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Fermi-liquid behavior and thermal conductivity of ǫ-iron at Earth’s core conditions
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1Centre de Physique Théorique, Ecole Polytechnique,
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The electronic state and transport properties of hot dense iron are of the utmost importance
to geophysics. Combining the density functional and dynamical mean field theories we study the
impact of electron correlations on electrical and thermal resistivity of hexagonal close-packed ǫ-Fe
at Earth’s core conditions. ǫ-Fe is found to behave as a nearly perfect Fermi liquid. The quadratic
dependence of the scattering rate in Fermi liquids leads to a modification of the Wiedemann-Franz
law with suppression of the thermal conductivity as compared to the electrical one. This significantly
increases the electron-electron thermal resistivity which is found to be of comparable magnitude to
the electron-phonon one. The implications of this effect on the dynamics of Earth’s core is discussed.

Earth’s magnetic field plays a crucial role in the sur-
vival of the human race. It keeps the ozone layer intact
despite the solar wind and therefore protects the Earth
from destructive ultraviolet radiation[1]. The magnetic
field is generated by self-sustained dynamo action in its
iron-rich core[2]. This geodynamo runs on heat from the
growing solid inner core and on chemical convection pro-
vided by light elements issued from the liquid outer core
on solidification[3]. The power supplied to drive the geo-
dynamo is proportional to the rate of inner core growth,
which in turn is controlled by heat flow at the core-mantle
boundary[4]. This heat flow critically depends on the
thermal and electrical conductivities of liquid iron under
the extreme pressure and temperature conditions in the
Earth’s core. For a long time there has been agreement
that convection in the liquid outer core provides most of
the energy for the geodynamo and does so for at least 3.4
billion years[2, 5].

Recently, such a view has been challenged by first-
principles calculations[3, 6], suggesting a much higher
capacity for the liquid core to transport heat by con-
duction and therefore less ability to transport heat by
convection[2]. The calculated conductivities have been
found to be two to three times higher than the generally
accepted estimates, urging for reassessment of the core
thermal history and power requirements[3].

Convection also plays a crucial role in the current the-
ory of the solid core dynamics, as a radial motion of
the inner core matter is invoked to explain the observed
seismic anisotropies of the inner core[7–9]. However, ab
initio calculations[10] similarly predict a too high ther-
mal conductivity for hexagonal close-packed (hcp) ǫ-iron
generally assumed to form the inner core, thus imped-
ing a significant convection of its solid matter. The

first-principles calculations for liquid and solid iron of
Refs.[3, 6, 10], unlike previous results, have not relied on
any extrapolations, however, they employed the standard
density-functional-theory (DFT) framework in which dy-
namical many-body effects are neglected.

Many-body effects in crystalline iron at the condi-
tions of Earth’s inner core have been previously stud-
ied in Refs. [11, 12] using the density functional the-
ory plus dynamical mean-field theory (DFT+DMFT)
method[13, 14]. The hcp ǫ-phase was predicted to ex-
hibit a typical Fermi liquid behavior with a quadratic
temperature dependence of the electron-electron scatter-
ing rate, Γ. In contrast, the body-centered cubic (bcc)
α-phase at the same conditions was shown to feature a
strongly non-Fermi-liquid electron-electron scattering.

Zhang et al.[16] have later pointed out that the ef-
fect of electron-electron scattering (EES) of d-electrons
due to correlations is missing in previous transport cal-
culations within DFT [3, 10] and treatment of electron-
phonon scattering (EPS) only is not sufficient. Using the
same DFT+DMFT method they predicted a non-Fermi-
liquid linear temperature dependence of the ESS in com-
pressed ǫ-iron, in disagreement with the conclusions of
Ref. [11]. The EES contribution to the electrical resistiv-
ity at core temperatures was predicted to be as large as
the electron-phonon one [16]. This principal result was
later retracted [17] because of a numerical mistake in
their transport calculations leading to a significant over-
estimation of the EES electrical resistivity.

Obviously, it is of the utmost importance to Earth’s
physics to clearly elucidate how large the EES contribu-
tion to the electrical and thermal resistivity at Earth’s
core conditions is. This is the motivation and the main
subject of the present letter. We perform a detailed and
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FIG. 1: (Color online) Orbitally-resolved values of the inverse quasi-particle lifetime Γ in ǫ-Fe as a function of temperature T.
a. Γ vs. T . The curves are fits AT 2 to the calculated data. b. Γ vs. T 2. The curves are linear-regression fits to the data. The
values of Γ were extracted from real-axis self-energies obtained by the Maximum-entropy method [15].

precise calculation of the quasiparticle (QP) properties,
especially of the QP scattering rate, and establish the
FL nature of ǫ-iron at the inner core conditions. Most
importantly, the quadratic frequency dependence of the
scattering rate characteristic of Fermi liquids has a direct
bearing on the transport properties of ǫ-Fe, as demon-
strated here by an explicit calculation of the electrical
and thermal conductivity. In Fermi liquids, the Lorenz
number in the Wiedemann-Franz law is suppressed, thus
the EES contribution to the thermal resistivity is en-
hanced. The EES contribution to the thermal resistivity
is of comparable magnitude to the EPS one and should
not be neglected. By including both contributions we ob-
tain a substantially reduced value for the total thermal
conductivity of pure ǫ-Fe at the inner core conditions as
compared to previous DFT calculations[10]. Hence, the
Fermi-liquid nature of ǫ-Fe suppresses its thermal con-
ductivity and may play an important role in stabilizing
the convection in the Earth core.

We employed the self-consistent DFT+DMFT
implementation[18–20] in a full-potential framework[21].
We used the same parameters as in Ref. [11] for the
lattice (volume 7.05 Å3/atom, the hcp c/a ratio 1.6)
and construction of the Wannier orbitals (energy
window [10.8 eV, 4.0 eV] around the Fermi level),
as well as around-mean-field double counting. The
rotationally-invariant Coulomb interaction was defined
by the parameters F0=U=5.0 eV and J=0.93 eV. The
DMFT quantum impurity problem was solved using
the hybridization-expansion continuous-time quantum
Monte-Carlo method[22] as implemented in Ref. [23].
The same parameters were used for both hcp and bcc
Fe. For the analytical continuation we employed the
Maximum-entropy (MaxEnt) method in the implemen-

tation of Ref. [15]. The conductivity was calculated as
described in Refs. [20] and [24].
First we analyze the temperature dependence of the in-

verse quasiparticle life-time Γm = −ZmIm[Σm(ω = 0)],
where Σm(ω = 0) is the value of DMFT self-energy for
the orbital m at zero frequency, Zm is the corresponding

quasi-particle residue, Zm =
(

1− dRe[Σm(ω)]
dω

∣

∣

∣

ω→0

)

−1

.

Our resulting dependence of Γ vs. T is plotted in Fig. 1a
One may notice a clearly parabolic Fermi-liquid shape
of Γ(T ) for all three inequivalent orbitals of the 3d shell
of Fe in the hcp lattice. Correspondingly, Γ scales lin-
early as a function of T 2, see Fig. 1b. In contrast, the
values of Γ obtained by Zhang et al. [16] exhibit a non-
Fermi-liquid linear dependence on T . While our values
agree with theirs at T=6000 K, for lower T the differ-
ence is significant. To obtain Γ plotted in Fig. 1 we have
analytically continued the imaginary-frequency DMFT
self-energy Σ(iωn), where ωn is the fermionic Matsubara
frequency ωn = π(2n− 1)kBT and kB is the Boltzmann
constant, to the real-frequency axis using the MaxEnt.
Our results for the scattering rate Γ shown in Fig. 1 are

obtained from analytically-continued DMFT self-energy.
It is well known that the analytical continuation meth-
ods needed to obtain the real-frequency data from the
imaginary-frequency self-energy are quite sensitive to the
details of the procedure (e.g. the number of Matsubara
frequencies included into the Pade approximant[27], the
way high frequency noisy tails are treated and the way
the stochastic error is estimated in the initial imaginary-
time data in the case of the MaxEnt etc.). However,
a qualitative but definite conclusion about the Fermi or
non-Fermi-liquid nature of a system can be inferred di-
rectly from the imaginary-frequency self-energy without
resorting to any analytical continuation. This is done
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FIG. 2: (Color online) Fermi-liquid scaling of the DMFT self-
energy in ǫ-Fe. a. The imaginary part of the DMFT self-
energy at the first Matsubara point ω1 = iπkBT vs. temper-
ature for hcp and bcc Fe. Note that Im[Σ(iπkBT )] being pro-
portional to T is a signature of a Fermi-liquid[25] . The lines
are the linear regression fits to the calculated points for corre-
sponding 3d orbitals of Fe. b. The rescaled imaginary part of
the DMFT self-energy at the real axis, Im[Σ(ω)]/(πkBT )

2 ,
vs. ω/(πkBT ). The real-frequency self-energies are obtained
by the MaxEnt analytic continuation method[15]. One sees
that all self-energies collapse into a single curve described by
a parabolic fit (the dotted line) defined by the quasiparticle
weight Z =0.7 and the characteristic Fermi-liquid tempera-
ture scale T0 =12 eV. Deviations from the Fermi-liquid be-
havior of the resistivity are expected for temperatures above
TFL ∼0.1 T0 , see Ref. [26], i.e. TFL corresponds to about
14 000 K in the present case.

by employing the so-called ”first-Matsubara-frequency”
rule. As demonstrated, e. g., in Ref. [25], in a Fermi
liquid the imaginary part of electronic self-energy, Σ, at
the first Matsubara point within a local approximation
like DMFT must be proportional to the temperature, T,
i.e. Im[Σ(iπkBT )] = λT , where λ is a real constant. In
Fig. 2a we plot Im[Σ(iπkBT )] as a function of tempera-
ture for all inequivalent orbitals in hcp and bcc Fe. One
may clearly see that in the ǫ phase Im[Σ(iπkBT )] is al-
most perfectly proportional to T, in contrast to bcc Fe,

where it exhibits significant deviations from the ”first-
Matsubara-frequency” rule[11]. This result confirms the
Fermi-liquid state of ǫ-Fe at Earth’s core conditions. We
note that this conclusion is further corroborated by a
weak temperature dependence of the of our calculated
quasiparticle weight Z, as well as by the ratio Γ

T
≪ 1.

Moreover, our real-frequency self-energies for different
temperatures collapse into a curve consistent with the
dependence const · (ω2 + (πkBT )

2) expected for a Fermi
liquid, see Fig. 2b . From this plot we extracted the upper
bound TFL for the Fermi-liquid regime of the transport
following Ref. [26]. The obtained temperature TFL ≈

14000 K is much higher than temperatures expected for
Earth’s core.

Fig. 3a shows our calculated contribution of the
electron-electron scattering to the electrical resistivity.
One clearly observes that it increases quadratically with
increasing temperature up to at least 6000 K, corre-
sponding to Earths core conditions, in contrast to the
results of Ref. [16]. The obtained value of about 1.6·
10−5 Ω·cm at T=6000 K is rather insignificant com-
pared to the electron-phonon-scattering contribution of
about 5.3·10−5 Ω·cm predicted by DFT calculations [10]
indicating that the electron-electron scattering cannot
strongly influence the electrical resistivity in hcp-Fe at
Earth’s core conditions.

In Fig. 3b we display the corresponding thermal con-
ductivity due to electron-electron scattering. One may
notice that this conductivity is not very high: its average
magnitude of 540 Wm−1K−1 at 6000 K is comparable
to the figure ∼ 300 Wm−1K−1 obtained in Ref. [10] for
the electron-phonon thermal conductivity. By including
both scattering effects the total conductivity is reduced
to about 190 Wm−1K−1, hence, the corresponding resis-
tivity is enhanced by about 60%.

In fact, this large electron-electron-scattering contri-
bution is directly related to the Fermi-liquid behavior
of ǫ-Fe. One may demonstrate this by simple analyti-
cal calculations [29–31]. Using a Fermi-liquid scattering
rate 1/τ(ω) = 1/τ0 ·

[

1 + ω2/(πkBT )
2
]

(with 1/τ0 ∝ T 2),
the electrical conductivity (σ) and thermal conductiv-
ity (κ) are found to be, in the low-temperature limit
T . TFL [31]:

σ

σ0
=

I01
I00

≃ 0.82 ,
κ

κ0
=

I21
I20

≃ 0.53 (1)

in which σ0 and κ0 denote the conductivities ob-
tained with the frequency-independent scattering time
τ0. In these expressions, Ink ≡

∫ +∞

−∞
dxxn(1 +

x2/π2)−k cosh−2(x/2) are transport integrals and x =
ω/T . Hence, the Lorenz number for such a Fermi-liquid
with inelastic scattering only is equal to [29, 30]:

κ/T

σ
= LFL = L0/1.54
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FIG. 3: (Color online)Calculated electron-electron-scattering
contribution to the electrical and thermal resistivity of hcp
iron at Earth’s core density. a. Electrical resistivity. Blue
filled circles and hashed squares are our DFT+DMFT results
for ρxx and ρzz , respectively. Red filled and hashed trian-
gles are the corresponding resistivities calculated by us with
the imaginary part of the self-energy from Extended Data
Fig. 3 of Zhang et al. [16]. Green empty and hashed dia-
monds are the corresponding resistivities calculated by the
Boltzmann-transport code BoltzTrap [28] assuming a Fermi-
liquid with Γ/Z =0.09 eV. Black circles are the electron-
electron-scattering contribution to the electrical resistivity re-
ported obtained Zhang et al. [16] including the correction
for the omitted spin factor [17]. b. Thermal conductivity.
Blue filled circles and hashed squares are DFT+DMFT re-
sults for κxx and κzz, respectively. The green lines/symbols
are the corresponding conductivities obtained from our calcu-
lated electrical conductivity using the Wiedemann-Franz law
with the standard Lorenz number of 2.44·10−8 WΩK−2.

where L0 = π2/3(kB/e)
2 is the conventional Lorenz num-

ber for a frequency-independent scattering rate. The
stronger effect of the frequency-dependence of τ(ω) on
the thermal conductivity as compared to σ is due to
the additional power x2 in the numerator of the trans-
port integrals for κ. Using the conventional value L0 of
the Lorenz number together with our calculated σ would
lead one to a substantially larger thermal conductivity
(see Fig. 3b), and hence an incorrect conclusion that the

electron-electron contribution to the thermal scattering
is insignificant, too. This calculation can be generalized
to take into account other sources of scattering on top of
purely inelastic EES, such as impurity or electron-phonon
scattering, leading to a T -dependent Lorenz number, as
detailed in the supplemental material.

In conclusion, we have established ǫ- iron is a Fermi
liquid at Earth’s core conditions. We have shown
that implications of this finding are far reaching as
the electron-electron inelastic scattering characteristic of
Fermi-liquids significantly suppresses the thermal con-
ductivity of Earth’s inner core. The quadratic fre-
quency dependence of this scattering leads to a reduc-
tion of the Lorenz number, hence, the thermal conduc-
tivity is suppressed with respect to predictions of the
conventional Wiedemann-Franz law. As a result, the
electron-electron-scattering contribution is comparable
to the electron-phonon one. By taking them both into ac-
count, we obtained a significant reduction of the thermal
conductivity of the ǫ phase at the inner core’s condition,
which supports explanations of the inner core anisotropy
in terms of convection processes.

The same effects may be important for liquid iron, too.
The obtained reduction is insufficient to explain the sta-
bility of convection by itself. But it is likely that the ther-
mal disorder and the admixture of significant quantities
of light elements [32], that we did not take into account
may further decrease the thermal conductivity. The im-
pact of alloying, crystalline order and thermal vibrations
on electronic correlations should be investigated in future
work. Finally, we note that the long-wave length spin-
fluctuations that are disregarded in our approach may
lead to additional suppression of the Lorenz number [33].
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Supplemental material

In a standard Boltzmann formalism within the relaxation time approximation the conductivity (σ) and the thermal
conductivity (κ) are given as specified, e.g., in Ref. [34]:

σ = e2
∫

dǫΦ(ǫ)(−f ′(ǫ))τ(ǫ), (S1)

κ =
1

T

∫

dǫ2Φ(ǫ)(−f ′(ǫ))τ(ǫ) −

[∫

dǫǫΦ(ǫ)(−f ′(ǫ))τ(ǫ)
]2

∫

dǫΦ(ǫ)(−f ′(ǫ))τ(ǫ)
(S2)

where ǫ is the energy measured with respect to the chemical potential, Φ(ǫ) is the transport function, f is the Fermi
function and τ is the relaxation time. Often the energy dependence of τ is neglected. If one additionally neglects the
energy dependence of transport function and evaluates the elementary integrals, one gets the Wiedemann-Franz law

κ/(σT ) =
π2

3

(

kB
e

)2

= L,

where the Lorenz number L is 2.44·10−8WΩK−2.
In the case of a Fermi liquid, however, the energy dependence of scattering rate is very strong

1/τ(ǫ) = 1/τ(ǫ = 0) · (1 + ǫ2/(πTkB)
2)

This leads to a modification of the Wiedemann-Franz law

κ/(σT ) = L/1.54 = LFL

Accordingly, the conductivity and thermal conductivity from Eqs. S1 and S2 will be smaller by 0.82 and 0.53,
respectively, if compared with that obtained by neglecting the energy dependence of the scattering rate, i.e. by
putting

1/τ(ǫ) = 1/τ(ǫ = 0)

into Eqs. S1 and S2 .
Remarkable suppression of the thermal conductivity is especially important for the discussion in the main text.
One may estimate the impact of this effect on the overall thermal conductivity of ǫ-Fe by summing up the con-

tributions from electron-electron and electron-phonon scattering. To obtain the later we evaluated the ratio κ/τ
using the BoltzTraP[28] code. By adopting for the conductivity with electron-phonon scattering, κe−ph , the value of
300 Wm−1K−1 obtained by DFT calculations of Ref. [10] , we estimated the electron-phonon quasiparticle lifetime
τe−ph =1.11·10−15 s. Assuming a frequency-independent electron-phonon scattering one obtains for the total lifetime
:

1

τtot
=

1

τe−ph

[

1 +
τe−ph

τ(ǫ = 0)
(1 + ǫ2/(πTkB)

2)

]

.

The electron-electron scattering contribution to the thermal conductivity evaluated with full DMFT transport
calculations is shown in Fig. 3b of the main text. Here we present a simple semi-classical calculations, where electron-
electron-scattering lifetime is obtained from the average value of self-energy at zero frequency, 0.09 eV. Hence, τ(ǫ =
0) = ~/(2Σ(0)) is 3.66·10−15 s and the ratio τe−ph/τ(ǫ = 0)=0.303. Inserting τtot into (S2) and carrying out the
integration assuming a constant value for the transport function one obtains the reduction of κ by a factor of 0.61 as
compared to pure electron-phonon scattering. Hence, the thermal conductivity is reduced from 300 to 183 Wm−1K−1.
This value is very close to the one obtained by adding the electron-electron thermal scattering calculated directly within
DMFT (Fig 3.b of the main text) to the electron-phonon contribution, κtot = 1/(κ−1

e−e + κ−1
e−ph) =190 Wm−1K−1.

The Lorenz number depends on the magnitude of the electron-electron scattering compared to that of the other
scattering processes. As an illustration of this, we consider elastic, temperature independent scattering whose mag-
nitude we set to the τe−ph at 6000 K and plot the Lorentz number as a function of temperature in Fig.S1. At high
temperatures the electron-electron scattering that in a Fermi liquid increases quadratically with temperature dom-
inates and the Lorentz number approaches the pure Fermi liquid result of 2.14 (kB/e)

2. At low temperatures the
electron-electron scattering is insignifcant and standard Lorenz number of π2/3(kB/e)

2 is recovered instead.
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FIG. S1: The Lorenz number vs. temperature. The star indicates the value of L at the inner core temperature of 6000 K.


