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Abstract

In this study, critical behavior of low dimensional magnetic systems as
cyano-bridged Tb(III)-Cr(III) bimetallic assembly was investigated with
the mixed spin 3- spin 3/2 Ising model. The mixed spin Ising model
is simulated with Cellular Automaton cooling and heating algorithms on
one-dimensional lattices in periodic boundary conditions. The Ising model
Hamiltonian includes only antiferromagnetic nearest-neighbor interaction
(J > 0). The mixed spin system behaves like the isolated one-dimensional
chain for zero magnetic field (h = H

J
= 0). In the presence of the magnetic

field, the magnetization is calculated using zero-field cooling (ZFC) and
field cooling (FC) processes. The one-dimensional Ising model results are
compatible with the cyano-bridged Tb(III)-Cr(III) bimetallic quasi-one di-
mensional assembly ( (

[

Tb(H
2
O)

2
(DMF)

4

{

Cr(CN)
6

}]

·H2O(DMF= dimethyl-
formamide)) results.

Key words: Hysteresis, long-range order, Ising model, cellular au-
tomaton.

PACS Numbers: 05.20.-y, 75.10.Hk, 05.10.-a, 75.60.-d.

1 Introduction

Low dimensional magnetism has been a subject of studies for many years. In
the last decades, new materials have been synthesized to obtain high temper-
ature magnetism. One of these materials are cyano-bridged 4f -3d assemblies.
f -block lanthanide ions having large anisotropic magnetic moments yield hard
magnets and long-range magnetic order in solids [4, 9-11]. Some of cyano-
bridged 4f -3d assemblies also exhibit field-induced magnetic relaxation [10],
cooling-rate dependent magnetism [12], photo-induced magnetization [13], and
humidity response [14] . Interactions between the ions/molecules determine the
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electronic and magnetic properties as well as dimensionality of the assembly.
Guo et al. synthesized cyano-bridged Tb (III) -Cr (III) bimetallic assembly
([Tb(H

2
O)

2
(DMF)

4
{Cr(CN)

6
}] ·H2O(DMF= dimethylformamide)) [4]. They

introduced that antiferromagnetic interaction between Tb (III) and Cr (III)
ions represented by S = 3 and σ = 3/2, respectively, leads to ferrimagnetic
structure in the quasi-one dimensional zig-zag chain. A transition to 3D longe-
range magnetic order from the ferrimagnetic Tb (III) -Cr (III) chains occurs at
TC = 5K with the weak interchain interactions. Therefore, they draw atten-
tion to the requirement of the further experimental and theoretical studies to
illuminate the magnetic interaction mechanism.

The aim of this study was to detect the interaction mechanism of the one-
dimensional spin 3- spin 3/2 chain. For this purpose, the one-dimensional spin 3
- spin 3/2 Ising model in its simplest form is simulated using Cellular Automaton
(CA) and the results are compared with the experimental results to clear up
the magnetic interaction mechanism. The one-dimensional Ising model was
first introduced by Ernst Ising in 1925. The model established by Ising as
a chain of spins, each spin interacts only with its nearest-neighbors, and an
external field. At non-zero temperature, the model does not have any phase
transition. Correlation lenght becomes infinite at H = T = 0, which is the
critical point of the model [1]. However, magnetic order can emerge with broken
one-dimensionality due to orbital degeneracy or quasi-one dimensional geometry
[2− 8].

The mixed spin Ising model is a simple model to study ferrimagnetism.
Therefore, a variety of spin mixtures, such as spin 1- spin 1/2 [15− 22], spin
1 - spin 3/2 [23− 25], spin 1 - spin 5/2 [26], spin 2 - spin 1/2 [15], spin 2 -
spin 3/2 [27,28], spin 2 - spin 5/2 [29− 34], spin 1/2 - spin 3/2 [15,21,35], spin
1/2 - spin 5/2 [15], spin 3/2 - spin 5/2 [17], and spin 3 - spin 3/2 [36] have
been studied frequently by simulation and numerical methods. Creutz Cellular
Automaton (CCA) algorithm and its improved versions are efficient to study
the critical behaviors of the Ising model [36− 40] . The CCA algorithm was
first introduced by Creutz [41]. It is a microcanonical algorithm interpolating
between the conventional Monte Carlo and the molecular dynamics techniques.

In this study, magnetization (M), susceptibility (χ), internal energy (U),
and specific heat (C/k) are calculated on one-dimensional chain of linear di-
mension L = 100, 500, 1000, 5000, 10000, 50000, and 100000 with periodic
boundary conditions. First, 1D behavior and the long-range order (LRO) of
the mixed spin system have been investigated with temperature variation of the
thermodynamic quantities in zero external field (h = H

J = 0) and external field

(h = H
J 6= 0) using the Cellular Automaton cooling algorithm. At the same

time, the thermodynamic quantities are calculated via field cooling (FC) and
zero field cooling (ZFC) processes for 0 ≤ h ≤ 3.4. For mixed spin systems,
hysteresis curves are obtained at several temperature values. The outline of this
paper is as follows: In Section 2, the model and the formalism are given. In
Section 3, the results and the discussions are presented. A conclusion is given
in Section 4.
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2 Model

The mixed-spin Ising model hamiltonian is given by

HI = J
∑

<ij>

Siσj −H
∑

i

(Si + σi) (1)

where Si = 0, ±1, ±2 and ±3 and σj = ±1/2, ±3/2. < ij > denotes the
summation over all nearest -neighbour spin pairs in a one-dimensional lattice.
J is the bilinear interaction (J > 0) between S and σ. H is the external field.
The lattice is established from the two interpenetrating linear chains named as
sublattice A and sublattice B. S and σ spins are located in sublattice A and
sublattice B, respectively (Fig. 1). Three variables are associated with each
site of the lattice. The values of these variables are determined in each site
from its value and those of its nearest- neighbors at the previous time step. The
updating rule, which defines a Cellular Automaton, is as follows: Of the three
variables on each site, the first one is the Ising spin, Ai or Bj . Its values may
be Ai = 0, 1, 2, 3, 4, 5, and 6 for S and Bj = 0, 1, 2, and 3 for σ. S and
σ can be defined as Si = (Ai − 3) and σj = (2Bj − 3)/2 using the Ising spin
variables in Eq. (1). The second variable corresponds the momentum variable
which is conjugate to the spin (the demon). The kinetic energy associated with
the demon, HK , is an integer and it is equal to the change in the Ising spin
energy (−dHI) for any spin flip.

dHI = Ht
I −Ht+1

I (2)

Kinetic energy values lie in the interval (0, m) where m takes a different value
for each h = H

J . For example, the greatest value of the dHI equals −24 for
J = 1 and H = 1. In those terms, m equals 48.

The total energy (TE) which is conserved is given in the following form:

TE = HI +HK (3)

The third variable provides a checkerboard row style updating and so it
allows the simulation of the Ising model on a cellular automaton. The black
sites of the checkerboard are updated and then their color is changed into white;
white sites are changed into black without being updated. The updating rules
for the spin and the momentum variables are as follows: For a site to be updated
its spin is changed to one of the other 6 (3) states with 1/6 (1/3) probability for
S (σ ) and the change in the Ising spin energy dHI is calculated. If this energy
change is transferable to or from the momentum variable associated with this
site, such that the total energy TE is conserved, then this change is done and the
momentum is appropriately changed. Otherwise, the spin and the momentum
are not changed. For example, dHI equals 24 in the case of σt

i = − 3

2
, St

i = −3,

and σt
i+1 = − 3

2
. St+1

i can take one of the Si = 3, 2, 1, 0, −1, −2, and −3

values at t+ 1 time step If the St+1

i takes the value of 3, the 24 unit energy is
transferred to the system as the kinetic energy.
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The system temperature for a given total energy is obtained from the average
value of the kinetic energy, which is given by

〈E〉 =

∑m
n=0

ne−nJ/kT

∑m
n=0

e−nJ/kT
(4)

where E = HK . The expectation value in Eq. (3) is average over the lattice
and the number of time steps.

σi-1 Si
σi Si+1 σi+1Si-1

Figure 1: One-dimensional lattice in periodic boundary conditions. Sublattice
A and B generate the one-dimensional lattice. Sublattice A (B) is occupied by
S (σ).

The field cooling (FC) process and the zero-field cooling (ZFC) process for
Tb (III)-Cr (III) are carried out using the cooling and the heating algorithms
of CA [36 − 40]. The cooling and the heating algorithms are divided into two
basic parts, the initialization procedure and the taking of measurements. In the
initialization procedure, firstly, all the spins in the lattice sites take ferrimagnetic
ordered structure (↑ (3),↓(− 3

2
)) and the kinetic energy is given to a certain

percentage of the lattice via the second variables in the black sites such that the
kinetic energy of the site is equal to the change in the Ising spin energy for any
spin flip. The values of the kinetic energy per site is set to obtain disordered
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spin configuration for zero field at high temperature. This configuration is run
during the 20000 cellular automaton time steps. In the next step, the last
configuration in the disordered structure at high temperature was chosen as a
starting configuration for the FC and ZFC simulations. Rather than resetting
the starting configuration at each energy, it was convenient to use the final
configuration at a given energy as the starting point for the next.

2.1 FC and ZFC Processes

In the measurement step of the FC algorithm, the last configuration of the
initialization procedure in the disordered structure is taken as a starting con-
figuration. The spin system is cooled for a value of non-zero field (h = H

J 6= 0).
During the cooling cycle, a certain amount of energy per site are subtracted
from the lattice through the second variable (HK) after the 2000000 cellular
automaton steps. In the zero-field cooling process (ZFC), the initial config-
uration in the disordered structure is used as a starting configuration for the
cooling run at zero-field (h = 0). The last configuration at low temperature of
the cooling process is taken as a starting configuration for the heating run of the
ZFC. Then the spin system is heated for a value of non-zero field (h = H

J 6= 0).
During the heating cycle, a certain amount of energy per site is given to the
lattice through the second variable (HK) after the 2000000 cellular automaton
steps. These energy amounts are determined considering the dHI values for the
possible spin configurations. Thus, the whole energy is used by the spin system.
As a result, the spin system does not contain the remnant energy, which affects
the temperature measurement.

3 Results and Discussions

All simulations were carried out using the cooling and the heating algorithms
improved from CCA for the one-dimensional spin 3 - spin 3/2 Ising model. The
thermodynamic quantities (the order parameter (M), the susceptibility (χ),
the internal energy (U), and the specific heat (C/k)) were computed over the
lattice and over the number of time steps (2000000 ) after the discard of the first
100000 time steps during the development of the cellular automaton. Thus, the
values of the thermodynamic quantities correspond to the equilibrium average
values. The calculations were repeated by field cooling (FC) and the zero-field
cooling (ZFC) processes on one-dimensional lattices with the linear dimensions
L = 100, 500, 1000, 5000, 10000, 50000, and 100000 for periodic boundary
conditions.

The thermodynamic quantities are calculated from

M =
1

N

∑

i

Si −
1

N

∑

j

σj (5)

U =
1

H0

((
∑

<ij>

Siσj)−
H

J

∑

i

(Si + σj)) (6)
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Figure 2: Temperature dependence of (a) Magnetic order parameter (M), (b)
Susceptibility (χ), (c) Internal energy (U), and (d) Specific heat (C/k) at h =
H/J = 0 on L = 100, 1000, 5000, 10000, 50000, and L = 100000.
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χ = N

〈

M2
〉

− 〈M〉
2

kT
(7)

C/k = N

〈

U2
〉

− 〈U〉
2

(kT )2
(8)

where H0 is the ground state energy at kT/J = 0.

3.1 The behavior of the one-dimensional spin system in
the absence of an external magnetic field (h = H

J
= 0)

The temperature dependence of the order parameters (M), the susceptibility
(χ), the internal energy (U), and the specific heat (C/k) in the absence of mag-
netic field (h = 0) were illustrated in Fig. 2 for the cooling algorithm. As
it is seen in Fig. 2(a), the value of M increases with decreasing temperature
(kT/J → 0) for each lattice size similar to the one-dimensional Ising model.
However, the susceptibility diverges to infinity at absolute zero temperature
for all lattice sizes (Fig. 2(b)). At the same time, U does not have an inflec-
tion indicating any phase transition and C/k exhibits a broad peak.The critical
behavior of M , χ, U , and C/k are compatible with the behavior of the char-
acteristic one-dimensional Ising model, and the isolated one-dimensional Ising
chain results which has very weak interchain coupling in 3-d dimensional lattice
[42].

The evolution of the magnetization for each lattice was plotted in Fig. 3 as
a function of lenght per 200 sites (L/200) for kT/J = 0.8 at h = 0. As it is seen,
there are local order regions which are separated by the fluctuations between
pozitive and negative magnetization values for L ≥ 10000 lattices. The spatial
fluctuations decrease with decreasing lattice size. This causes an increase in
the order parameter at low temperatures for decreasing lattice sizes. Therefore,
the one-dimensional Ising model can be modeled in only large lattice size as
L ≥ 10000. In this study, the lattice size was selected as L = 100000 for the
simulation of the one-dimensional Ising model

For L = 100000, spatial behavior of order parameter are shown in Fig.
4 for kT/J = 0.446, 0.808, 1.014, and 1.510 at h = 0. At kT/J > 0, the
magnetization fluctuates between the local regions for all temperature values.
The fluctuations are more often with increasing temperature and so the local
order regions disappear as expected for the one-dimensional Ising model.

3.2 The behavior of the one-dimensional spin system in
an external magnetic field (h = H

J
6= 0)

For h = 0.1, the evolution of the magnetization was plotted as a function of
lenght per 200 sites (L/200) for different temperatures (kT/J = 0.439, 2.264,
2.499 and 3.513) in Fig. 5. As it is seen, the local order regions do not occur
through the lattice for kT/J 6= 0. For kT/J < 2.499, the system shows a
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Figure 3: Magnetic order parameter as a function of lenght per 200 sites (L/200)
for h = H

J = 0 on (a) L = 100, (b) L = 1000, (c) L = 5000, (d) L = 10000, (e)
L = 50000, and (f) L = 100000 at kT/J = 0.8.
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Figure 4: Magnetic order parameter as a function of lenght per 200 sites (L/200)
for h = H

J = 0 at (a) kT/J = 0.446, (b) kT/J = 0.808, (c) kT/J = 1.014 , and
(d) kT/J = 1.510 on L = 100000.
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long range order (LRO) with the effect of the external magnetic field. On the
other hand, the LRO begins to decay at a critical temperature and disappears
at high temperatures. This behavior indicates a phase transition depending
on the temperature. The temperature dependence of the magnetization was
obtained by field cooling (FC ) process and zero field cooling (ZFC) process in
the interval 0 ≤ h ≤ 3.4.

In Fig. 6(a) and 6(b), the temperature variation of M and χ are illustrated
for ZFC and FC processes at h = 0.4. The values of magnetization for ZFC
and FC are different than each other at low temperatures. This difference
disappears at high temperatures (Fig. 6(a)). The susceptibilities obtained with
ZFC and FC processes have a peak at the same temperature (Fig. 6(b)).
The simulation results are in agreement with the experimental cyano-bridged
terbium (III)-chromium (III) bimetallic quasi-one dimensional assembly result
[4]. In Fig. 6(c), the temperature variations of the magnetizations for ZFC
and FC are shown for several magnetic field values. As it seen in the figure,
the difference between magnetizations of the FC and the ZFC disappears with
increasing h value at low temperatures. Using the ZFC and FC magnetization
values, the hysteresis curves were obtained for L = 100000. In Fig. 7(a) and
7(b), hysteresis curves are illustrated for kT/J = 1.5 and 2 temperature values.
As it is seen from hysteresis curves, the spin system has remnant magnetization
when the magnetic field drops to zero. The remnant magnetization values are
estimated from the hysteresis curves for several temperatures and shown in
Fig. 7(c). The temperature variation of remnant magnetization is similar to
spontaneous magnetization of a magnetic system above one dimension.

4 Conclusion

The mixed spin 3- spin 3/2 Ising model with antiferromagnetic nearest-neighbor
interaction is simulated on one-dimensional lattices with linear dimension L =
100, 500, 1000, 5000, 10000, 50000, and 100000 using Cellular Automaton cool-
ing and heating algorithms improved from Creutz Cellular Automaton (CCA).
The values of order parameter (M), susceptibility (χ), Internal energy (U)
and specific heat (C/kB ) are calculated using cooling and heating algorithms
(h = H

J = 0). The mixed spin system shows the one-dimensional Ising chain
behavior for h = 0 [42]. At the same time, the system exhibits a long-range
order (LRO ) at low temperatures on the one-dimensional lattice in the pres-
ence of the external magnetic field (h = H

J = 0.1). The hysteresis curves
are obtained from zero field cooling (ZFC) and field cooling (FC) magneti-
zation values in the presence of the external magnetic field (h 6= 0). It is
seen that the mixed spin 3- spin 3/2 Ising model has remarkable remnant
magnetization as presented in the experimental study [4]. The results of the
one-dimensional Ising model with antiferromagnetic nearest-neighbor interac-
tion are similar with cyano-bridged Tb (III) -Cr (III) bimetallic quasi-one di-
mensional assembly ([Tb(H

2
O)

2
(DMF)

4
{Cr(CN)

6
}] ·H2O(DMF= dimethylfor-

mamide)) results [4]. As a result, the magnetic behavior of the cyano-bridged
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Tb (III) -Cr (III) bimetallic assembly can be determined by intrachain nearest-
neighbor interactions in the absence of interchain interaction on one-dimension.
Thus, the cyano-bridged Tb (III) -Cr (III) bimetallic assembly may be consid-
ered as one dimensional instead of quasi one dimensional spin system. Our cal-
culations show that the high temperature phase transition on a one-dimensional
mixed spin 3- spin 3/2 system, similar to the cyano-bridged Tb (III) -Cr (III)
bimetallic assembly, is caused by the ferrimagnetic nature of the spin system.
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