in a direct way. Several 

iterations should be made to obtain precisely the value of      using the refraction relation 
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where    and    are the principal values of the refractive index. These iterations should be carried out all over the 2D 

space of the polar and azimuthal angles. The corresponding extraordinary wavevectors can be then determined by 

multiplying the unit vector by the wavenumber which is function of the frequency and the angle  

         (   
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that is variable across the 2D space. In the 2
nd

 crystal, the Poynting unit vectors   ,    can be obtained by substituting the 

walk-off angle 
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into the decomposition relation 
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This form positions the Poynting vector    within the plane of    
  and    at an angle    off the wavevector    

 . Finally, 

the external (free-space) unit wavevectors can be calculated as 
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3.2 Oblique pump-beam incidence  

The key idea in the calculations of the oblique-incidence situation is to consider the initial unit vectors    
  and    

  with 

respect to the pump frame (        ) defined as in Fig. 2. The pump frame has  -axis collinear to the interacting 

           

Figure 2. (a) Laboratory frame (𝑥 𝑦 𝑧) and pump frame (𝑥  𝑦  𝑧 ). (b) Two crystal source in the case of oblique 

pump incidence. 

 



 

 
 

 

 

 

component of the pump beam (extraordinary component in case of negative birefringence crystal) and  -axis and  -axis 

given by the polar and azimuthal angles (  
        

 ) of the interacting pump component (internal to the crystal). The 

pump frame is therefore aligned to the laboratory frame in case of normal pump incidence with      and     . The 

axes of the pump frame are related to the laboratory frame as 
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As in Fig. 2, it is straightforward to describe SPDC emission all over the cone (and even the optic axes) with reference to 

the pump frame. Using transformation of axes, we can redefine all vectors in the laboratory frame.  

It is worth noticing that the phase matching angle (the angle between the interacting component of the pump beam 

and the optic axis) should be kept the same along the traverse of the pump beam through the two crystals, thereby 

maintaining the overlap of the superimposed SPDC light.  

4. MAPS ALL OVER THE TWO-CRYSTAL EMISSION   

In this section, we determine the spatial and spectral maps of the relative-phase and time-delay that can be observed via 

multimode two-photon detection.   

4.1 Relative-phase map 

The relative-phase acquired by the two-photon state in (1) can be divided into four parts  

(A) The phase accumulated due to the pass of the 1
st
-crystal emission across the 2

nd
 crystal. 

(B) The phase difference between the emissions of the two crystals as being diffused in free space from different points of 

origin.  

(C) The relative phase due to the different positions of the two crystals along the   axis.  

(D) The phase difference initially exists between orthogonal pump components. 

The phase map can be calculated all over the two-photon emission cone as 
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                                (  ) 

which is function of the signal parameters (          ) only, thanks to the one-to-one mapping to the idler’s 

(          ). It is therefore sufficient to plot the relative phase map    (          ) over half the 2D angular space 

(the half corresponding to the signal photon) as shown in Figs. 3-6. In these figures, one can observe no significant 

difference in the relative-phase map for different settings of pump’s angle-of-incidence. It worth mentioning that within 

the examined angular ranges, the relative-phase function all over the cone is very well approximated to a quadratic 

function in the polar (emission) angle while slightly varying with the azimuthal angle of the two-photon. This 

approximation is verified by the linear slopes of the phase maps. 

 



 

 
 

 

 

 

 

 

Figure 4. The same as in Fig. 3 for   
   ° and   

   ° 

 
Figure 3. (a) The spatial relative-phase map (in degrees) for the degenerate emission of two LiIO3 crystals 

of 0.59 mm length with the phase-matching angle between the pump beam and optic axis equals 51.95° 

The two-crystal are pumped by normally incident beam (𝜃𝑝
   ° and 𝜙𝑝

   °) at 351.1-nm to produce 

degenerate emission at ~3°. The phase maps are calculated with reference to the position of signal photon 

(occupying the space 𝜙  [   °   °]) at a transverse plane, 120 cm from the two crystals. The axes 𝑥 and 

𝑦 are those of the Laboratory frame (therefore, fixed for oblique incidence) where the origin point 

represents the point that the pump beam passes in case of normal incidence. (b) The spectral profile for the 

relative phase along 𝑦    line for SPDC emission around the degenerate frequency. (c) and (d) The 

angular slope of the relative phase along 𝑦    and 𝑥   , respectively. 



 

 
 

 

 

 

 

Figure 5. The same as in Fig. 3 for   
    ° and   

     ° 

 
 
 

 

 

Figure 6. The same as in Fig. 3 for   
    ° and   

    ° 

 
 
 

4.2 Time-delay map 

Ideally, the superposed wavefunction of the biphoton emerging from the two crystals due to a pump photon shouldn’t 
involve correlations with other domains; e.g., space, time, and frequency. Otherwise, the degree of entanglement is 
proportionally compromised. The time interval between the instants when the pump photon crosses the free-space : 1

st
-

crystal interface and when a photon pair born at a depth    (   )  of the 1
st 

crystal emerges from the  2
nd

-crystal : free-
space interface 
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where    
 ,    

  are the group velocities of extraordinarily polarized pump and downconverted photons,    
  is the group 

velocity of ordinarily polarized downconverted photon. The time interval in case if that photon pair is born at equivalent 

depth in the 2
nd 

crystal 
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The relative time delay can be then calculated as 
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which gains its spectral and angular dependence due only to the first term. The difference between     and     then 

evolves as we get further from the degenerate phase matching condition
17

 and also when the downconversion takes place 

in a plane around the principal plane of the 2nd crystal. To obtain high-fidelity entangled state, the time delays     

should be kept sufficiently less than the coherence time of the pump photons
11,14,17

. Figures 7-9 show the time delay map 

for different settings of pump incidence. It is remarkable that in Fig. 9, the pump incidence at   
    ° and   

     deg 

achieves perfect time-delay compensation in the horizontal plane. This type of self-compensation source can be of 

special importance in experiments.  

 

Figure 7. The maps of the time-delay between wavepackets scattered from the 1
st
 crystal and the 

superimposed ones from the 2
nd

 crystal. To clarify the frequency dependence, we assume the signal 
photon to be detected behind narrow filter centered at different wavelengths as shown above the 
subfigures. The left half of each map is reserved for  𝑡𝑠, while  𝑡𝑖  is shown to the right. The 
downconversion is assumed to take place in two BBO crystals each of length 0.6 mm with the angle 
between the pump beam and optic axis equals 29.3° The two-crystal are pumped by normally incident 
beam (𝜃𝑝

   ° and 𝜙𝑝
   °) at 405-nm to have degenerate emission centered at ~3° 



 

 
 

 

 

 

 

Figure 8. The same as in Fig. 7 for   
    ° and   

    ° 

 
 
 
 

 

Figure 9. The same as in Fig. 7 for   
    ° and   

    ° (time delay compensation in horizontal plane). 
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