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Genes and proteins regulate cellular functions through complex circuits of biochemical reactions.
Fluctuations in the components of these regulatory networks result in noise that invariably cor-
rupts the signal, possibly compromising function. Here, we create a practical formalism based on
ideas introduced by Wiener and Kolmogorov (WK) for filtering noise in engineered communications
systems to quantitatively assess the extent to which noise can be controlled in biological processes
involving negative feedback. Application of the theory, which reproduces the previously proven
scaling of the lower bound for noise suppression in terms of the number of signaling events, shows
that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK filter. For the
class of Hill-like nonlinear regulatory functions, this type of filter provides the optimal reduction
in noise. Our theoretical approach can be readily combined with experimental measurements of
response functions in a wide variety of genetic circuits, to elucidate the general principles by which
biological networks minimize noise.

The genetic regulatory circuits that control all aspects
of life are inherently stochastic. They depend on fluctu-
ating populations of biomolecules interacting across the
crowded, thermally agitated interior of the cell. Noise
is also exacerbated by low copy numbers of particular
proteins and mRNAs, as well as variability in the lo-
cal environment [1–6]. Yet the robust and reproducible
functioning of key systems requires mechanisms to filter
out fluctuations. For example, regulating noise is rel-
evant in stabilizing cell-fate decisions in embryonic de-
velopment [7], prevention of random switching to prolif-
erating states in cancer-regulating miRNA networks [8],
and maximization of the efficiency of bacterial chemo-
taxis along attractant gradients [9]. Comprehensive anal-
ysis of yeast protein expression reveals that proteins in-
volved in translation initiation, ribosome formation, and
protein degradation, have lower relative noise levels [10],
suggesting natural selection could favor noise reduction
for certain essential cellular components [11, 12].

A common regulatory motif capable of suppressing
noise is the negative feedback loop [1, 2, 13–18], as
has been explicitly demonstrated in synthetic gene cir-
cuits [1, 14, 15]. Feedback pathways for a given chem-
ical species can be mediated by numerous signaling
molecules, each with its own web of interactions and
stochastic characteristics that determine the ultimate ef-
fectiveness of the system in damping the fluctuations
of the target population and maintaining homeostasis.
Thus, uncovering generic laws governing the behavior of
such control networks is difficult. A major advance was
made by Lestas, Vinnicombe, and Paulsson (LVP) [19],
who showed that information theory can set a rigorous
lower bound on the magnitude of fluctuations within
an arbitrarily complicated homeostatic negative feedback
network. Since the bound scales like the fourth root of
the number of signaling events, noise reduction is ex-
tremely expensive. This underscores the pervasiveness of
biological noise, even in cases where there may be evolu-

tionary pressure to minimize it.

The existence of a rigorous bound raises a number of
intriguing issues. Can a biochemical network actually
reach this lower bound, and thus optimally suppress fluc-
tuations? What would be the dynamic behavior of such
an optimal system, and how would it depend on the noise
spectrum of the system components? Here we answer
these equations using a theory related to the optimal
linear noise-reduction filter, developed by Wiener [20]
and Kolmogorov [21]. Though the original context of
Wiener-Kolmogorov (WK) filter theory was removing
noise from corrupted signals in engineered communica-
tions systems, it has recently become a powerful tool for
characterizing the constraints on signaling in biochemi-
cal networks [22, 23]. Recently, we showed that the ac-
tion of kinase and phosphatase enzymes on their protein
substrates, the basic elements of many cellular signal-
ing pathways, can in fact effectively be represented as an
optimal WK filter [22]. The WK theory also describes
how systems like E. coli chemotaxis can optimally an-
ticipate future changes in concentrations of extracellular
ligands [23]. Although the classic WK theory is strictly
defined for linear filtering of continuous signals (a reason-
able approximation for certain biochemical networks), it
can also be extended to yield constraints in the more
general case of nonlinear production of molecular species
with discrete population values [22].

Interestingly, for a broad class of systems the WK lin-
ear solution turns out to be the global optimum among
all nonlinear or linear networks, allowing us to delin-
eate where nonlinearity is potentially advantageous in
biochemical noise control. Most importantly, since the
WK theory is formulated in terms of experimentally ac-
cessible dynamic response functions, it also provides a
design template for realizing optimality in synthetic cir-
cuits. As an illustrative example, we predict that a syn-
thetic autoregulatory TetR loop, engineered in yeast [24],
can be fine-tuned to approximate an optimal WK filter
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for TetR mRNA levels. Though a simple design, similar
filters could be employed in nature to cope with Poisson
noise arising from small copy numbers of mRNAs, often
on the order of 10 per cell [25]. Based on the application
of the theory to the synthetic gene network we propose
that the extent of noise reduction in biological circuits
is determined by competing factors such as functional
efficiency, adaptation, and robustness.

RESULTS

To make the paper readable and as self-contained as
possible many of the details of the calculation are rele-
gated to four Appendices. The main text contains only
the necessary details needed to follow the results without
the distraction of the mathematics.

Linear response theory for a general control network

To motivate the WK approach for a general control
network, we start with the simple case where two species
within the network are explicitly singled out [19]: a target
R with time-varying population r(t) fluctuating around
mean r̄, and one of the mediators in the feedback sig-
naling pathway P , with population p(t) varying around
p̄. We assume a continuum Langevin description of the
dynamics [13, 16, 26, 27], where the rate

α̇(t) = kα(t) + nα(t) (1)

for α = r or p, can be broken down into determinis-
tic (kα) and stochastic (nα) parts. The function kα(t)
encapsulates the entire web of biochemical reactions un-
derlying synthesis and degradation of species α, and can
be an arbitrary functional of the past history of the sys-
tem up to time t. It is typically divided into two parts,
kα(t) = k+

α (t) − k−α (t), corresponding to the production
(+) and destruction (-) rates of the species α. The term
nα(t) is the additive noise contribution, which can also be
divided into two parts, nα(t) = nint

α (t)+next
α (t). The first

is the “intrinsic” or shot noise, arising from the stochas-

tic Poisson nature of α generation, nint
α (t) =

√
2k̄αηα(t),

where k̄α is the mean production rate, or equivalently

the mean destruction rate, k̄α = k+
α (t) = k−α (t), and

ηα(t) is a Gaussian white noise function with correlation

ηα(t)ηα′(t′) = δαα′δ(t − t′). The second part, next
α (t), is

“extrinsic” noise, which arises due to fluctuations in cel-
lular components affecting the dynamics of R and P that
are not explicitly taken into account in the two-species
picture. These could include mediators in the signal-
ing pathway, or global factors like ribosome and RNA
polymerase levels. For simplicity, our main focus will be
the case of no extrinsic noise. However, we will show
later how a straightforward extension of the theory re-
veals that the same system can behave like an optimal
WK filter under a variety of extrinsic noise conditions.

FIG. 1. Schematic of a complex signaling network with the
target species R and one mediator P singled out. In focusing
on two species, the action of all the other components is ef-
fectively encoded in four response functions—Grr(t), Gpp(t),
Grp(t), Gpr(t)—that describe how the entire dynamical sys-
tem responds to perturbations in R and P .

For small deviations δα(t) = α(t) − ᾱ from the mean
populations ᾱ, kα(t) can be linearized with respect to
δα(t),

kα(t) =
∑
α′=r,p

∫ t

−∞
dt′Gαα′(t− t′)δα′(t′), (2)

where Gαα′(t) are linear response functions, which ex-
press the dependence of kα(t) on the past history of
δα′(t). The functions Gαα′(t) capture the essential char-
acteristic responses of the control network to perturba-
tions away from equilibrium (Fig. 1). In the static limit,
Gαα′(t) have appeared in various guises as gains [6], sus-
ceptibilities [17], or steady-state Jacobian matrices [27],
and in the frequency-domain as loop transfer func-
tions [13, 16]. Feedback between R and P is encoded
in the cross-responses Grp(t) and Gpr(t). In the simplest
scenario, the only non-zero self-responses Gαα(t) are de-
cay terms, Gαα(t) = −τ−1

α δ(t), where τα is the decay
time scale for species α. However, the theory works gen-
erally for more complicated self-response mechanisms.

Control network as a noise filter

The connection between the linearized dynamical de-
scription and WK filter theory arises from comparing the
original system to the case where feedback is turned off
(i.e. setting Grp(ω) or Gpr(ω) to zero). Let us define a
few terms to make the noise filter analogy clear. Without
feedback, the target fluctuations are δr0(t) ≡ s(t), where
we denote s(t) the signal. This is to distinguish it from
δr(t) in the original system, which is the output. The
difference between the two, which reflects the impact of
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the feedback network, we express as δr(t) = s(t) − s̃(t),
where s̃(t) is referred to as the estimate. In this analogy,
minimizing δr(t) requires a feedback loop where the es-
timate s̃(t) is as close as possible to the signal s(t). The
only thing left to specify is the relationship between s̃(t)
and s(t).

The dynamical system in Eqs. (1)-(2) takes a simple
form in Fourier space, where the fluctuations δα(ω) sat-
isfy:

− iωδα(ω) =
∑
α′=r,p

Gαα′(ω)δα′(ω) + nα(ω). (3)

We solve Eq. (3) for δr(ω) and break up the R fluctuation
into two contributions, δr(ω) = s(ω) − s̃(ω), with the
signal s(ω) and estimate s̃(ω) given by:

s(ω) = − nr(ω)

Grr(ω) + iω
, s̃(ω) = H(ω) [s(ω) + n(ω)] .

(4)
Here we have introduced a noise function n(ω),

n(ω) =
np(ω)

Gpr(ω)
, (5)

and a filter function H(ω):

H(ω) ≡ Grp(ω)Gpr(ω)

Grp(ω)Gpr(ω)− (Grr(ω) + iω)(Gpp(ω) + iω)
.

(6)
Thus in the time domain the estimate s̃(t) is the convo-
lution of the filter function H(t) and a noise-corrupted
signal y(t) ≡ s(t) + n(t),

s̃(t) =

∫ ∞
−∞

dt′H(t− t′)y(t′). (7)

Eqs. (4)-(6) constitute a one-to-one mapping between the
linear response and noise filter descriptions of the system
in Fourier space. They relate the four filter quantities,
s(ω), s̃(ω), n(ω), and H(ω), to the four linear response
functions Grr(ω), Grp(ω), Gpr(ω), and Gpp(ω).

The entire noise filter system is illustrated schemati-
cally in Fig. 2. Note that the noise function in the fil-
ter analogy, n(t), is related to np(t) in Fourier space as
n(ω) = np(ω)/Gpr(ω). Thus, the stochastic nature of
the mediator P production makes estimation non-trivial,
since the function H(t) must try to filter out the n(t)
component in y(t) in order to produce s̃(t) close to s(t).
Though we confine ourselves throughout this work to the
case of a dynamical system with a single target and medi-
ator species, one can easily generalize the entire approach
to explicitly include many mediators, which could poten-
tially be involved in a complex signaling pathway. The
linearized dynamical system in Eqs. (1)-(2) would still
have the same form (with index α running over all the
species of interest), and the mapping onto the filter prob-
lem for the target species would be analogous. The only
difference is that n(ω) and H(ω) would be more com-
plicated functions of the various individual noise terms

nα(ω) and the response functions Gαα′(ω) of the media-
tors. In our reduced, two species description, the action
of all the unspecified chemical components is effectively
included in the four response functions described above,
with their stochastic effects contributing to the extrinsic
noise. Fig. 1 shows a schematic of such a reduction. The
fine-grained details of the signaling pathways connect-
ing our target R and mediator P , potentially involving
many interacting species, are encoded in Grr, Gpp, Grp,
and Gpr. As an example of how this two-species reduc-
tion would work in practice, in Appendix B we treat an
important example of a feedback loop involving multiple
mediators, representing a signaling cascade in series.

Wiener-Kolmogorov theory yields the optimal filter

The WK optimization problem consists of minimizing
σ2
r = (δr)2, the variance of target fluctuations, which are

related to H(t), s(t), and n(t) through the frequency-
domain integral [28] (see derivation in Appendix A):

σ2
r =

∫ ∞
−∞

dω

2π

[
|H(ω)|2Pn(ω) + |H(ω)− 1|2Ps(ω)

]
,

(8)
where H(ω) is the Fourier transform of H(t), and Pn(ω),
Ps(ω) are the power spectral densities (PSD) of n(t) and
s(t) respectively, i.e. the Fourier transforms of their auto-
correlation functions. If Pn(ω) and Ps(ω) are given, the
task is to minimize σ2

r in Eq. (8) over all possible H(ω).
The main constraint that makes the solution mathemat-
ically difficult is that H(ω) must correspond to a physi-
cally realizable control network, which imposes the cru-
cial restriction that the time-domain convolution func-
tion H(t) must be causal, depending only on the past
history of the input, H(t) = 0 for t < 0. The great
achievement of Wiener and Kolmogorov was to derive
the form of the optimal causal solution Hopt(ω):

Hopt(ω) =
1

P cy (ω)

{
Ps(ω)

P cy (ω)∗

}
c

. (9)

The c super/subscripts refer to two different decompo-
sitions in the frequency domain which enforce causality:
(i) Any physical PSD, in this case Py(ω) corresponding
to the corrupted signal y(t) = s(t) + n(t), can be writ-
ten as Py(ω) = |P cy (ω)|2. The factor P cy (ω), if treated
as a function over the complex ω plane, contains no ze-
ros and poles in the upper half-plane (Imω > 0) [29].
(ii) We also define an additive decomposition denoted by
{F (ω)}c (see Appendix A) for any function F (ω), which
consists of all terms in the partial fraction expansion of
F (ω) with no poles in the upper half-plane. In Appendix
A we provide in detail a new derivation of Eq. (9), the
heart of the WK theory.
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FIG. 2. Signal processing diagram illustrating noise suppression in a negative feedback loop re-interpreted as a linear filter.
The fluctuations in the target species δr(t) (lower left) are expressed as δr(t) = s(t) − s̃(t), where the raw signal s(t) (upper
left) equals δr(t) in the absence of feedback control, and the estimate s̃(t) (lower right) is the contribution of the feedback loop.
This estimate is given by the convolution of a filter function H(t) (center) and the corrupted signal s(t) + n(t), where n(t) is
the noise (upper right). The goal of Wiener-Kolmogorov theory is to find a causal H(t) such that the standard deviation of
δr(t) is minimized. All sample trajectories shown in the figure are generated from numerically solving the linearized version of
the dynamical system in Eq. (10).

Optimal noise control in a yeast gene circuit with
feedback

To illustrate the nature of the optimal WK solution we
choose as a case study the yeast negative autoregulatory
gene circuit designed by Nevozhay et. al. [24], drawn
schematically in Fig. 3(a). The gene encoding for the
TetR protein is under the control of the PGAL1−D12 pro-
moter, whose activity can be repressed by binding TetR
dimers. The strength of the feedback can be modulated
by changing the extracellular concentration A of the in-
ducer anhydrotetracycline (ATc), which enters the cell,
binds to TetR and prevents its association with the pro-
moter, thus weakening repression.

In order to analyze the TetR negative feedback gene
circuit, we start with the simple mathematical model in-
troduced in Ref. 24, which provided results that are con-
sistent with the experimental data. The simplified model,
which captures the essence of the synthetic gene network,
features as the main variables the population of free in-
tracellular TetR dimer, p(t), and free intracellular ATc
molecules, a(t). In addition to the regulatory loop, the
experimental gene circuit has a parallel yEGFP reporter
portion, which acts as a monitor of TetR protein levels.

Because we focus on the system as a noise filter for the
TetR mRNA population, and the yEGFP part does not
influence this analysis [24], we ignore the reporter circuit.

The production of the TetR dimers occurs in a single
step, with the autoregulation of the rate described by a
repressory Hill function. We divide this step into two
parts, introducing as an additional variable the popula-
tion of TetR mRNA r(t). The feedback loop (Fig. 3(a))
consists of mRNA production at a rate given by the Hill
function κr(t) = κ0θ

n/(θn + pn(t)), followed by TetR
dimer generation at a rate given by κpr(t). The degra-
dation/dilution of the mRNA and dimers is modeled
through decay terms γrr(t) and γpp(t). We could have
modeled additional (comparatively fast) chemical sub-
steps involved in this loop, such as TetR dimerization,
the binding of the repressor to the individual promoter
sites, or the role of RNAP and ribosomes in the transcrip-
tion and translation processes. Though we limit ourselves
to the two substep description to illustrate the filter the-
ory, the stochastic effects of additional complexity can be
approximately treated through general “extrinsic” noise
terms incorporated into nr(t) and np(t).

The main experimental variable that allows tuning of
the yeast gene network behavior is the external ATc con-
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FIG. 3. (a) The synthetic yeast gene circuit designed by Nevozhay et. al. [24]. The TetR protein negatively regulates
itself by binding to its own promoter. The inducer molecule ATc associates with TetR, inhibiting its repressor activity. The
subsequent panels show results for this gene circuit using the linear filter theory applied to the dynamical model of Eq. (10), with
experimentally-derived parameters (Table 1). (b) Filter functions H(t) and Hopt(t), sample signal s(t) and estimate s̃(t) time
series for burst ratio B = 10 and three different values of extracellular ATc concentration A [ng/mL]. H(t) is from Eq. (19), while
Hopt(t) is from Eq. (18). The sample time series trajectories are numerical solutions of the linearized Eq. (10). On the right are
the resulting equilibrium probability distributions P (δr), where δr(t) = s(t)− s̃(t), which are Gaussians with variance σ2

r . For
A ≈ 54 ng/mL, the circuit approximately functions as an optimal WK filter (H(t) is close to Hopt(t)), maximally suppressing
fluctuations in the population levels of TetR mRNA (minimizing σ2

r/r̄). (c) Mean populations of free intracellular TetR mRNA,
r̄, and TetR protein dimers, p̄. (d) The decay rates of free mRNA and proteins, τ−1

r and τ−1
p , which are related to the network

self-response functions Grr and Gpp (both are constants in the frequency domain as shown in Eq.11). (e) The magnitude of the
network cross-response, |Grp| (solid lines), plotted together with the optimal magnitude |Goptrp | = τ−1

p (1 +
√

1 +B)−1 (dashed
lines). Filled circles mark the intersection defining A = Aopt, where the system behaves approximately like an optimal WK
filter. (f) The Fano factor σ2

r/r̄ (solid lines), compared to the optimal WK value σ2
r,opt/r̄ = 2/(1 +

√
1 +B) (horizontal dashed

lines). Filled circles mark the position A = Aopt.

centration A, which is assumed to be time independent.
As illustrated in Fig. 2(a), there is an influx ΦA of ATc
molecules into the cell. Once inside, the ATc molecules
associate with the TetR at a rate βa(t)p(t). Additional
loss of intracellular ATc through degradation, outflux,
and dilution is modeled through an effective decay rate

γaa(t). We assume that the dissociation of ATc from
TetR occurs on long enough timescales that it can be
ignored. Since the influx/association/outflux of ATc is
fast compared to the transcription and translation pro-
cesses of the main feedback loop, we further assume that
a(t) instantaneously equilibriates at the current value of
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Parameter Value

n 4

θ 0.44 nMV

γr 3.5 h−1 a

γp 0.12 h−1

γa 1.2 h−1

β 3.6 nM−1h−1V −1

Φ 0.6 h−1V

κ0 50 nM h−1V B−1 b

A 0− 500 ng/mL c

a Ref. 31
b The burst ratio B ≡ κp/γr. Though not independently

determined by the experimental fit, we assume that B is in the
range B = 2 − 10 [30].

c For external ATc concentration A, 1 ng/mL corresponds to 2.25
nM.

TABLE I. Parameter values for the dynamical model of the
yeast synthetic gene circuit (Eq. (10)). The cell volume V is
assumed fixed. Unless otherwise noted, all values are taken
from the experimental fit of Ref. 24.

p(t). Thus, the dependence of a(t) on p(t) is determined
by equating the influx and total loss rate, which leads to
a(p(t)) = ΦA/(γa + βp(t)).

For the model described above, the dynamical equa-
tions for r(t) and p(t) are,

ṙ(t) = −γrr(t) +
κ0θ

n

θn + pn(t)
+ nr(t),

ṗ(t) = −γpp(t) + κpr(t)−
βΦAp(t)

γa + βp(t)
+ np(t).

(10)

The parameters, with values derived from experimental
fitting [24], are listed in Table 1. The only quantity that
is not independently known from the fit is the rate κp,
which we allow to vary in the range κp/γr ≡ B = 2− 10,
comparable to typical experimentally measured protein
burst sizes [30]. Setting the right sides of Eq. (10) to
zero, and averaging over nr(t) and np(t), we numerically
solve for the equilibrium values r̄ and p̄ as a function of
external ATc concentration A [Fig. 3(c)]. For A = 0, the
promoter is nearly fully repressed, but with increasing
A, the mean population p̄ of free TetR dimers is reduced,
weakening the repression and boosting the mean mRNA
population r̄. Changing A allows us to explore a wide
range of control network behavior. Note that since p̄
depends on B only through the the product κ0B, and the
value of this product is fixed at a constant value from the
experimental fit (Table I), p̄ is independent of B. On the
other hand, r̄, which is proportional to κ0, is inversely
proportional to B.

Linearizing Eq. (10) around r̄ and p̄, we extract the

following frequency-domain response functions:

Grr(ω) = −τ−1
r = −γr, Grp(ω) = −κ0nθ

np̄n−1

(θn + p̄n)2
,

Gpp(ω) = −τ−1
p = −γp −

βγaΦA

(γa + βp̄)2
, Gpr(ω) = κp.

(11)

All the functions are constants in the frequency domain.
Here τr and τp are effective decay times for the mRNA
and proteins, respectively. The value of τr is fixed, and
sets the intrinsic time scale of mRNA fluctuations, but
τp and Grp depend on p̄, which is a function of the ex-
ternal ATc concentration A. In fact, association with
intracellular ATc, described by the second term in the
Gpp expression above, is the dominant form of decay for
the free TetR dimers. Fig. 3(d) plots the effective decay
constants τ−1

r and τ−1
p as a function of A. Except for

A . 8 ng/mL we are in the regime where τ−1
p � τ−1

r ,
which is relevant in simplifying the optimality condition
for Grp(ω) discussed below.

The optimal filter calculation for the TetR gene cir-
cuit depends on the linear response functions of Eq. (11).
We obtain the following power spectra for the signal and
noise in the absence of extrinsic noise:

Ps(ω) =
2r̄τr

1 + (ωτr)2
, Pn(ω) =

2r̄τr
B

, (12)

where the burst ratio B ≡ κpτr is the mean number of
proteins synthesized per mRNA during the lifetime τr.
The problem is to evaluate Eq. (9) for Hopt(ω). The sum
of signal plus noise, y(ω) = s(ω) + n(ω), has a power
spectrum Py(ω) = Ps(ω) + Pn(ω), which we can rewrite
as follows:

Py(ω) = 2r̄τr

[
1

1 + (ωτr)2
+

1

B

]

=

∣∣∣∣∣
(

2r̄τr
B

)1/2 √
1 +B − iωτr

1− iωτr

∣∣∣∣∣
2

.

(13)

The expression within the absolute value brackets is zero
only at ω = −iτ−1

r

√
1 +B, and has a simple pole at

ω = −iτ−1
r . Since all the zeros and poles are in the

lower complex ω half-plane, it satisfies the criterion for
the causal term in the factorization Py(ω) = |P cy (ω)|2.
Thus:

P cy (ω) =

(
2r̄τr
B

)1/2 √
1 +B − iωτr

1− iωτr
. (14)

The other causal term in Eq. (9) involves the addi-
tive decomposition

{
Ps(ω)/P cy (ω)∗

}
c
. This is calcu-

lated by looking at the partial fraction expansion of
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Ps(ω)/P cy (ω)∗:

Ps(ω)

P cy (ω)∗
=

(2r̄τrB)1/2

(1− iωτr)(
√

1 +B + iωτr)

=
(2r̄τrB)1/2

(1− iωτr)(
√

1 +B + 1)

+
(2r̄τrB)1/2

(1 +
√

1 +B)(
√

1 +B + iωτr)
.

(15)

Of the two terms in the partial fraction expansion, only
the first has poles solely in the lower complex ω half-
plane. Hence, it is the only one that contributes to{
Ps(ω)/P cy (ω)∗

}
c
:{

Ps(ω)

P cy (ω)∗

}
c

=
(2r̄τrB)1/2

(1− iωτr)(
√

1 +B + 1)
. (16)

Inserting Eqs. (14) and (15) into Eq. (9), we finally find
that the optimal filter is:

Hopt(ω) =

√
1 +B − 1√

1 +B − iωτr
. (17)

Transforming Hopt(ω) into the time domain, we find

Hopt(t) =
(
τ−1
avg − τ−1

r

)
e−t/τavgΘ(t), (18)

where τavg = τr/
√

1 +B, and Θ(t) is a unit step function
ensuring that the filter operates only on the past history
of its input. For B � 1 the prefactor in Eq. (18) is ≈
τ−1
avg, and Hopt(t) has a straightforward interpretation: it

approximately acts as a moving average of the corrupted
signal y(t) = s(t)+n(t) over a time scale τavg. In order to
get the best estimate s̃(t), the averaging interval τavg can
neither be too long, since it would blur out the features
of the signal s(t) (which vary on the time scale τr), nor
too short, since it would be ineffective at smoothing out
the noise distortion n(t). Hence, there must exist an
optimum τavg, which is naturally proportional to τr, the
main time scale for the mRNA.

In Fig. 3(b), we show how the noise filter properties of
the system vary with A for a burst ratio of B = 10. The
filter function H(t) (solid red curve) differs substantially
from Hopt(t) (dotted red curve) for large and small A,
but approaches the optimal form near A = 54 ng/mL.
Consequently, at this value of A we get the closest cor-
respondence between the plotted sample trajectories of
signal s(t) (cyan curve) and estimate s̃(t) (blue curve).
Similarly, the equilibrium probability distribution of the
output, P (δr), shown to the right of the trajectories, ex-
hibits the smallest Fano factor σ2

r/r̄. The latter is a
measure of noise magnitude, and has a reference value
of unity if mRNA production was a pure Poisson pro-
cess, as would be the case without feedback. Optimality
is realized in the intermediate A regime of partial repres-
sion, where the R to P responsiveness, as measured by
|Grp|, is large. Effective noise suppression requires that

R be sensitive to changes in P , so that information about
R fluctuations can be transmitted through the negative
feedback loop.

In order to understand the optimality condition for
H(t) in more detail, let us look at the explicit expres-
sion for H(t) in the TetR system, given by the inverse
Fourier transform of Eq. (6) with the response functions
of Eq. (11):

H(t) =
Grpκp
ω1 − ω2

(e−ω1t − e−ω2t)Θ(t), (19)

where ω1, ω2 are the two ω roots of the denominator in
Eq. (6). Assuming τp � τr (which holds good except
for small values A . 8 ng/mL, as seen in Fig. 3(d)), we
can directly show the approach of H(t) to optimality at
a specific intermediate value of Grp. When Grp equals

Gopt
rp (B, τp) = −1/(τp(1 +

√
1 +B)), the roots ω1 ≈ τ−1

avg,

ω2 ≈ τ−1
p + τ−1

r − τ−1
avg, up to corrections of order τp/τ

2
r .

In this case, Eq. (19) becomes

H(t)|Grp=Gopt ≈ Hopt(t)

[
1− e−(τ−1

p +τ−1
r −2τ−1

avg)t

1 + τp(τ
−1
r − 2τ−1

avg)

]
,

(20)
where the factor in the brackets on the right equals 1
in the limit τp → 0 for all t > 0. Up to this correction
factor, we thus expect the system to behave optimally at
A = Aopt, defined by the condition Grp = Gopt

rp (B, τp), so
long as Aopt is large enough to satisfy τp � τr. Fig. 3(e)
shows Grp and Gopt

rp curves for B = 2, 5, 10, with dots
marking the intersection points that define Aopt for each
B. As explained above, |Grp| is small at small and large
A, and reaches a maximum in between. At fixed B,
|Gopt
rp (B, τp)| ∝ τ−1

p , so it increases monotonically with
A, as larger concentrations of the inducer increase the
effective decay rate of free proteins. Thus, for each B
there is a single intersection point Aopt at an intermedi-
ate concentration of the inducer.

Fig. 3(f) shows the Fano factor σ2
r/r̄ versus A for var-

ious B. As the control network approximates optimality
at Aopt for each B, the Fano factor nears its minimum,
close to the theoretical limit marked by the horizontal
dashed lines. This limit is the minimal possible σ2

r/r̄,
calculated from Eq. (8) using Hopt(t) from Eq. (18):

σ2
r,opt

r̄
=

2

1 +
√

1 +B
≥ 2

1 +
√

1 + 4B
(21)

A few comments concerning the above equation are in
order. (1) The result on the far right-hand side is the
rigorous lower bound derived by LVP [19]. In their case,
the feedback mechanism through the rate function kr(t)
could be any causal functional of p(t), linear or nonlin-
ear. The Fano factor of the optimal linear filter differs
in form only by the coefficient of B, and is always within
a factor of 2 of the lower bound for any value of B. (2)
For Gaussian-distributed signal s(t) and noise n(t) time
series, the linear filter is optimal among all possible fil-
ters [28]. If the system fluctuates around a single sta-
ble state, and the copy numbers of the species are large
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enough that their Poisson distributions converge to Gaus-
sians (mean populations & 10), the signal and noise are
usually approximately Gaussian. This is a wide class of
systems where the rigorous lower bound (the last term in
Eq. 21) can never be achieved. In other words, here the
WK filter yields the most efficient feedback mechanism.
Although, as pointed out by LVP, nonlinearity could lead
to additional noise reduction, the benefits are likely to be
restricted to those systems where the signal and/or noise
are substantially non-Gaussian. However, since the form
of the optimal control network has not been found in
the general nonlinear case, it remains an interesting open
question whether the LVP bound can actually be reached
even within this category of systems. We will return to
this issue in the next section. (3) The parameter B is the
key determinant of noise reduction. For B � 1, there are
not enough signaling events to control the mRNA fluc-
tuations, and as B → 0 we approach σ2

r,opt/r̄ → 1, the
no-feedback Poisson result. In the limit B � 1 signal-
ing is effective, and the Fano factor decreases with B
as σ2

r,opt/r̄ ≈ 2/
√
B. For large enough B we approach

perfect control, but at extreme expense: the standard
deviation of the mRNA fluctuations σr,opt ∝ B−1/4, the
same scaling derived by LVP.

WK theory constrains the performance of a broad
class of nonlinear, discrete regulatory networks

The results in Fig. 3 rely on a linearized, continuum
approach to the TetR dynamical system. To assess if
the conclusions based on the WK optimal filter hold if
these approximations are relaxed, we first performed ki-
netic Monte Carlo simulations of the full nonlinear sys-
tem (Eq. (10)) using the Gillespie algorithm [32]. We
chose a cell volume of V = V0 = 60 fL, within the
observed range for yeast [33], which corresponds to the
mean populations r̄ and p̄ shown in Fig. 4(a) as a func-
tion of A. (For example, at A = Aopt = 62.7 ng/mL
when B = 5, r̄ ≈ 84 and p̄ ≈ 11. In addition to the non-
linearity, the discrete nature of the populations in the
simulation might play a role at these low copy numbers.)
The numerical results for the Fano factor σ2

r/r̄ are plot-
ted in Fig. 4(b) at B = 2, 5, 10, for V = V0 (circles)
and also for comparison at a larger volume V = 10V0

(squares). The blue curves show the linear theory re-
sults, and the dashed lines are the optimality predictions
for σ2

r,opt/r̄. Although nonlinearity and discreteness ef-
fects do change the results, the linear theory gives a rea-
sonable approximation, and the minimum is still near
Aopt. The feedback mechanism is nonlinear in the sim-
ulations, but it does not do better than the linear pre-
dictions for σ2

r,opt/r̄ for the parameters used to describe
the experimental results. Though the intrinsic popula-
tion noise is Poisson-distributed in the simulations, the
Poisson distribution is very close to Gaussian, even for
copy numbers as low as ∼ O(10). Since the linear fil-
ter is the true optimum for a Gaussian-distributed signal
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FIG. 4. Results of simulation and theory for the yeast syn-
thetic gene circuit [24], as a function of extracellular ATc
concentration A. (a) Mean populations of free TetR mRNA r̄
and TetR dimer p̄, assuming a cell volume V0 = 60 fL. (b) The
Fano factor σ2

r/r̄ for burst factor B = 2, 5, 10, as predicted by
the linear filter theory (solid lines), versus stochastic numeri-
cal simulations at two different volumes, V = V0 (circles) and
V = 10V0 (squares). The WK filter theory predicts the mini-
mal Fano factor σ2

opt/r̄ given by Eq. (21) (horizontal dashed
lines). The system can be tuned to approach optimality near
a particular Aopt obtained by the condition Grp = Goptrp (filled
circles).

and noise [28], we do not expect improvements in noise
suppression by employing a nonlinear version. In the
opposite limit of large copy numbers, V → ∞, the con-
tinuum approximation should be valid, and population
fluctuations increasingly negligible relative to the mean.
Thus, the linear theory should directly apply in this limit,
and indeed we see that for V = 10V0 the discrepancies
between numerical and theory results are substantially
reduced (Fig. 4(b)). It is worth emphasizing, that even
at the realistically small cell volume V0, the linear theory
retains much of its predictive power. More generally, the
conditions for WK optimality do not have to be perfectly
satisfied in order for the filter to perform close to max-
imum efficiency. There is an inherent adaptability and
robustness in near-optimal networks, as reflected in the
broad minima of σ2

r/r̄ as a function of A (Fig. 4(b)).

The semi-quantitative agreement between the lin-
earized theory and the simulation results displayed in
Fig. 4 still leaves open the possibility that some type of
nonlinear, discrete filter, not described by the experimen-
tally fitted parameters of the TetR gene network, could
perform better than the WK optimum at sufficiently
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FIG. 5. The Fano factor σ2
r/〈r〉 as a function of burst ratio B.

The solid curve is the optimal result predicted by the WK lin-
ear theory, and the dashed curve is the rigorous lower bound
derived by LVP [19]. Symbols show numerical optimization
for the generalized nonlinear TetR feedback system (Eq. (22))
at two volumes, V = V0 and V = 0.1V0.

small volumes. Fig. 5 plots both the WK value for the
Fano factor (solid curve) and the rigorous lower bound
of LVP (dashed curve) as a function of B (Eq. (21)).
The above question can be posed as follows: is it possi-
ble to achieve a Fano factor that falls between the two
curves by taking advantage of nonlinearity and discrete-
ness? Ideally, one should do an optimization over all pos-
sible nonlinear regulatory functions that could describe
feedback between the TetR protein and mRNA. In full
generality, such an optimization appears intractable, but
one can tackle a limited version of the nonlinear opti-
mization. We will confine ourselves to Hill-like regula-
tory functions, which describe the experimental behavior
of many cellular systems [34], and explore whether it is
possible to find any scenario where this type of nonlin-
ear feedback outperforms the linear WK optimum. We
consider the following generalized TetR feedback loop:

ṙ(t) = −γrr(t) +Kr(p(t)),

ṗ(t) = −γpp(t)− Γp(p(t)) + κpr(t),
(22)

with two Hill-like regulatory functions,

Kr(p) =
A1θ

n1
1

θn1
1 + pn1

, Γp(p) =
A2p

n2

θn2
2 + pn2

, (23)

involving arbitrary non-negative parameters Ai, ni, θi,
i = 1, 2. The original TetR system (Eq. (10)) is a special
case of the equations above with:

A1 = κ0, n1 = n, θ1 = θ, A2 = βΦA,

n2 = 1, θ2 = γa.
(24)

The production function Kr(p) is a monotonically de-
creasing function of p, as is expected for negative feed-
back, while Γp(p) is monotonically increasing, a gener-
alization of some regulatory network which effectively

removes the TetR protein from the feedback loop (the
role played by ATc binding in the experimental system).
With these monotonicity constraints, there is always only
one steady-state solution r̄ and p̄ to Eq. (22).

The optimization consists of searching for Kr(p) and
Γp(p) that minimize the Fano factor σ2

r/〈r〉. The follow-
ing quantities are fixed during the search: the degrada-
tion rates γr, γp, the P production rate κp (or equiva-
lently the burst ratio B = κp/γr), and the steady state
values r̄, p̄. Note that in the general nonlinear case, the
steady state values do not necessarily coincide with the
mean values 〈r〉, 〈p〉, since the equilibrium distributions
are generally asymmetric with respect to the steady state.
Fixing r̄ and p̄ during the optimization is one way to set
an overall copy number scale, to investigate the role of
discreteness. It turns out that the optimization results
described below end up being independent of r̄ and p̄.
In terms of the Hill function parameters, fixing r̄ and p̄
means setting A1 and A2 to the following values,

A1 = θ−n1
1 γr r̄(θ

n1
1 + p̄n1),

A2 = p̄−n2(γpp̄− κpr̄)(θn2
2 + p̄n2).

(25)

Thus the goal of optimization is to minimize σ2
r/〈r〉 over

the four remaining free parameters: n1, θ1, n2, θ2.
In order to carry out this minimization, one needs

an efficient procedure to calculate σ2
r/〈r〉 from Eq. (22),

keeping both the full nonlinearity of the dynamical sys-
tem, and the discreteness of the r(t) and p(t) populations.
The system can always be simulated through the Gille-
spie algorithm [32], and accurate estimates of 〈r〉 and σ2

r

determined from sufficiently long trajectories. However
this approach is too slow for searching over the four-
dimensional parameter space, since each distinct set of
parameters would require a separate long simulation run.
An equivalent, faster alternative is to directly solve the
system’s master equation for the steady state probabil-
ity distribution, which then yields 〈r〉 and σ2

r . The joint
probability distribution Pr,p(t) of finding r mRNAs and
p proteins at time t is governed by the master equation,

∂

∂t
Pr,p

= γr [(r + 1)Pr+1,p − rPr,p] +Kr(p) [Pr−1,p − Pr,p]
+ γp [(p+ 1)Pr,p+1 − pPr,p] + [Γp(p+ 1)Pr,p+1

−Γp(p)Pr,p] + κpr [Pr,p−1 − Pr,p] .
(26)

The steady state distribution P sr,p is the solution obtained
by setting to zero the right-hand side of the above equa-
tion, which we denote Rr,p:

0 = Rr,p
≡ γr

[
(r + 1)P sr+1,p − rP sr,p

]
+Kr(p)

[
P sr−1,p − P sr,p

]
+ γp

[
(p+ 1)P sr,p+1 − pP sr,p

]
+
[
Γp(p+ 1)P sr,p+1

−Γp(p)P
s
r,p

]
+ κpr

[
P sr,p−1 − P sr,p

]
.

(27)
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The result is linear in the components P sr,p for various
r and p, and thus the set {Rrp = 0} for r = 0, 1, . . .
and p = 0, 1, . . ., constitutes a linear system of equations
for P sr,p. The master equation can be solved by spectral
methods, which are generally more efficient than brute
force Gillespie simulations [35]. However we use a differ-
ent approach, described below, to solve Eq. (27), which
is sufficiently fast for our numerical optimization pur-
poses. Since r and p can take on any integer values be-
tween 0 and ∞, we truncate the system to focus only on
the non-negligible P sr,p, in other words (r, p) within sev-
eral standard deviations of the mean (〈r〉, 〈p〉). Specifi-
cally, we keep only those equations Rrp = 0 which in-
volve rmin ≤ r ≤ rmax and pmin ≤ p ≤ pmax. The
largest truncation range required for accurate results was
rmax− rmin = 100 and pmax−pmin = 50. All P sr,p outside
the range which appear in the truncated system of equa-
tions are set to a positive constant ε > 0. (The precise
value of ε is unimportant since the distribution is subse-
quently normalized, and the truncation range is chosen
large enough so that the boundary condition does not sig-
nificantly affect the outcome.) The resulting finite linear
system, which is sparse, can be efficiently solved using an
unsymmetric-pattern multifrontal algorithm [36]. Know-
ing P sr,p, we then directly calculate the moments of the

distribution to find 〈r〉 and σ2
r . The numerical accuracy

of the procedure is verified by comparison to Gillespie
simulation results.

In order to set a starting point for each round of non-
linear optimization, we use the following initialization
procedure: we take the original TetR system at a given
volume V and burst ratio B (fixing the Hill function pa-
rameters according to Eq. (24)) and find the ATc con-
centration Amin where σ2

r/〈r〉 is smallest, evaluating the
Fano factor using the linear solver described above. The
r̄ and p̄ at this concentration are then chosen to be fixed
constants for the nonlinear optimization, where we vary
the parameters n1, θ1, n2, θ2 from the initial values given
by Eq. (24) to minimize σ2

r/〈r〉. The minimization is car-
ried out using Brent’s principal axis method [37], which
is feasible due to the fast evaluation of 〈r〉 and σ2

r at each
different parameter set through the linear solver.

Fig. 6 shows results of a typical minimization run,
where the initial system is at volume V = V0 with
B = 10, with a corresponding Amin = 50 ng/mL. The
dashed lines in Fig. 6(a) and (b) show the Hill functions
Kr(p) and Γp(p) of the original TetR system at these
parameter values, and the heat map in Fig. 6(c) repre-
sents the associated steady-state probability distribution
P sr,p. The dashed lines superimposed on the heat map
are the loci of solutions to ṙ(t) = 0 and ṗ(t) = 0 (the
right-hand sides of Eq. (22) set to zero), which inter-
sect at the steady state (r̄, p̄). The Fano factor for this
distribution, which represents the best the TetR system
can perform given the experimentally fitted parameters,
is σ2

r/〈r〉 = 0.525. This is above the linear WK opti-
mum for B = 10, 2/(1 +

√
1 +B) = 0.463, and sig-

nificantly larger than the rigorous LVP lower bound of

2/(1 +
√

1 + 4B) = 0.270. Once we relax the experi-
mental constraints, and carry out the numerical mini-
mization, the Fano factor decreases. The solid lines in
Fig. 6(a) and (b) show Kr(p) and Γp(p) after several
steps of the minimization algorithm, and Fig. 6(d) shows
the corresponding P sr,p. The Hill functions have become
very steep steps around p̄, while the average of the dis-
tribution 〈r〉 has been pushed above r̄. The probabilities
P sr,p for p < p0 become negligible, where p0 ≡ bp̄c is the
largest integer value below p̄. For p > p0, P sr,p rapidly de-

cay to zero. The Fano factor, σ2
r/〈r〉 = 0.472, approaches

closer to the linear WK optimum, but is still above it. If
we allow the minimization to proceed, these trends con-
tinue: at each iteration the Hill functions get steeper,
〈r〉 increases, P sr,p for p < p0 tends to zero, and σ2

r/〈r〉
approaches arbitrarily close to the linear WK optimum
from above.

In fact, the same behavior is seen irrespective of the
volume V and burst ratio B used to define the initial
point of the optimization. Fig. 5 shows the results of
nonlinear optimization for B = 2 − 10 at two volumes,
V = V0 and V = 0.1V0. Even for the smallest volume, the
nonlinear optimization results can get arbitrarily close to
the WK optimum, but never do better. No generalized
nonlinear system based on Hill function regulation brings
us close to the theoretically possible LVP lower bound.
This overall conclusion holds even when we change the
functional form for the generalized feedback. We tried
two alternatives: (i) using sigmoidal (logistic) functions
instead of Hill functions; (ii) expanding Kr(p) and Γp(p)
in a Taylor series around p̄, truncating after the third
order term, and minimizing with respect to the Taylor
coefficients. In both cases numerical minimization of the
Fano factor led to similar step-like behavior for Kr(p)
and Γp(p), and the Fano factor tended to WK optimum
from above.

From the P sr,p distribution in Fig. 6(d) we see that the
step-function limit leads to a system which is highly non-
linear along the p axis: in fact the gene network spends
most of its time at p = p0, just below the sudden change
in regulation due to the steep Hill functions, and p > p0

just above the sudden regulatory change. The feedback
on the TetR mRNA population is mediated by p fluctua-
tions between the two regimes, resulting in threshold-like
regulatory behavior. Remarkably, despite this discrete,
nonlinear character, the network can still approach the
efficiency of an optimal WK linear filter. To gain a deeper
understanding of how the step-like regulation can match
WK optimality, we used the numerical optimization re-
sults described above to posit a limiting form of the non-
linear gene network that can be solved analytically (de-
tails in Appendix C). The analytic results explicitly show
that we can asymptotically approach the WK optimum
behavior from above, even in systems where the protein
copy numbers are very small. Thus at least for a two-
component TetR-like system regulated by biologically-
realistic Hill functions, the constraint derived from the
WK theory has a broader validity than one would guess
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FIG. 6. Results for numerical optimization of the generalized nonlinear TetR feedback system of Eq. (22), with starting
parameters B = 10 and V = V0. (a) The mRNA production regulation function Kr(p) in its initial form before optimization
(dashed curve), and after several steps of the minimization algorithm (solid curve). (b) Similar to (a), but showing the protein
degradation function Γp(p). (c) Heat map of the steady-state probability distribution P s

r,p before optimization, corresponding
to regulation governed by the dashed curves in the top panels. The nullclines ṙ(t) = 0 and ṗ(t) = 0 are superimposed. (d)
Similar to (c), but after several steps of the minimization algorithm, corresponding to regulation governed by the solid curves
in the top panels.

from the underlying continuum, linear assumptions. It
thus becomes an interesting and a non-trivial problem,
left for future studies, to find an example of a gene net-
work where the rigorous lower bound of LVP could be
directly achieved.

Realizing optimality under the influence of extrinsic
noise

Extrinsic noise is ubiquitous and hence must also be
considered in any effective description of the control net-
work. Inevitably, certain cellular components are not
explicitly included in such a description, which in our
case study could include RNA polymerase, ribosomes,
and transcription factors that bind to the same promoter.
Each of these components have their own stochastic
characteristics and may contribute noise to a smaller or

greater extent. Particularly for eukaryotes like yeast, the
extrinsic noise contribution may be significantly larger
than the intrinsic component [38, 39]. We adopt a sim-
ple model for the extrinsic noise based on earlier ap-
proaches [14, 16], which assume that it is band-limited
at a low frequency τ−1

e , where τe is on the order of the
cell growth time scale. The justification is that higher
frequency contributions to the extrinsic noise are filtered
out by the gene circuits associated with its sources. This
idea is consistent with the experimental observation of
extrinsic noise in protein production in E. coli, which
found long autocorrelation times for the extrinsic noise
on the order of the cell cycle period [40].

For the TetR system, our theory is extended to the
extrinsic noise case in Appendix D, with the results illus-
trated in Fig. 7. The outcome is that a given TetR gene
circuit, tuned appropriately such that A = Aopt, can
act as a WK filter for an entire family of extrinsic noise
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FIG. 7. Comparison of simulation and theory results based on
the dynamical model (Eq. (10)) of the yeast synthetic gene cir-
cuit [24], in the presence of extrinsic noise given by Eq. (C1).
All quantities are plotted as a function of extracellular ATc
concentration A for the burst ratio B = 5. Each set of curves
shows the Fano factor σ2

r/r̄, as predicted by the linear fil-
ter theory (solid lines), versus stochastic numerical simula-
tions at two different volumes, V = V0 = 60 fL (circles) and
V = 10V0 (squares). The two sets correspond to noise magni-
tudes cp = 80, cr = 23 and cp = 160, cr = 46. In both cases
cr and cp are related through the condition in Eq. (C11), and
the minimal Fano factor predicted by WK filter theory (hor-
izontal dashed lines) is modified as shown in Eq. (C12). The
system can be tuned to approach optimality near a particular
Aopt obtained by the condition Grp = Goptrp (filled circles).

scenarios. A single set of parameters can approximately
represent the optimal solution for a variety of extrinsic
inputs. This makes the WK concept a versatile design
tool for noise suppression in biological systems: the same
control network can act with maximum efficiency in a
variety of different contexts. It is possible that the re-
quirement of adaptability to a wide range of conditions
has resulted in the evolution of control networks acting
as WK filters. It remains to be seen whether nature has
exploited this feature in vivo.

CONCLUSION

The TetR feedback loop is a concrete example of how
a WK filter can be implemented in a gene network
driven by a complex set of biochemical reaction rates,
but the overall approach outlined here has far reaching

implications, thus highlighting the appeal of engineering
paradigms in biology [41]. With the entire network com-
plexity encoded in a handful of response functions, we can
derive fundamental limits and design principles governing
biological regulation. The key step is to map the linear
response picture onto a signal estimation problem, whose
solution is given by WK theory. This idea allows us to
predict the dynamic properties of the feedback pathway
required to optimally filter noise in a broad class of nega-
tive feedback circuits. As already demonstrated in earlier
works [22, 23], the mapping, and the potential utility of
the WK approach, is not unique to the negative feedback
loop. Another important byproduct of the theory is that
the behavior of gene circuits away from optimality can
also be predicted. In this sense, our practical approach
goes beyond just obtaining rigorous bounds, and allows
us to characterize how close or far gene networks are from
optimality for biologically relevant parameters.

We have derived response functions by linearizing a
minimal model extracted from experimental observa-
tions, but it is also possible to directly apply small per-
turbations to a system, and measure the resulting time-
dependent changes in populations of species. Recently,
the yeast hyperosmolar signaling pathway has been
probed by perturbations in the form of salt shocks [42–
44]. Despite the underlying complex nonlinear net-
work, the details of which are not completely charac-
terized, a linear response description quantitatively cap-
tures the frequency-dependent behavior of the path-
way over a wide range of inputs. E. Coli chemotaxis
signaling also exhibits a linear regime [45], where the
fluctuation-dissipation relationship between the system’s
unperturbed behavior and its reaction to external stimuli
has been explicitly verified.

Linear response functions can thus become a funda-
mental tool in analyzing biochemical circuits, analogous
to their established role in control engineering and sig-
nal processing. More extensive experimental measure-
ments will be critical in this effort, in order to ascertain
how varied the response relationships between regulatory
components are in nature. Once we understand the es-
sential dynamical building blocks out of which complex
biological function is realized, we can map out the hidden
constraints that control the behavior of living systems.
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Appendix A: Derivation of the optimal WK filter

In this section we derive Eqs. (8) and (9) in the main

text. They describe the output variance σ2
r = [(δr)2] and

the linear filter Hopt(ω) that minimizes σ2
r , which are the

main quantities in the Wiener-Kolmogorov theory.

Output variance σ2
r in terms of signal and noise

power spectra Ps(ω) and Pn(ω)

From Eq. (4), which defines the signal s(ω) and esti-
mate s̃(ω) in the frequency domain, the Fourier trans-
formed output δr(ω) for any H(ω) can be rewritten as,

δr(ω) = s(ω)−s̃(ω) = (1−H(ω))s(ω)−H(ω)n(ω). (A1)

In the time domain, s(ω) = −nr(ω)/(Grr(ω) + iω), is
a convolution of the noise function nr(t), and n(ω) =
np(ω)/Gpr(ω) is a convolution of np(t). So long as the
noise functions nr(t) and np(t) are uncorrelated, s(t) and
n(t) are also uncorrelated, so the frequency domain aver-

age s(ω)n(ω′) = 0. (The theory can also be generalized
to correlated noise sources, but for simplicity we con-
sider only the uncorrelated case.) As a result, the corre-

lation δr(ω)δr(ω′), related to the output power spectrum
Pδr(ω), can be written in terms of Ps(ω) and Pn(ω), the
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individual power spectra of the signal and noise:

δr(ω)δr(ω′)

= (1−H(ω))(1−H(ω′))s(ω)s(ω′)

+H(ω)H(ω′)n(ω)n(ω′)

= 2π
[
|H(ω)− 1|2Ps(ω) + |H(ω)|2Pn(ω)

]
δ(ω + ω′)

≡ 2πPδr(ω)δ(ω + ω′),
(A2)

In the above equation we have used the definition of the
power spectrum, i.e. s(ω)s(ω′) ≡ 2πPs(ω)δ(ω + ω′), and
the relation H(−ω) = H∗(ω) since H(ω) is the Fourier
transform of a real function H(t). The power spectrum
Pδr(ω) is the Fourier transform of the time autocorrela-

tion function δr(t)δr(0):

δr(t)δr(0) =

∫ ∞
−∞

dω

2π
Pδr(ω)e−iωt. (A3)

At t = 0, the autocorrelation function gives us the vari-
ance σ2

r :

σ2
r = (δr(0))2

=

∫ ∞
−∞

dω

2π
Pδr(ω)

=

∫ ∞
−∞

dω

2π

[
|H(ω)|2Pn(ω) + |H(ω)− 1|2Ps(ω)

]
,

(A4)

which is Eq. (8) in the main text.

Minimizing σ2
r over all causal H(ω) yields the

optimal WK filter Hopt(ω)

The convolution of the filter function H(t) on the cor-
rupted signal s(t)+n(t) must satisfy causality. The filter
can only operate on the past history of s(t) + n(t), so
H(t) = 0 for t < 0. In the frequency domain, enforcing
causality restricts H(ω) to have certain general proper-
ties as a function of complex ω [29]: it can have no poles
or zeros in the upper half-plane Imω > 0. Equivalently,
the real and imaginary parts of H(ω) evaluated at real ω
must satisfy the well-known Kramers-Kronig relation:

ReH(ω) =
1

π
P
∫ ∞
−∞

dω′
ImH(ω′)
ω′ − ω , (A5)

where P is the Cauchy principal value of the integral.
The goal of WK optimization is to minimize σ2

r in
Eq. (A4) over all possible causal functions H(ω), given
the power spectra Ps(ω) and Pn(ω).

Assume such an optimum Hopt(ω) exists, with the cor-
responding minimal variance σ2

r,opt. Let us add a small
perturbation, H(ω) = Hopt(ω) + δH(ω), where δH(ω)
is also a causal function of complex ω. From Eq. (A4),

the resulting variance change δσ2
r = σ2

r −σ2
r,opt, to lowest

order in δH(ω), is:

δσ2
r =

∫ ∞
−∞

dω 2 Re
[
{(Hopt(ω)− 1)Ps(ω)

+ Hopt(ω)Pn(ω)} δH∗(ω)
]

=

∫ ∞
−∞

dω 2 Re
[
Fopt(ω)δH∗(ω)

]
,

(A6)

where

Fopt(ω) ≡ (Hopt(ω)− 1)Ps(ω) +Hopt(ω)Pn(ω). (A7)

For Hopt(ω) to be the WK optimum, δσ2
r in Eq. (A6)

must be zero for any causal perturbation δH(ω).
Out of all possible causal perturbations, we will focus

on one with the specific form:

δH(ω) =
A

ε− i(ω − ω0)
, (A8)

where Imω0 = 0 and A, ε > 0. It has no zeros, and
the only pole, ω = ω0 − iε, is in the lower half-plane, so
δH(ω) is causal. We will be interested in the limit as this
pole approaches the real axis, ε→ 0+, where the real and
imaginary parts of δH(ω) are,

Re δH(ω) =
Aε

ε2 + (ω − ω0)2
→ Aπδ(ω − ω0),

Im δH(ω) =
A(ω − ω0)

ε2 + (ω − ω0)2
→ A

ω − ω0
.

(A9)

Substituting these into Eq. (A6) for δσ2
r , we find that

the optimality condition δσ2
r = 0 implies the following

relation between the real and imaginary parts of Fopt(ω):

ReFopt(ω0) = − 1

π
P
∫ ∞
−∞

dω
ImFopt(ω)

ω − ω0
. (A10)

This has the same form as the Kramers-Kronig relation
in Eq. (A5), with the important difference of a minus
sign in front. Consequently, Fopt(ω) must be anticausal,
which we define as a function with no poles or zeros in
the lower complex ω half-plane.

In order to use this result to derive a solution for
Hopt(ω), we define two types of decompositions, de-
scribed briefly in the main text. In practice, all the
frequency domain power spectral density and filter func-
tions we work with in the linear response formalism are
meromorphic functions over the complex ω plane. Any
meromorphic function F (ω) can be written as a partial
fraction expansion of the form F (ω) =

∑
n,k cik/(ω −

ωn)k, where {ωn} is the set of poles of F (ω), and cik are
constants. Most generally, the expansion could include
a polynomial term, but the functions F (ω) we encounter
have well-defined inverse Fourier transforms, which re-
quire |F (ω)| → 0 as |ω| → ∞ (decay at least as fast as
1/|ω|). Thus, all the terms in the expansion are of the
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form cik/(ω−ωn)k, and we can segregate them according
to whether the pole ωn is in the upper half plane. The
causal part {F (ω)}c is defined as all those terms where
ωn is not in the upper half plane, and the anticausal part
{F (ω)}ac contains the remaining terms in the expansion.
The overall function F (ω) = {F (ω)}c + {F (ω)}ac.

The second type of decomposition, an example of
Wiener-Hopf factorization [20], concerns power spectral
density functions like Py(ω), which are meromorphic and
also real-valued on the real ω axis. Let us factor Py(ω)
as the product of two meromorphic functions, Py(ω) =
P cy (ω)Racy (ω). The function P cy (ω) contains all the zeros
and poles in Py(ω) which are not in the upper half plane.
Such a decomposition is always possible, since a mero-
morphic function can always be written as a ratio of two
holomorphic functions. Hence, the numerator and de-
nominator of Py(ω) can be decomposed individually into
a product of elementary factors by the Weierstrass fac-
torization theorem, with each factor containing a single
zero. Because Py(ω) is real for real ω, so Py(ω)∗ = Py(ω)
when Imω = 0. Thus, P cy (ω)∗Racy (ω)∗ = P cy (ω)Racy (ω).
Since P cy (ω)∗ for real ω has all its zeros and poles in the
upper half plane, we must have P cy (ω)∗ ∝ Racy (ω), and
similarly Racy (ω)∗ ∝ P cy (ω). By appropriately absorbing
an overall constant into P cy (ω), we can factor Py(ω) as

Py(ω) = P cy (ω)P cy (ω)∗ = |P cy (ω)|2.
With these decompositions defined, we return now to

the condition in Eq. (A10), which shows that Fopt(ω)
is anticausal. Thus, its causal part in the additive de-
composition must be zero, {Fopt(ω)}c = 0. From the
definition of Fopt(ω), Eq. (A7), it follows that

{Hopt(ω)Py(ω)}c = {Ps(ω)}c, (A11)

where Py(ω) = Ps(ω) + Pn(ω) is the power spectrum
of the noise-corrupted signal y(t) = s(t) + n(t). Equiv-
alently, since we can substitute {F (ω)}c = F (ω) −
{F (ω)}ac for any F (ω), the optimality condition can be
rewritten as:

Hopt(ω)Py(ω)− {Hopt(ω)Py(ω)}ac
= Ps(ω)− {Ps(ω)}ac.

(A12)

Divide both sides of Eq. (A12) by P cy (ω)∗, and then take
the causal additive part {·}c of both sides. The result is:

{Hopt(ω)P cy (ω)}c −
{{Hopt(ω)Py(ω)}ac

P cy (ω)∗

}
c

=

{
Ps(ω)

P cy (ω)∗

}
c

−
{{Ps(ω)}ac

P cy (ω)∗

}
c

.

(A13)

The second terms on both the left and right hand sides
are the causal parts of a ratio between two anticausal
functions. Since a ratio of anticausal functions is also
anticausal, these terms are zero. On the left hand side
the first term {Hopt(ω)P cy (ω)}c = Hopt(ω)P cy (ω), since
Hopt(ω) and P cy (ω) are causal, and hence their product
is also causal. Making these simplifications, we can then

solve for Hopt(ω) as:

Hopt(ω) =
1

P cy (ω)

{
Ps(ω)

P cy (ω)∗

}
c

, (A14)

which is the optimal WK filter result shown as Eq. (9)
in the main text.

Appendix B: Linear response and noise filter
analysis for a regulatory cascade

As an example of how our theory generalizes to control
networks with multiple mediator species, we will consider
the case where the feedback loop consists of a regula-
tory cascade. We will still explicitly single out a target
species R and a mediator P , but now the signaling path-
way which communicates changes from R to P will be
more complicated, consisting of a cascade of N species
Uj , j = 1, . . . , N , with populations uj . The production
of the jth species will depend on the population of the
(j − 1)th species (with j = 0 corresponding to R), and
P will depend on the last member of the cascade, UN .
In terms of Fourier-transformed fluctuations δuj , the dy-
namical equations for the pathway have the form:

−iωδuj(ω) = Gujuj (ω)δuj(ω) +Gujuj−1(ω)δuj−1(ω)

+ nuj (ω), j = 1, . . . , N.

(B1)

Thus the dynamics includes three parts: (i) the self-
responses Gujuj which we can assume in the simplest case
to be given by the inverse decay lifetimes of the species,
Gujuj = −τ−1

uj
; (ii) the cross-response terms Gujuj−1

which describe how the jth member of the cascade is
related to the (j−1)th member; (iii) the stochastic noise
terms nuj

. To complete the description of the feedback
loop, we specify the equations for R and P :

−iωδr(ω) = Grr(ω)δr(ω) +Grp(ω)δp(ω) + nr(ω),

−iωδp(ω) = Gpp(ω)δp(ω) +GpuN
(ω)δuN (ω) + np(ω).

(B2)

Instead of the simple cross-response Gpr from R to P ,
P is influenced by the final species of the Uj pathway
through GpuN

.
The regulatory cascade system described by Eqs. (B1)-

(B2) can in fact be simplified extensively, by solving for
the dynamics of the mediator species Uj and substituting
the results into Eq. (B2). This yields equations for R and
P which have the same form as in the two-species case
in the main text, but with an effective cross-response
function Geff

pr (ω) and noise term neff
p (ω),

−iωδr(ω) = Grr(ω)δr(ω) +Grp(ω)δp(ω) + nr(ω)

−iωδp(ω) = Gpp(ω)δp(ω) +Geff
pr (ω)δr(ω) + neff

p (ω),

(B3)
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where:

Geff
pr (ω) = GpuN

(ω)

N∏
j=1

Gujuj−1(ω)τuj

1− iωτuj

,

neff
p (ω) = np(ω)

+GpuN
(ω)

N∑
k=1

nuk
(ω)

Gukuk−1
(ω)

N∏
j=k

Gujuj−1
(ω)τuj

1− iωτuj

.

(B4)

In this effective two-species reduction of the full sys-
tem, all the stochastic effects of the mediators in the
Ui pathway enter in as “extrinsic” noise contributions to
neff
p (ω). This is a particular example that shows how ex-

trinsic noise encapsulates the stochastic influence of all
the species that are not explicitly specified in the dynam-
ical equations.

The mapping of the two-species system onto the noise
filter formalism, and the calculation of the optimal filter,
can be carried out by the methods outlined in the main
text. While this in general results in a more complicated
problem than the simple example analyzed in the main
text, in one scenario the noise filter optimization problem
for the cascade is relatively straightforward: (i) we as-
sume linear production functions k+

uj
(t) = κuj

uj−1(t) for
all Uj , so the cross-responses are constants in frequency
space, Gujuj−1

(ω) ≡ κuj
. Similarly, the P production

function is κpuN (t), so GpuN
(ω) ≡ κp. (ii) We assume

the decay timescales of all the cascade species are neg-
ligible, τuj

� τr, so we can take the limits τuj
→ 0 in

Eq. (B4). However, the products κuj
τuj

remain finite for
all j, since from the equilibrium conditions of the cascade
(balance of production and destruction), they are related
to ratios of the steady-state populations ūj :

κuj
τuj

=
ūj
ūj−1

. (B5)

Hence rapid decay goes hand in hand with fast produc-
tion. This is the same type of serial cascade analyzed
in Ref. 19, where it was shown to maximize information
transfer along the pathway. (iii) Finally, we assume that
each species in the original, full description of the system
is subject only to intrinsic noise, so the noise functions
are given by:

nr(ω) =
√

2k̄rηr(ω),

np(ω) =
√

2κpūNηp(ω),

nuj
(ω) =

√
2κuj

ūj−1ηuj
(ω),

(B6)

where the ηα(ω) for different α are independent Fourier-
transformed Gaussian white noise functions.

With these assumptions the effective cross-response
and noise functions in Eq. (B4) become:

Geff
pr (ω) =

B

τr
,

neff
p (ω) = np(ω) +B

N∑
k=1

nuk
(ω)

Buk

,

(B7)

where the P burst ratio B ≡ κpūNτr/r̄ is analogous to B
in the main text, i.e. the average number of P molecules
produced per R during the time interval τr. Similarly the
burst ratio Buk

= κuk
ūk−1τr/r̄ is the average number of

Uk molecules produced per R during τr.
The resulting signal and noise power spectra within

the filter formalism are:

Ps(ω) =
2r̄τr

1 + (ωτr)2
, Pn(ω) =

2r̄τr
Beff

, (B8)

where:

Beff =

[
1

B
+

N∑
k=1

1

Buk

]−1

. (B9)

Since the power spectra in Eq. (B8) have the same form
as Eq. (12), with B replaced by Beff , all the subse-
quent optimality results are identical, but expressed in
terms of the effective total burst ratio Beff of the signal-
ing pathway. This agrees with the effective burst ratio
for the cascade derived by the information theory ap-
proach in Ref. 19, under the assumptions of rapid pro-
duction/decay outlined above. Physically, this result im-
plies that Beff will be dominated by the smallest values
among the B and Buk

. Hence, the efficiency of the noise
filtration in the cascade is limited by the weakest links.

Analytic limiting form of the generalized nonlinear
feedback network

We will use the numerical optimization results de-
scribed in the main text for the generalized nonlinear
TetR feedback network (Eq. (22)) to derive a limiting
form of the system that can be solved analytically. Since
the optimization algorithm results in steep step-like func-
tions Kr(p) and Γp(p) with thresholds at p̄, let us assume
that optimal limit for these Hill functions looks like:

Kr(p) = K0
rΘ(p̄− p), Γp(p) = Γ0

pΘ(p− p̄), (B10)

where the Heaviside step function Θ(x) = 0 for x < 0 and
Θ(x) = 1 for x > 0. The plateau heights K0

r > 0 and
Γ0
p > 0 are assumed to be large, with a well defined ratio

ξ ≡ K0
r/Γ

0
p as K0

r ,Γ
0
p → ∞. Since Γ0

p � γp and thus
Γp(p) acts as the dominant protein degradation term, we
will set γp = 0 for simplicity. (This has negligible effect
on the resulting P sr,p, particularly since γ−1

p = 8.3 h was
already the longest time scale in the system.)

Under these assumptions, we would like to find an an-
alytical steady-state probability distribution P sr,p which
satisfiesRrp = 0 from Eq. (27) for all r, p ≥ 0. We cannot
solve the system of equations directly, but we will intro-
duce an ansatz for P sr,p and verify that it is a solution to
Eq. (27). The first part of the ansatz is trivial: we as-
sume P sr,p = 0 for p < p0 = bp̄c. This satisfiesRrp = 0 for
p < p0 exactly, regardless of the values of P sr,p at p ≥ p0.
To motivate the second part of the ansatz, which covers
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the p ≥ p0 region, we need some more information about
the moments of the distribution. This can be gathered
by defining the generating function,

F (z1, z2) =

∞∑
r=0

∞∑
p=p0

zr1z
p−p0
2 P sr,p. (B11)

Summing the steady-state conditionsRrp = 0 in Eq. (27)
over all r > 0, p ≥ p0, we obtain an equation that can be
expressed in terms of F :

γr(1− z1)F (1,0)(z1, z2) +K0
r (z1 − 1)F (z1, 0)

+ Γ0
p(z
−1
2 − 1) [F (z1, z2)− F (z1, 0)]

+ κpz1(z2 − 1)F (1,0)(z1, z2) = 0,

(B12)

where F (i,j)(z1, z2) ≡ ∂iz1∂
j
z2F (z1, z2). Taking the z1

derivative of Eq. (B12), and evaluating the result at
z1 = 1, z2 = 1, gives:

− γrF (1,0)(1, 1) +K0
rF (1, 0) = 0. (B13)

Similarly, differentiating Eq. (B12) with respect to z2

yields:

− Γ0
p [F (1, 1)− F (1, 0)] + κpF

(1,0)(1, 1) = 0. (B14)

Using the fact that F (1, 1) = 1 from the normalization
of P sr,p, and F (1,0)(1, 1) = 〈r〉, F (1, 0) =

∑∞
r=0 P

s
r,p0 from

the definition of the generating function in Eq. (B11), we
can use Eqs. (B13) and (B14) to find:

〈r〉 =
Γ0
pξ

γr + κpξ
,

∞∑
r=0

P sr,p0 =
γr

γr + κpξ
. (B15)

Thus we have an analytical expression for 〈r〉, one of the
moments necessary for calculating the Fano factor. If
we proceed to the next order of derivation, applying ∂2

z1 ,

∂2
z2 , and ∂z1∂z2 on Eq. (B12) and evaluating at z1 = 1,
z2 = 1, we can extract from these three equations the
following moment relations:

〈p− p0〉 =
κp((γr + κp)ξ −∆(γr + κpξ))

γr(γr + κpξ)
,

σ2
r = (1−∆)〈r〉, 〈r(p− p0)〉 = (1−∆)

Γ0
p

γr
− 〈r〉

ξ
,

(B16)

where ∆ is defined as

∆ = 〈r〉 − γr + κpξ

γr

∞∑
r=0

rP sr,p0 . (B17)

Thus the Fano factor σ2
r/〈r〉 = 1−∆, but unfortunately

we do not have an explicit solution for ∆ from the gen-
erating function approach. (Higher order partial deriva-
tives of Eq. (B12) do not form a closed system of equa-
tions.) However, the moment relations in Eq. (B16) will
prove useful below.

From Eq. (B15) we note that 〈r〉 → ∞ as Γ0
p → ∞,

so the distribution is pushed toward larger r as the step
functions become steeper, just as we saw in the numer-
ical optimization (Fig. 6). In the large r limit, we can
approximate P sr,p as a continuous function of r (though it
remains discrete in p). Based on the numerical optimiza-
tion results, we choose the following Gaussian ansatz for
P sr,p0 , the first non-negligible p slice of the distribution:

P sr,p0 = A0e
−(r−λ0)2/(2s20). (B18)

The parameters λ0 and s0 are to be determined, while
A0 must be chosen to satisfy

∑∞
r=0 P

s
r,p0 from Eq. (B15).

In the continuum, large r limit we can approximate the
sum as

∑∞
r=0 P

s
r,p0 ≈

∫∞
−∞ dr P sr,p0 , which implies that

A0 =
γr√

2πs2
0(γr + κpξ)

. (B19)

Similarly, Eq. (B17) gives

∆ = 〈r〉 − λ0, (B20)

so finding λ0 is equivalent to finding ∆.
Let us now show that the ansatz of Eq. (B18) yields a

solution P sr,p for p ≥ p0 that satisfies Eq. (27) in the large

Γ0
p limit. Using Eq. (B10) and the continuum approxi-

mation along the r direction, we can rewrite Eq. (27) for
p ≥ p0 as

0 = Rr,p ≈ γr∂r(rP sr,p)−K0
r δp,p0∂rP

s
r,p + Γ0

pP
s
r,p+1

− (1− δp,p0)Γ0
pP

s
r,p + κpr

[
(1− δp,p0)P sr,p−1 − P sr,p

]
.

(B21)

Plugging the ansatz for P sr,p0 from Eq. (B18) into
Eq. (B21) for p = p0, we can solve for P sr,p0+1,

P sr,p0+1 =

A0e
−(r−λ0)2/(2s20) (γrr −K0

r )(r − λ0) + (κpr − γr)s0

Γ0
ps0

.

(B22)

Similarly, once P sr,p0 and P sr,p0+1 are known, Eq. (B21)
for p = p0 + 1 yields P sr,p0+2,

P sr,p0+2 =
A0e

−(r−λ0)2/(2s20)

(Γ0
p)

2s2
0

·[
s2

0

(
−Γ0

pγr + γ2
r − 3γrκpr + κ2

pr
2
)

+ s0

{
Γ0
p(λ0 − r)(K0

r − γrr)
+ λ0

(
3γ2
rr − γr

(
2κpr

2 +K0
r

)
+ κpK

0
r r
)

+ r(2γr − κpr)(K0
r − 2γrr)

}
+ γrr(λ0 − r)2(γrr −K0

r )
]
.

(B23)

We can iterate this procedure, using Eq. (B21) to gener-
ate analytical expressions for all P sr,p0+m, m > 0, which
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depend on the unknown parameters λ0 and s0. To solve
for these parameters, let us first enforce the normaliza-
tion condition,

1 =

∞∑
m=0

∞∑
r=0

P sr,p0+m ≈
∞∑
m=0

∫ ∞
−∞

dr P sr,p0+m. (B24)

Though tedious, the integrals on the right-hand side of
Eq. (B24) can be explicitly carried out for each m, since
P sr,p0+m has the form of a Gaussian exp(−(r−λ0)2/(2s2

0))
times a polynomial in r. Since we are interested in the
large Γ0

p limit, we can Taylor expand the integrals up to

first order in the small variable (Γ0
p)
−1, which gives the

following result:∫ ∞
−∞

dr P sr,p0+m ≈
γr

γr + κpξ

(
κpξ

γr + κpξ

)m
+

γrm(κpξ)
m(ξ(−2∆− ξm+ ξ) + (m− 1)s̃0(γr + κpξ))

2Γ0
pξ

2(γr + κpξ)m
,

(B25)

where s̃0 = s0/Γ
0
p, and we have used Eq. (B20) to write

λ0 = 〈r〉−∆, and Eq. (B15) for 〈r〉. Plugging Eq. (B25)
into Eq. (B24) and carrying out the sum over m, the
normalization condition becomes

1 = 1− κp(γr + κpξ)
(
∆γr − κps0(γr + κpξ) + κpξ

2
)

Γ0
pγ

2
r

.

(B26)
Thus the term of order (Γ0

p)
−1 on the right must be zero,

implying the following relation between s̃0 and ∆,

s̃0 =
∆γr + κpξ

2

κp(γr + κpξ)
. (B27)

In order to complete the derivation and solve for ∆, we
need to calculate the moment 〈p− p0〉,

〈p− p0〉 =

∞∑
m=0

∞∑
r=0

mP sr,p0+m ≈
∞∑
m=0

m

∫ ∞
−∞

dr P sr,p0+m.

(B28)
Plugging in Eq. (B25) for the integral, we carry out the
sum over m and simplify using Eq. (B27), giving

〈p− p0〉 =
κp(Γ

0
pγrξ + ∆(γr + κpξ)

2)

Γ0
pγ

2
r

. (B29)

Setting this equal to the 〈p− p0〉 result from Eq. (B16),
we finally can solve for ∆, or equivalently the Fano factor
σ2
r/〈r〉 = 1−∆,

σ2
r

〈r〉 = 1− Γ0
pγrκp(1− ξ)ξ

(γr + κpξ)(Γ0
pγr + (γr + κpξ)2)

≈ 1− (1− ξ)ξκp
γr + κpξ

+O((Γ0
p)
−1),

(B30)

keeping the leading terms in the Taylor expansion for
small (Γ0

p)
−1. The Fano factor achieves a minimum value

equal to the WK linear optimum,

σ2
r,min

〈r〉 =
2

1 +
√

1 +B
=
σ2
r,WK

〈r〉 (B31)

at ξ = ξmin = 1/(1 +
√

1 +B), where B = κp/γr. Thus
we see explicitly that nonlinear threshold regulation with
Kr(p) and Γp(p) behaving like step functions can directly
match (but not improve on) the efficiency of the optimal
WK linear filter, so long as Γ0

p is large and the ratio of
the step function heights assumes a particular value ξmin.
Counterintuitively, this occurs despite the fact that the
p copy numbers can be very small in our system, with a
narrow range of fluctuations in which discreteness plays
a major role.

Appendix C: Optimality for the TetR gene network
under extrinsic noise

In the frequency domain, we will model next
α (ω), the

extrinsic part of the noise associated with species α using,

next
α (ω) =

√
2cαk̄α

1− iωτe
ηext
α (ω), (C1)

where cα is a coefficient measuring the strength of the
noise, and ηext(ω) is a Fourier-space Gaussian white noise
function. Comparing to the definition of the intrinsic

noise, nint
α (ω) =

√
2k̄αηα(ω), we see that cα is the ratio

of the extrinsic to intrinsic noise PSD for species α at
ω = 0. The (1− iωτe)−1 factor acts as a cutoff that sup-
presses frequencies ω � τ−1

e . The total noise function
for species α is the sum of intrinsic and extrinsic con-
tributions, nα(ω) = nint

α (ω) + next
α (ω). We will focus on

how the addition of extrinsic noise affects the optimality
conditions using the TetR yeast gene circuit example.

The calculation of Hopt(ω) proceeds analogously to the
no-extrinsic-noise procedure described in the main text.
The power spectra of the signal and noise are,

Ps(ω) = 2r̄τr

[
1

1 + (ωτr)2
+

cr
(1 + (ωτr)2)(1 + (ωτe)2)

]
,

Pn(ω) =
2r̄τr
B

[
1 +

cp
1 + (ωτe)2

]
.

(C2)

The first and second terms in the square brackets rep-
resent the intrinsic and extrinsic contributions respec-
tively. The latter is parameterized by the coefficients cr
and cp, and the timescale τe, which is assumed to be
much larger than the dominant timescale, τr, character-
izing the R fluctuations. The signal plus noise power
spectrum, Py(ω) = Ps(ω) +Pn(ω), can be rewritten as a
causal decomposition in the following manner:

Py(ω) =

∣∣∣∣∣
(

2r̄τr
B

)1/2
(ρ+ − iωτr)(ε−1ρ− − iωτe)

(1− iωτr)(1− iωτe)

∣∣∣∣∣
2

≡ |P cy (ω)|2,
(C3)
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where ε ≡ τr/τe, and

ρ± =

√
µ±

√
µ2 − 4ε2ν

2
,

µ = 1 +B + ε2(1 + cp),

ν = 1 +B(1 + cr) + cp.

(C4)

The expression Ps(ω)/P cy (ω)∗ and its additive causal de-
composition {Ps(ω)/P cy (ω)∗}c is given by:

Ps(ω)

P cy (ω)∗
=

(2r̄τrB)1/2(1 + cr + (ωτe)
2)

(1− iωτr)(1− iωτe)(ρ+ + iωτr)(ε−1ρ− + iωτe)
,

(C5)

{
Ps(ω)

P cy (ω)∗

}
c

=

(2r̄τrB)1/2(1 + cr − ε−2)

(1− iωτr)(1− ε−1)(ρ+ + 1)(ε−1ρ− + ε−1)

+
(2r̄τrB)1/2cr

(1− ε)(1− iωτe)(ρ+ + ε)(ε−1ρ− + 1)
.

(C6)

Using Eqs. (C6) and (C3) in Eq. (9), we obtain the form
for the optimal filter function:

Hopt(ω) =
BK(ω)

(1− ε)(ρ+ − iωτr)(ε−1ρ− − iωτe)
, (C7)

where

K(ω) =
1− (1 + cr)ε

2

(1 + ρ−)(1 + ρ+)
(1− iωτe)

+
crε

(ε+ ρ−)(ε+ ρ+)
(1− iωτr).

(C8)

Since ε is presumed small, we will expand Hopt to lowest
order in ε, giving the approximate expression:

Hopt(ω) ≈
√

1 +B − 1√
1 +B − iωτr

·
1 + cr

1+
√

1+B√
ν+
√

1+B
− iωτe√

ν
1+B − iωτe

.

(C9)
The first rational term is just the optimal filter result in
the intrinsic-only case, Eq. (17), while the second term
represents the modification needed to accommodate the
extrinsic noise. As expected, the latter term approaches
1 when cr, cp → 0, since ν → 1 +B in this limit.

There is a different non-trivial scenario where the sec-
ond term is equal to 1. If the noise magnitudes cr and cp
are related such that,

1 + cr
1 +
√

1 +B√
ν +
√

1 +B
=

√
ν

1 +B
, (C10)

then the numerator and denominator exactly cancel each
other out, removing the τe dependence from the opti-
mal filter. Using the definition ν = 1 + B(1 + cr) + cp,
Eq. (C10) can be simplified to yield the relation:

cr =
1

1 +
√

1 +B
cp. (C11)

If this condition is satisfied, Hopt(ω) is identical to the
intrinsic-only optimal filter of Eq. (17) (to lowest order in
ε), and hence the approximate optimality is also achieved
at the same feedback value, Gopt

rp ≈ Gopt
rp (B, τp).

Thus, the yeast gene circuit can still be fine-tuned to
approach a WK optimal filter even in the presence of
extrinsic noise. However, this tuning requires the relative
strengths cr and cp of the R and P extrinsic noise to
be related (at least approximately) by Eq. (C11). The
resulting minimal possible Fano factor σ2

r,opt/r̄ is:

σ2
r,opt

r̄
≈ 2

1 +
√

1 +B
+

τr

τe(1 +B +
√

1 +B)
cp. (C12)

This is the intrinsic-only result of Eq. (21) in the main
text plus an extrinsic noise contribution in the second
term. Not surprisingly, with more total noise in the sys-
tem, the standard deviation of the optimally filtered out-
put increases. Since the second term is of the order τr/τe
it follows that the bigger the difference in time scales be-
tween the extrinsic noise (τe) and the mRNA dynamics
(τr), the easier it is to filter out the extrinsic influence
on the mRNA fluctuations. For B � 1, the fundamen-
tal limit on the noise suppression still arises from the
intrinsic term in σ2

r,opt/r̄, which scales like ∼ B−1/2; the

extrinsic contribution decays more rapidly, ∼ B−1.
The blue curves in Fig. 7 show the linear theory pre-

dictions for σ2
r/r̄ as a function of A in two cases: (i)

cp = 80, cr = 23; (ii) cp = 160, cr = 46. The burst
ratio B = 5, and τe is set equal to γ−1

p , the longest time
scale among the experimentally fitted parameters. For
both these cases the noise strengths cp and cr satisfy
the relation in Eq. (C11), and hence it is possible to tune
the system to approximately achieve WK optimality, just
as in the intrinsic-only scenario. The noise magnitudes
were chosen so that the system is noticeably perturbed
by the extrinsic contribution. For example, if the signal
s(t) is split into intrinsic and extrinsic parts sint(t) and
sext(t), the ratios of their respective standard deviations
are σext

s /σint
s = 0.8 for case (i) and 1.6 for case (ii). The

value of σ2
r,opt/r̄ is marked by horizontal dashed lines,

and the point A = Aopt, where Gopt
rp (ω) ≈ Gopt

rp (B, τp)
is satisfied, by a filled circle. In all cases the system ap-
proaches σ2

r,opt/r̄ near A = Aopt, verifying the optimality
prediction.

As in the intrinsic-only scenario discussed in the main
text, we can test the usefulness of the linear theory
through Gillespie simulations (results shown as open
squares and circles in Fig. 7), and reach a similar con-
clusion even in the presence of extrinsic noise. At large
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volumes, V = 10V0, the simulations converge to the lin-
ear theory, whereas for the more realistic volume V = V0

we see discrepancies due to nonlinearity and low copy

numbers (V0 = 60 fL). Nevertheless, the Fano factor
still reaches a minimum close to the predicted Aopt and
σ2
r,opt/r̄ values.
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