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Abstract

The Schwarzschild-de Sitter (SdS) solution exists in the large majority of mod-
ified gravity theories, as expected, and in particular the effective cosmological
constant is determined by the specific parameters of the given theory. We
explore the possibility to use future extended radio-tracking data from the cur-
rently ongoing New Horizons mission in the outskirts peripheries of the Solar
System, at about 40 au, in order to constrain this effective cosmological con-
stant, and thus to impose constrain on each scenario’s parameters. We inves-
tigate some of the recently most studied modified gravities, namely f(R) and
f(T ) theories, dRGT massive gravity, and Hořava-Lifshitz gravity, and we show
that New Horizons mission may bring an improvement of one-two orders of
magnitude with respect to the present bounds from planetary orbital dynamics.

Keywords: Experimental studies of gravity, Modified gravity, Dark energy,
Lunar, planetary, and deep-space probes

1. Introduction

General Relativity (GR) has undergone brilliant successes since its inception
100 years ago (see, e.g., the review [1] and references therein). Einstein’s theory
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is the standard paradigm for describing the gravitational interaction, verified by
many experimental evidences [2], even though, with the possible exception of
binary-pulsar systems, at least to a certain extent, these tests are probes of the
weak-field gravity, or differently speaking they probe gravity up to intermediate
scales (≃ 1 − 101 au). Nevertheless, one of the current challenges in theoreti-
cal physics and cosmology is the description of gravitation at large scales. In
particular, evidences from astrophysics and cosmology [3–12] suggest that the
Universe content is 76% dark energy, 20% dark matter, 4% ordinary baryonic
matter. This implies that in order to reconcile the observations with GR we are
led to assume that the Universe is dominated by dark entities, with peculiar
characteristics. The dark energy is an exotic cosmic fluid, which has not yet
been detected directly, and which does not cluster as ordinary matter; indeed,
its behaviour closely resembles that of the cosmological constant Λ, which, in
turn, brings about other problems, concerning its nature and origin [13, 14]. On
the other hand, the dark matter is an unknown type of matter, which has the
clustering properties of ordinary matter; since 1933 it is has been related to the
problem of missing matter in astrophysical scenarios [15]. Moreover, some kind
of cold and pressureless dark matter (whose distribution is that of a spherical
halo around the galaxies) is also required to explain the rotation curves of spiral
galaxies [16]. Hence, the best answer we have today for these cosmic puzzles is
the so called concordance model or ΛCDM, which provides the simplest descrip-
tion of the available data concerning the large-scale structure of the Universe.
For a recent review, see e.g. [17]. This picture is completed with the inflationary
scenario which solves the horizon, flatness and monopole problems [18].

Besides these difficulties in explaining observations, there are theoretical mo-
tivations suggesting that a theory of gravity more fundamental than GR should
be formulated: Einstein’s theory is not renormalizable, and thus it cannot be
quantized as is. In a recent paper by Berti et al. [19], a thorough review of
the motivations to consider extensions of GR can be found together with a dis-
cussion of some modified theories of gravity (see also the recent reviews [20–24]
and references therein).

A possible strategy towards a new theory of gravity is, in some sense, a natu-
ral generalization of Einstein’s approach, according to which gravity is geometry.
Accordingly, a new theory is obtained extending GR on a purely geometric ba-
sis: in other words, the required ingredients to match the observations or to
solve the theoretical conundrums derive from a geometric structure richer than
that of GR.

As a prototype of this strategy, which has gained an increasing attention
during the last decade, we mention the f(R) theories, where the gravitational
Lagrangian depends on a function of the scalar curvature R; extensive reviews
can be found in [25–29]. These theories are also referred to as “extended the-
ories of gravity”, since they naturally generalize GR: in fact, when f(R) = R
the action reduces to the usual Einstein-Hilbert action, and Einstein’s theory is
obtained.

Motivations for studying these theories can be different but, as clearly syn-
thesized by Sotiriou and Faraoni [27], they can be considered as toy-theories
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that are relatively simple to handle and that allow to study the effects of the
deviations from Einstein’s theory with sufficient generality. For instance f(R)
theories provide cosmologically viable models, where both the inflation phase
and the late-time accelerated expansion are reproduced; furthermore, they have
been used to explain the rotation curves of galaxies without need for dark mat-
ter (see [25, 27, 28] and references therein). These theories can be studied in
the metric formalism, where the action is varied with respect to metric tensor,
and in the Palatini formalism, where the action is varied with respect to the
metric and the affine connection, which are supposed to be independent from
one another (there is also the metric-affine formalism, in which the matter part
of the action depends on the affine connection, and is then varied with respect
to it). In general, the two approaches are not equivalent: the solutions of the
Palatini field equations are a subset on solutions of the metric field equations
[30].

A different approach to the extension of GR derives from a generalization
of Teleparallel Gravity (TEGR) [31, 32]: this theory is based on a Riemann-
Cartan space-time, endowed with the non symmetric Weitzenböck connection
which, unlike the Levi-Civita connection of GR, gives rise to torsion but it is
curvature-free. In TEGR torsion determines the geometry, while the tetrad
field is the dynamical one; the field equations are obtained from a Lagrangian
containing the torsion scalar T , arising from contractions of the torsion ten-
sor. Notwithstanding GR and TEGR have a different geometric structure, they
have the same dynamics: in other words, every solution of GR is also solution
of TEGR and vice versa. Hence, one could start from TEGR and extend its
Lagrangian from T to an arbitrary function f(T ), resulting to the so-called
f(T ) gravity [33, 34] (for a review see [35]). Since f(T ) gravity is different from
TEGR, f(T ) theories have been considered as potential candidates to describe
the cosmological behavior [36–47]. Additionally, various aspects of f(T ) gravity
have been considered, such as for instance, exact solutions and stellar models
[48–60].

Another possible new theory of gravity can be obtained by a massive defor-
mation of GR. Endowing graviton with a mass is a plausible modified theory of
gravity that is both phenomenologically and theoretically intriguing. From the
theoretical point of view, a small non-vanishing graviton mass is an open issue.
The idea was originally introduced in the work of Fierz and Pauli [61], who
constructed a massive theory of gravity in a flat background that is ghost - free
at the linearized level. Since then, a great effort has been put in extending the
result to the nonlinear level and constructing a consistent theory. A few years
ago a covariant massive gravity model has been proposed in [62]. Since the
linearization of the mass term breaks the gauge invariance of GR then, in order
to construct a consistent theory, non-linear terms should be tuned to remove
order by order the negative energy state in the spectrum [63]. The theoreti-
cal model under investigation follows from a procedure originally outlined in
[64, 65] and has been found not to show ghosts at least up to quartic order in
the nonlinearities [62, 66]. The consequent theory exploits several remarkable
features. Indeed the graviton mass typically manifests itself on cosmological
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scales at late times thus providing a natural explanation of the presently ob-
served accelerating phase [67]. Moreover, the theory allows for exotic solutions
in which the contribution of the graviton mass affects the dynamics at early
times. It actually allows for models in which the Universe oscillates indefinitely
about an initial static state, ameliorating the fine-tuning problem suffered by
the emergent Universe scenario in GR [68].

Another approach that could lead towards a formulation of a quantum theory
of gravity is the Hořava formulation of a model that is power-counting renormal-
izable due to an anisotropic scaling of space and time [69]. This is reminiscent of
Lifshitz scalars in condensed matter physics [70, 71], hence the theory is often
referred to as the Hořava-Lifshitz gravity. This theory has attracted a lot of
attention, due to its several remarkable features in cosmology. Unfortunately,
the original model suffers from instability, ghosts, strong coupling problems and
the model has been implemented along different lines [72].

On the other hand, if we consider the excellent agreement of GR with Solar
System and binary pulsar observations, it is apparent that any modified theory
of gravity should reproduce GR at the Solar System scale, i.e. in a suitable
weak-field limit. In other words, these theories must have correct Newtonian
and post-Newtonian limits and, up to intermediate scales, the deviations from
the GR predictions can be considered as perturbations. This agreement should
be obtained, for all the above gravitational modifications. In particular, all
these theories have the same spherically symmetric solution that describes the
gravitational field around a point-like source: the Schwarzschild-de Sitter space-
time (SdS). Interestingly enough, this is a solution of GR field equations with
a cosmological constant. However, for these modified gravities the cosmological
term is not added by hand, but it naturally originates from the modified La-
grangian.

In this paper, we assume that the SdS solution can be used to model the
gravitational field of an isolated source like the Sun, and we examine the impact
that the gravitational modifications have on the Solar System dynamics. Addi-
tionally, we explore the possibility of constraining Λ in the distant peripheries
of the Solar System by means of the currently ongoing spacecraft-based mission
New Horizons. For a recently proposed long-range mission aimed to test long-
distance modifications of gravity in the Solar System, see [73].

This work is organized as follows: In Section 2 we describe the main features
of the SdS space-time, focusing on f(R) and f(T ) theories, massive gravity and
Hořava-Lifshitz gravity. Section 3 is devoted to a preliminary exposition of the
experimental constraints which might be posed by using accurate tracking of
distant man-made objects traveling to the remote outskirts of the Solar System;
the case of the New Horizons probe is considered. Finally, section 4 summarizes
our results.
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2. Schwarzschild-de Sitter space-time as a vacuum solution of modi-

fied gravities

The SdS metric (see e.g [74])

ds2 =

(

1− 2GM

r
− 1

3
Λr2

)

dt2 − 1
(

1− 2GM
r − 1

3Λr
2
)dr2 − r2dΩ2 (1)

where dΩ2 = dθ2+sin2 θdφ2, is a spherically symmetric solution of the Einstein
field equations with cosmological constant Λ in vacuum, namely

Rµν − 1

2
gµνR+ Λgµν = 0, (2)

or equivalently
Rµν = Λgµν , (3)

around the mass M . The SdS space-time has been studied in connection with
the constraints arising from Solar System data [75, 76] and moreover focusing
on the effects on gravitational lensing [77–79]. In the following subsections,
we are going to show that the metric (1) is a solution of various gravitational
modifications, under certain considerations.

2.1. f(R) theories

Let us start by summarizing the theoretical framework of the f(R) theories,
in order to obtain the field equations, both in metric and the Palatini approach
(see [25, 27, 28] for an exhaustive discussion), and to show that the SdS space-
time is a solution.

The field equations can be obtained by a variational principle, starting from
the action1

S =
1

16πG

∫

d4x
√

−det(gµν)f(R) + SM . (4)

As we mentioned above, in these theories the gravitational part of the La-
grangian is represented by a function f(R) of the scalar curvature R, while SM

is the action for the matter sector, which functionally depends on the matter
fields together with their first derivatives. In the metric formalism, Γ is sup-
posed to be the Levi-Civita connection of the metric g and, consequently, the
scalar curvature R has to be intended as R ≡ R(g) = gαβRαβ(g). On the con-
trary, in the Palatini formalism the metric g and the affine connection Γ are
supposed to be independent, so that the scalar curvature R has to be intended
as R ≡ R(g,Γ) = gαβRαβ(Γ), where Rµν(Γ) is the Ricci-like tensor of the con-
nection Γ.

1Let the signature of the 4-dimensional Lorentzian manifold M be (+,−,−,−). further-
more, if not otherwise stated, we use units such that c = 1.
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In the metric formalism the action (4) is varied with respect to the metric
g, and one obtains the following field equations

f ′(R)Rµν − 1

2
f(R)gµν − (∇µ∇ν − gµν�) f ′(R) = 8πG Tµν , (5)

where f ′(R) = df(R)/dR, ∇µ is the covariant derivative associated with Γ,

� ≡ ∇µ∇µ, and T µν = − 2
√
g

δSM

δgµν
is the standard minimally coupled matter

energy-momentum tensor. The contraction of the field equations (5) with the
metric tensor leads to the scalar equation

3�f ′(R) + f ′(R)R− 2f(R) = 8πGT , (6)

where T is the trace of the energy-momentum tensor. Note that Eq. (6) is a
differential equation for the scalar curvature R, while in GR the scalar curvature
is algebraically related to T through R = −8πGT .

In the Palatini formalism, by independent variations with respect to the
metric g and the connection Γ, we obtain the following equations of motion:

f ′(R)R(µν)(Γ)−
1

2
f(R)gµν = 8πGTµν , (7)

∇Γ
α(
√
gf ′(R)gµν) = 0, (8)

where ∇Γ denotes covariant derivative with respect to the connection Γ. Actu-
ally, it is possible to show [80, 81] that the manifold M, which is the model of
the space-time, can be a posteriori endowed with a bi-metric structure (M, g, h)
equivalent to the original metric-affine structure (M, g,Γ), where Γ is assumed
to be the Levi-Civita connection of h. The two metrics are conformally related
by

hµν = f ′(R) gµν . (9)

The equation of motion (7) can be supplemented by the scalar-valued equation
obtained by taking the contraction of (7) with the metric tensor:

f ′(R)R − 2f(R) = 8πGT . (10)

Equation (10) is an algebraic equation for the scalar curvature R, thus slightly
generalizing the GR case where R is proportional to T .

In order to compare the predictions of f(R) gravity with Solar System dy-
namics data, we have to consider the solutions of the field equations in vacuum.
As a consequence, in the metric approach the field equations read

f ′(R)Rµν − 1

2
f(R)gµν − (∇µ∇ν − gµν�) f ′(R) = 0, (11)

supplemented with the scalar equation

3�f ′(R) + f ′(R)R− 2f(R) = 0. (12)

6



In the the Palatini approach, the field equations in vacuum become

f ′(R)R(µν)(Γ)−
1

2
f(R)gµν = 0, (13)

∇Γ
α(
√
gf ′(R)gµν) = 0, (14)

and they are supplemented by the scalar equation

f ′(R)R − 2f(R) = 0. (15)

It is useful to emphasize some features of the scalar equations (12) and (15),
which can help to understand the differences between the vacuum solutions in
the two formalisms. In Palatini f(R) gravity, the trace equation (15) is an
algebraic equation for R, which admits constant solutions R = ci [80], and it is
identically satisfied if f(R) is proportional to R2. As a consequence, it is easy
to verify that (if f ′(R) 6= 0) the field equations become

Rµν =
1

4
Rgµν , (16)

which are the same as the GR field equations with a cosmological constant (3).
In particular, we now have

ΛfR =
1

4
R. (17)

In other words, in the Palatini formalism, in vacuum, we can obtain only solu-
tions that describe space-times with constant scalar curvature R. Summarizing,
Eq. (16) suggests that all GR solutions with cosmological constant are solu-
tions of vacuum Palatini field equations: the function f(R) only determines the
solutions of algebraic equation (15).

In metric f(R) gravity the trace equation (12) is a differential equation for
R: this implies that, in general, it admits more solutions than the corresponding
Palatini equation. In particular, we notice that if R = constant we obtain the
Palatini case. Hence for a given f(R) function, in vacuum, the solutions of the
field equations of Palatini f(R) gravity are a subset of the solutions of the field
equations of metric f(R) gravity [30]. However, in metric f(R) gravity vacuum
solutions with variable R are allowed too (see, e.g., [82]).

Therefore, if we confine ourselves with constant scalar curvature, we have
shown that in f(R) gravity the SdS space-time (1) is a solution of the field
equations, and in particular the “effective” cosmological constant term depends
on the analytical expression of f(R).

As for the reliability of these solutions for describing without conceptual
drawbacks the gravitational field of a star, like the Sun, the issue has been
lively debated in the literature (see e.g. [27, 28]). In the Palatini formalism, the
possibility of constructing vacuum solutions that match an internal solution has
been discussed, and it has been shown that when one considers even a simple
model such as a polytropic star, divergences arise. However, things are different
for non-analytical f(R), and also the role of the conformal metric hµν can help
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to avoid these singularities (see [83] and references therein). On the other hand,
metric f(R) gravity is in agreement with Solar System tests only if the chama-
leon mechanism is considered, according to which the additional scalar degree
of freedom of the theory is a function of the curvature: the mass of the scalar
field is large at Solar System scale, in order not to affect the dynamics, while it
is small at cosmological scale, in order to drive the accelerated expansion. For a
thorough discussion about the reliability of f(R) gravity see the reviews [27, 28],
where it is discussed that Palatini f(R) gravity, beyond the above mentioned
difficulty with polytropic stars, suffers from other problems, which make accept-
able models practically indistinguishable from ΛCDM. On the other hand, in
metric f(R) gravity it is possible to obtain models that are in agreement with
observations, having peculiarities that make it possible, at least in principle, to
distinguish them from ΛCDM. However, we are not going to get into the details
of the above debate, since for the purpose of the present work it is adequate that
f(R) gravity admits the SdS solution. Finally, we recall that some properties
of SdS and Reissner-Nordström (SdS generalised) black holes in f(R) modified
gravity were investigated in [84, 85].

2.2. f(T ) theories

In this subsection we outline the theoretical framework of f(T ) gravity and
we obtain the field equations that accept the SdS space-time as solution [35]).
In f(T ) gravity the tetrads are the dynamical fields. Given a coordinate ba-
sis, the components eaµ of the tetrads are related to the metric tensor through

gµν(x) = ηabe
a
µ(x)e

b
ν(x), with ηab = diag(1,−1,−1,−1). We point out that, in

our notation, latin indices refer to the tangent space, while greek indices label
coordinates on the manifold. The field equations can be obtained by varying
the action

S =
1

16πG

∫

f(T ) e d4x+ SM (18)

with respect to the tetrads, where e = det eaµ =
√

−det(gµν) and SM is the
action for the matter fields. In the action (18), f is a differentiable function of
the torsion scalar T : in particular, if f(T ) = T , the action is the same as in
TEGR, and the theory is equivalent to GR. In terms of the tetrads one defines
the torsion tensor as

T λ
µν = eλa

(

∂νe
a
µ − ∂µe

a
ν

)

, (19)

and the “super-potential” tensor

Sρ
µν =

1

4

(

T ρ
µν − T ρ

µν + T ρ
νµ

)

+
1

2
δρµT

σ
σν − 1

2
δρνT

σ
σµ , (20)

from which one obtains the torsion scalar

T = Sρ
µνT

µν
ρ . (21)

8



By variation of the action (18) with respect to the tetrad field eaµ, we obtain the
field equations

e−1∂µ(e e ρ
a S µν

ρ )fT − e λ
a S νµ

ρ T ρ
µλfT + e ρ

a S µν
ρ ∂µ(T )fTT +

1

4
eνaf = 4πGe µ

a T ν
µ ,

(22)
where T ν

µ is the matter energy-momentum tensor, and where the subscripts T
denote differentiation with respect to T .

We are interested in static spherically symmetric solutions that can be used
to describe the gravitational field of a point-like source, e.g. of the Sun. To this
end, we write the space- time metric in the form

ds2 = eA(r)dt2 − eB(r)dr2 − r2dΩ2 . (23)

In the usual, “pure-tetrad” formulation of f(T ) gravity, the above metric is
produced by the non-diagonal tetrad ([86, 87])

eµ
a =









eA/2 0 0 0

0 eB/2 sin θ cosφ eB/2 sin θ sinφ eB/2 cos θ
0 −r (cos θ cosφ sinγ + sinφ cos γ) r (cosφ cos γ − cos θ sinφ sinγ) r sin θ sinγ

0 r sin θ (sinφ sin γ − cos θ cosφ cos γ) −r sin θ (cos θ sinφ cos γ + cosφ sinγ) r sin2 θ cos γ









,

(24)

where θ, φ are rotation angles, and γ(r) is a general function of r. The
expression of the torsion scalar for the above tetrad turns out to be

T (r) =
2 e−B

r2

[

1 + eB + 2 eB/2 sin γ + 2 eB/2 r γ′ cos γ + r A′

(

1 + eB/2 sin γ
)]

.

(25)
We are interested in extracting static vacuum solution with constant torsion
scalar T = T0 (i.e. T ′ = 0). The field equations (22) become

f0
4

− fT0
e−B

4r2
(

2− 2 eB + r2eBT0 − 2r B′
)

= 0 , (26)

−f0
4

+
fT0

e−B

4r2
(

2− 2 eB + r2eBT0 − 2r A′
)

= 0 , (27)

4− 4 eB − r2A′2 + 2r B′ + r A′ (2 + r B′)− 2r2A′′ = 0 , (28)

where f0 ≡ f(T0), fT0
≡ fT (T0) and prime denotes differentiation with respect

to r. We point out that spherically symmetric solutions with non constant
torsion scalar T ′ 6= 0 have been already investigated [88, 89] and Solar System
constraints have been discussed [90, 91].

It is possible to show (see [86]) that the unique solution of the equations
(26)-(28) is given by

eA(r) = 1− 2M

r
− ΛfT

3
r2,

eB(r) = e−A(r), (29)

with

ΛfT =
1

2

(

f0
fT0

− T0

)

. (30)
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Thus, in the theory at hand one obtains an “effective” cosmological constant,
determined by the functional form of f(T ), and thus he obtains a SdS solution.
Notice however that, because of the presence of the arbitrary function γ(r) in
the definition of the torsion scalar (25), knowing ΛfT cannot constrain f(T ),
since an arbitrary value of Λ can be achieved by fine tuning T0 with a suitable
choice of γ(r). In other words, when the torsion tensor is constant, any f(T )
model admits the solution in the form of (29), with given values of M and ΛfT .
On the contrary, in the case of f(R) theories, the value of the scalar curvature
R, that is proportional to ΛfR, strictly depends on the function f(R), since it
is obtained from the trace equation (15).

2.3. Massive gravity

In this subsection we summarize the basic part of massive gravity formu-
lation relevant to the present analysis. Specifically, we are interested in static
spherically symmetric solutions in which the mass term becomes identical to
the cosmological constant term.

The possibility of endowing graviton with a mass goes back to 1939, where
Fierz and Pauli constructed the linearized theory of non-interacting massive
gravitons in a flat background [61]. Unfortunately, the solutions of this the-
ory do not continuously connect with those of GR in the limit of zero graviton
mass, and this is the famous van Dam, Veltman and Sakharov (vDVZ) disconti-
nuity [92, 93]. This vDVZ discontinuity can be alleviated at the nonlinear level
through the Vainshtein mechanism [94], however these nonlinearities produce
the so-called Boulware-Deser (BD) ghost degree of freedom [63].

In 2010 a ghost-free theory was proposed by de Rham, Gabadadze and Tol-
ley (dRGT) [62]. In the standard formalism of dRGT theory, the dynamics is
determined by a modified action written in terms of a dynamical metric gµν
and an arbitrary fiducial metric fµν needed to construct the gravitational self-
interacting potential U . The corresponding action reads:

S = − 1

8πG

∫
(

1

2
R+m2U

)√
−g d4x + SM , (31)

where SM describes ordinary matter which is supposed to directly interact only
with gµν . The potential term, coupled through the graviton mass m, is defined
by [95]

U =
1

2
(K2

1 −K2) +
c3
6
(K3

1 − 3K1K2 + 2K3)+

+
c4
12

(K4
1 − 6K2

1K2 + 3K2
2 + 8K1K3 − 6K4), (32)

with Kn denoting the traces of a tensor Kµ
ν constructed from the inverse metric

gµν and the fiducial one through

Kµ
ν = δµν −

√

gµρfab∂ρφa∂νφb,
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and with Kn ≡ trKn. The four fields φa are the Stückelberg fields2, which
transform as scalars under coordinate transformations, such that the fixed met-
ric fµν

fµν = fab∂µφ
a∂νφ

b,

as well as the quantity gµαfαν , are promoted to tensor fields, while the poten-
tial U(g, f) to a scalar. Potential (32) has been shown to be the most general
potential for a ghost-free theory of massive gravity in four dimensions [66].

Apart from interesting cosmological features, the dRGT massive gravity ad-
mits the SdS solution where the “effective” cosmological constants arises due to
the graviton mass. In particular, considering the choice

c4 = 1 + c3 + c23

in (32), then the mass term of the theory behaves exactly as the cosmological
constant term in GR for a spherically symmetric ansatz [96], and the resulting
expression for the metric reads as follows:

ds2 = −
(

1− 2GM

r
− Λ

3
r2
)

dt2 +
1

1− 2GM
r − Λ

3 r
2
dr2 + r2 dΩ2, (33)

that is the standard SdS solution of GR in static coordinates. The difference here
is that it is accompanied by nontrivial background of the Stückelberg fields. In
terms of the parameters of the theory the effective cosmological constant reads

Λmg =
2m2

1 + c3
. (34)

Finally, note that this solution allows to recover GR when c3 + c4 > 0 [97],

below the so-called Vainshtein radius rV =
(

GM/m2
)1/3

. For extended dRGT
models, see, e.g., [98, 99].

2.4. Hořava-Lifshitz gravity

Let us summarize Hořava-Lifshitz gravity [69], in order to extract its spher-
ically symmetric solutions. As we mentioned in the Introduction, Hořava-
Lifshitz gravity is a power-counting renormalizable theory, obtained through
an anisotropic scaling of space and time in the Ultraviolet limit. This feature
allows for the inclusion of higher-dimensional spatial derivative operators that
dominate in the high energy limit, while in the Infrared lower-dimensional oper-
ators take over, presumably providing a healthy low-energy limit, namely GR.
Additionally, the absence of higher order time derivative terms prevents ghost
instabilities. However, as it becomes obvious, the anisotropic scaling breaks
Lorentz invariance, and breaking of general covariance has been shown to intro-
duce a dynamical scalar mode that may lead to strong coupling problem and

2Stückelberg fields were originally introduced by Stückelberg in 1938 to restore gauge-
invariance in electromagnetism but the method works equivalently well for spin-2 fields.
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instabilities [72, 100].
Recently, a new covariant version of Hořava Lifshitz gravity has been formu-

lated by Hořava and Melby-Thompson [101] in which, in order to heal the scalar
graviton problem, two auxiliary scalar fields have been introduced: the Newto-
nian pre-potential φ(t, x) and the gauge field A(t, x). The latter eliminates the
new scalar degree of freedom, thus curing the strong coupling problem in the
Infrared limit, and general covariance is restored. In the following we refer to
the covariant version of Hořava and Melby-Thompson, and the running coupling
λ in the extrinsic curvature term of the action is not set to 1 [102].

With the perspective of Lorentz symmetry breaking, the suitable variables
in Hořava-Lifshitz theory are the lapse function, the shift vector and the spatial
metric, N , Ni, gij respectively, according to the Hamiltonian formulation of
General Relativity developed by Dirac [103] and Arnowitt, Deser and Misner
[104]. Then the line element can be rewritten as

ds2 = −N2dt2 + gij
(

dxi +N idt
) (

dxj +N jdt
)

.

The theory can be assumed to satisfy the projectability condition, i.e. the lapse
function only depends on time N = N(t), while the total gravitational action is
given by

Sg = ζ2
∫

dt d3x N
√
g (LK − LV + Lφ + LA + Lλ) , (35)

where g = det(gij) and

LK = KijK
ij − λK2,

Lφ = φ Gij (2Kij +∇i∇jφ) ,

LA =
A

N
(2Λg −R) ,

Lλ = (1− λ)
[

(∇φ)2 + 2K∇2φ
]

.

Note that in this subsection covariant derivatives and Ricci terms refer to the
3-metric gij . Kij represents the extrinsic curvature

Kij = gki ∇knj ,

nj being a unit normal vector of the spatial hypersurface, and Gij is the 3-
dimensional generalised Einstein tensor

Gij = Rij −
1

2
gijR+ Λggij .

We mention that the parameter λ characterizes deviations of the kinetic part of
the action from GR. The most general parity-invariant Lagrangian density up
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to six order in spatial derivatives reads as [105]

LV = 2ζ2g0 + g1R+
1

ζ2
(

g2 R2 + g3 RijR
ij
)

+

+
1

ζ4

[

g4 R3 + g5 RRijR
ij + g6 Ri

jR
j
kR

k
i +

+ g7 R∇2R+ g8 (∇iRjk)(∇iRjk)
]

, (36)

where in physical units ζ2 = (16πG)−1, G being the Newtonian constant, and
the couplings gs (s = 0, 1, . . . , 8) are all dimensionless.

We are here interested in vacuum static spherically symmetric solutions.
These have been derived in [106] and [107] for the case λ = 1 and λ 6= 1,
respectively (see also [108, 109]). Omitting the details of the derivation, and
despite the large class of solutions, we mention that in both cases the SdS
solution can be extracted. Hence, various constraints on the parameters and
functions of the theory are derived, both due to equations of motion and Solar
System tests [106, 107]. When λ = 1, which is the GR value, and similarly
to what happens in the original version presented in [101], the SdS solution is
recovered, with the choice φ = A = 0, and the effective cosmological constant
arises from the g0 coupling, namely

ΛHL =
1

2
ζ2g0. (37)

On the other hand, if one desires to consider λ as a free parameter, one has to
consider the Newtonian pre-potential φ, as well as the gauge field A, as part of
the metric on which matter fields couple, as shown in [110].

3. Preliminary sensitivity analysis on the possibility of constraining

Λ with New Horizons

3.1. Suggested data analysis

New Horizons [111, 112] is a spacecraft which, launched in 2006, flew by
Pluto on the 14th of July 2015 without entering into orbit around it. Or-
bital maneuvers were recently implemented3 to target the spacecraft towards
the Trans-Neptunian Object (TNO) 2014 MU69 of the Kuiper Belt in an ex-
tended mission scenario. New Horizons is spin-stabilized and therefore it will be
possible to perform radio-science experiments [113] due to the dedicated Radio
Science Experiment (REX) apparatus [114] carried on board and the innovative
regenerative tracking technique [115]. The precision in Doppler measurements

3See http://pluto.jhuapl.edu/News- Center/News-Article.php?page=20151105 on the In-
ternet.
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will be better than σρ̇ = 0.1 mm s−1 throughout the entire mission [116], while
ranging will be precisely better than σρ = 10 m (1σ) over 6 years after 2015,
i.e. at geocentric distances to beyond 50 au [116].

It is interesting to preliminarily investigate the potential ability of New Hori-
zon’s tracking to improve the currently existing bounds on, e.g., the cosmological
constant Λ. To this aim, we will numerically simulate the range and range-rate
signatures of the extra-acceleration caused by a cosmological constant in the So-
lar System, by comparing their magnitudes with the previously quoted figures
for New Horizons. However, it should be stressed that it is just a preliminary
sensitivity analysis based on the expected precision of the probe’s measurements:
actual overall accuracy will be finally set by several sources of systematic un-
certainties like, e.g., the heat dissipation from the Radioisotope Thermoelectric
Generator (RTG) and the ability in accurately modeling the orbital maneu-
vers. In this respect, the extensive modeling of such non-gravitational per-
turbations for the Pioneer spacecraft, recently made in the framework of the
Pioneer Anomaly investigations [117–125] should be helpful.

We numerically integrate the barycentric equations of motion of the ma-
jor bodies of the Solar System and of New Horizons, with and without Λ, in
Cartesian rectangular coordinates. Both integrations share the same initial con-
ditions, retrieved from the WEB interface HORIZONS run by JPL, NASA, and
the time interval is set to 10 yr starting from a date posterior to the flyby of
Pluto. Then, from the solutions of the perturbed and unperturbed equations
of motion, we numerically produce differential time series ∆ρ(t),∆ρ̇(t) of the
Earth-New Horizons range ρ and range-rate ρ̇. The amplitudes of such simu-
lated signatures can be compared to σρ, σρ̇ in order to preliminarily guess the
value of Λ which makes them compatible. It turns out that the range allows for
tighter constraints than the range-rate.

In Fig. 1 we present our results. In particular, we depict the simulated
time series ∆ρ(t) for Λ = 10−45 m−2. It can be noticed that the size of the
Λ-induced signatures is about 20 m. Thus, the possibility of constraining Λ to
a ≃ 10−45 m−2 level over the next ten years by means of New Horizons does
not seem implausible. If indeed it will be realized practically, it would represent
an improvement by more than one-two orders of magnitude with respect to the
latest results appeared in the literature [91, 126]. However, it must be stressed
once again that the analysis presented here has to be intended as a sketchy one
just to explore the potential opportunity offered by New Horizons; suffice it to
say that it assumes a straightforward path over the years, without accounting
for orbital maneuvers and corrections.

Finally, it should be remarked that the present analysis is based only on the
orbital dynamics of both the major bodies of the Solar System and the probe
itself. In fact, range and range-rate are not directly observable since they are
calculated through the actually measured round-trip time of flight of the photons
and their frequency shift, respectively. Thus, in principle, the impact of Λ on
the propagation of the electromagnetic waves connecting the spacecraft and the
Earth [127–131] should be taken into account as well. A detailed calculation of
such an aspect of the measurement modeling is beyond the scopes of the present
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Figure 1: Simulated signature ∆ρ induced by Λ = 10−45 m−2 on the geocentric range of New
Horizons over a decade-time span 2015-2025. It was obtained by taking the difference ∆ρ(t) be-

tween two time series of ρ(t) =
√

(xNH(t) − x⊕(t))2 + (yNH(t) − y⊕(t))2 + (zNH(t) − z⊕(t))2

calculated by numerically integrating the barycentric equations of motion of New Horizons
and the major bodies of the Solar System in Cartesian rectangular coordinates with and with-
out the Λ−induced acceleration. All the standard Newton-Einstein dynamics for pointlike
bodies was modeled in both the integrations which shared also the same initial conditions for
August 5, 2015, retrieved from the WEB interface HORIZONS maintained by JPL, NASA.
The range-rate signature ∆ρ̇(t), not shown here, was obtained by numerically differentiating
the time series for ∆ρ(t).

work.

3.2. Induced constraints on the models

Having elaborated the observational constraints on the cosmological constant
Λ we may proceed to the constraining of the various gravitational modifications.
In particular, we will use the SdS solution and the expression of the obtained
effective Λ in terms of the model parameters of each case, extracted in Section
2, in order to provide constraints and bounds on these model parameters.

In case of f(R) gravity, from the expression of the effective cosmological
constant ΛfR of (17) we obtain a constraint on the curvature scalar R that
turns out to be constant both in metric and Palatini approach in order to have
a SdS solution, and, from numerical estimation of Λ, we obtain R ∼ 10−46 m−2.
Moreover, since through the scalar equation (12) the Ricci scalar is related to
the analytical expression of the Lagrangian, or at least to the ratio f(R)/f ′(R),
and thus on the parameters of the specific model, we can easily extracts the
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constraints on them too.
In case of f(T ) gravity, as already remarked, the function γ(r) can be chosen

to achieve the desired constant value of the torsion scalar through (25), thus
the expression (30) for ΛfT does not allow to break this degeneracy and impose
constraints on the Lagrangian.

In case of massive gravity, the effective Λmg (34) allows to infer upper limits
on the graviton mass. Assuming c3 ∼ O(1), numerical values on Λmg will
directly constraint m. Restoring SI units, i.e. replacing it with mg = ~m/c, the
observational constraints on the cosmological constant translate into

mg ∼ 10−69 g = 0.56× 10−36eV c−2.

We stress here that, as expected, our Solar System analysis can infer more
stringent constraints on the graviton mass than the analysis of of the same
model using cosmological data [67]), in which m is related to the present value
of the Hubble parameter. Moreover, we can then compare our result with the
upper limit mg < 7.68 · 10−55 g from the dynamics in the Solar System [132]
and the more stringent limit, namely mg < 10−59 g, derived by requiring the
dynamical properties of a galactic disk to be consistent with observations [133]
(see also [134] for a comprehensive review on the phenomenology of graviton
mass and experimental limits). The improvement in the obtained bounds is
obvious.

Finally, for the case of Hořava-Lifshitz gravity, using the expression (37)
for the effective cosmological constant ΛHL in terms of the coupling constant
associated with the 0 − th order spatial derivative, namely g0, we can extract
its corresponding bound. It proves more convenient to rescale g0 through the
Planck mass (or equivalently the gravitational constant ζ2 = (16πG)−1) in order
to obtain a dimensionless quantity g̃0. Hence, we finally obtain

g̃0 ∼ 10−113.

Similarly to the case of massive gravity, the above bound is more strict than the
corresponding cosmological ones [135].

4. Summary and conclusions

In this work we have considered that the gravitational field of an isolated
source like the Sun, can be described by the Schwarzschild-de Sitter (SdS) ge-
ometry. Such solution exists in the large majority of modified gravity theories,
as expected, and in particular the effective cosmological constant is determined
by the specific parameters of the given theory. Hence, one can use Solar Sys-
tem data in order to constrain the SdS solution, and thus eventually to extract
constraints on the parameters of the gravitational modification.

We have considered some of the recently most studied modified gravities,
namely f(R) and f(T ) theories, dRGT massive gravity, and Hořava-Lifshitz
gravity, and after giving their SdS solution we have explored the possibility
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of using future extended radio-tracking data from the currently ongoing New
Horizons mission in the outskirts peripheries of the Solar System, in order to
constrain the effective cosmological constant, and thus the modified gravity pa-
rameters. In particular, we showed that an improvement of one-two orders of
magnitude may be possible, provided that steady trajectory arcs several years
long will be processed, and orbital maneuvers will be accurately modeled. De-
spite its necessarily tentative and incomplete character, it turns out that such
an idea should be worth of further and more detailed consideration, especially
concerning the model-building of gravitational modifications.
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