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Social contagions on weighted networks
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We investigate critical behaviors of a social contagion model on weighted networks. An edge-weight com-
partmental approach is applied to analyze the weighted social contagion on strongly heterogenous networks
with skewed degree and weight distributions. We find that degree heterogeneity can not only alter the nature
of contagion transition from discontinuous to continuous but also can enhance or hamper the size of adoption,
depending on the unit transmission probability. We also show that, the heterogeneity of weight distribution
always hinder social contagions, and does not alter the transition type.

PACS numbers: 89.75.Hc, 87.19.X-, 87.23.Ge

I. INTRODUCTION

Network provides a useful analytical framework for study-
ing a wide array of social phenomena, since the network of
people—social networks—plays a critical role in many social
phenomena [1H6]. Although the edges in social networks—
social relationships—are often modeled binary, it is more re-
alistic to consider weighted edges because the strength of so-
cial relationship greatly vary in reality [7]. A number of
proxies has been used to capture the strength of social rela-
tionships. For example, the number of papers that two sci-
entists have coauthored was used to capture the strength of
the collaboration [7, [8]]; the duration of calls—the amount of
conversation—between two people is used to measure how
close they are [9]. Thus it is important to ask how the distribu-
tion of weights, along with degree distribution, affects various
dynamics on networks.

Spreading processes, such as epidemic spreading [2, |10,
11]], diffusion of innovations [12-14], and diffusion of ru-
mors [15H17], are fundamental dynamics on social networks.
Recent studies have shown that there exist two important
classes of contagions: simple and complex. Simple conta-
gions (e.g. epidemic models such as SIS model [18] and SIR
model [19]) refers the processes where contagions spread in-
dependently, while complex contagions (e.g. linear threshold
model [20}21]]) refers the processes that are affected by social
reinforcement, where more exposures can drastically increase
the adoption probability [14}21423]].

Previous studies focused mainly on simple contagions, have
revealed that strong heterogeneity in the degree and weight
distributions not only is ubiquitous [2, [7, 24]], but also funda-
mentally affect the nature of spreading phenomena [1} |18} [25-
27]. For instance, on infinite scale-free networks where the
degree distribution exhibits a power-law (P(k) ~ k~%,2 <
a < 3), the epidemic threshold vanishes [18) 28]]. The inho-
mogeneity of weight distribution can also significantly affect
the epidemic threshold, epidemic prevalence, and spreading
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velocity [2529H32]. Although many interesting properties of
complex contagion has been uncovered recently [22] [33H33]],
it is not fully understood how degree and weight heterogene-
ity affect the dynamics of complex contagions. Building on
recent progress in complex contagion [14} 21} 36} [37]], here
we introduce a weighted complex contagion model and in-
vestigate the effect of degree and weight heterogeneity on the
dynamics of complex contagion.

We find that (i) increasing heterogeneity of degree distribu-
tion changes the nature of the phase transition from discontin-
uous to continuous; (ii) degree heterogeneity plays opposite
roles depends on the unit transmission probability: it enhance
the spreading when the unit transmission probability is small
while hinder the spreading when the unit transmission proba-
bility is large; and (iii) the weight heterogeneity suppress the
contagion while not altering the transition type. To analyze
the dynamics of complex contagion on weighted networks, we
use an edge-weight compartmental approach, which provides
accurate results.

II. WEIGHTED COMPLEX CONTAGION MODEL AND
NETWORK

We first introduce a complex contagion model that takes
weighted edges into account. Our model builds on a sim-
ple, generalized non-Markovian contagion model that can de-
scribe both simple and complex contagions [14} 38| 39]. In
particular, an individual can be in one of three possible states:
susceptible (S), adopted (A), or recovered (R). Each individ-
ual has a state of awareness value m € [0, 7] which denotes
the number of exposures. An individual adopts and begins
to transmit the behavior or information (contagion) when its
awareness value reaches 7. Individuals with m < T do
not affect the others. Here we add a weight-based transmis-
sion rule—individuals transmit the contagion preferably to its
closer neighbors with the following probability:

Aw;; =1 = (1= )", (D

where w; ; is the weight of the connection between individual
i and j, and §3 is the unit transmission probability. Given [,
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)\wm. monotonically increases with w; ;, i.e., individuals are
more likely to transmit the contagion to more strongly con-
nected neighbors. When successful, the awareness value of
the neighbor will increase by one. Assume an edge that has
transmitted the contagion successfully will never transmit the
same information again. Also, each adopted individual may
become recovered with probability ~y, considering the fact that
people may lose interest in the contagion after a while and
will not spread it any more (in this paper, we set v = 1 unless
noted, so everyone is active for only one step). The individ-
uals will remain in recovered state for all subsequent times
once it is recovered.

In our networks, we initially select a small fraction of nodes
randomly and designate them as seeds by setting their aware-
ness to be T'. We set the awareness of the remaining nodes to
be 0 and let them be at the susceptible state. In each step, all
adopted nodes will interact with all of its susceptible neigh-
bors and transmit the contagion to them with the probability
defined above. At the same time, all adopted nodes will re-
cover with certain probability. The spreading process stops
when there is no adopted nodes, the final adoption size is equal
to final density of recovered nodes.

For simplicity, we assume uncorrelated random graphs
specified by two distributions: degree and weight. We realize
such networks by generalizing the configuration model [25}
40]]. Consider one network with N nodes and M edges. We
first create a graph using the classical configuration model,
where the degree distribution follows p(k) ~ k=% (3 <
k, < VN ), then distribute weights that are sampled from
g(w) ~ w™* randomly (Wyqz ~ Nﬁ). oy, () con-
trols the heterogeneity of the degree (weight) distribution.
Following previous studies [25,132], we assume integer weight
values as it makes our approach more tractable.

III. THEORETICAL APPROACH AND NUMERICAL
SIMULATION

A. Edge-weight compartmental approach

One of the most widely used approaches to study network
dynamics—heterogeneous mean-field theory (HMF) [19,
4 1[—separates nodes into each degree bucket while treating
all edges equally. While it provides an excellent way to han-
dle strong degree heterogeneity, it overlooks edge weight het-
erogeneity. As a result, the approach exhibits a limitation in
dealing with networks with strong weight heterogeneity [42].
Our edge-weight compartmental approach treat each (integer)
weight values separately and provides a better way to study
networks with strong weight heterogeneity [25, 143H45]).

We use variables S(t), A(t) and R(t) to denote densities
of the susceptible, adopted, and recovered nodes at time t.
Let us consider a randomly selected susceptible node u with
awareness value m. Node u will remain susceptible as long
as m < T and will become adopted once T' of its neigh-
bors have transmitted the contagion successfully to u« since
multiple transmission through an edge is forbidden. As edge
weights are assigned randomly, the probability that w is not

informed by a neighbor v by time ¢ can be denoted by
0(t) =D g(w)u(t), @)

where 60,,(t) denotes the probability that v is not informed
by an edge with weight w by time ¢. If u’s degree is k, the
probability that the node was not one of the seeds and received
the contagion for m times by time ¢ is

ol = (= po) (1 )OI 1= 001", O

where Aq denotes the fraction of seeds. Clearly, the probabil-
ity that the k-degree node was not one of the seeds and still
didn’t adopt the contagion by time ¢ is

T-1

¢(kvt) - Z ¢m(kvt)' “4)

m=0

Thus the fraction of susceptible nodes (the probability that a
randomly selected node is susceptible) at time ¢ is

S(t)=>_p(k)o(k,t). )
k=0

Now, let us examine 6,,(t) in Eq.(2), 6,,(¢) can be broken
down into:

Bu(t) = &5 (1) + €0 () + €5 (D), (6)

where £X (t) denote the probability that a neighbor in the state
X € {S,A,R} has not transmitted the contagion to u through
an edge with weight w by time ¢. Once we derive £ (t)s, we
can get the density of susceptible nodes at time ¢ by substitut-
ing them into Eq. 2)-(3).

Neighbors who were in the susceptible state cannot inform
u unless they themselves become adopted firstly. So first let
us calculate the probability that the neighbor remains to be
susceptible by t. As we assume no correlation between the
degrees of nodes and its neighbors exists in uncorrelated net-
works, the probability that a random neighbor of u has degree
k is kp(k)/(k), where (k) is the mean degree of the network.
With mean-field approximation, £ (¢) is simply the probabil-
ity that one of its neighbors remains in the susceptible state by
time ¢, which is given by

Sy kp(k)é(k — 1,1)
(k)

Note that, as we already know w is in susceptible state at this
time, so the probability that this k-degree neighbor still didn’t
adopt the behavior by time ¢ is ¢(k — 1, ).

Calculating ¢£(¢) requires considering two consecutive
events: first, an adopted neighbor has not transmitted the con-
tagion to node u via their edge with weight w with probability
1— A ; second, the adopted neighbor has been recovered, with
probability . Combining these two events, we have

dgi(t)
dt

&a(t)

: 7)

YL = A€ (2). (8)



If this adopted neighbor transmits the contagion via an edge
with weight w, the rate of flow from 6,,(¢) to 1 — 6,,(¢) will
be A(w)&A (1), which means

daw (t) A
dt - _/\wfw (t)a (9)
and
d(1—0u() | .a
7 = A&, (1). (10)
By combining Eqs. (8) and (I0), one obtains
e _ 2= 8, (0l = ] o

Aw

Substituting Eq. and Eq. into Eq. (6), we yield the
following relation

2k kp(k)o(k —1,1)

E2(t) = 0u(t)—

(k) - A
(12)
By plugging this into Eq. (9), we obtain
daw(t) _ )‘w Zk kp(k)¢(k - 1at) _ _
dt - <]<i> (1 V)Awew(t)
+ [l — Ay — 0y (2)]- (13)

From Eq. (13), the probability 6,,(t) can be computed. The
density associated with each distinct state is given by

S = A,
S( ) Zk Op( ) (kvt)v (14)
At) =1 — R(t) — S(t).

From Egs. and (14)), one can find that around O (wy,q.)
equations are required in our edge-weight compartmental ap-
proach. By setting ¢ — oo and df,,(t)/dt = 0 in Eq. (13),
we get the probability of one edge with weight w that didn’t
propagate the contagion in the whole contagion process,

Ao 3, kp(k)d(k—1,00
L= 2] 4 2 Bkt
(1-

0., (t) decreases with ¢ and thus if more than one stable fixed
points exist in Eq. (I3), only the maximum one is physically
meaningful [38 43]. Substituting 6,,(c0) into Egs. @)-().
we can calculate the value of S(oc), and then final adoption
size R(c0) can be obtained. The number of roots in Eq. .
is either one or three. If Eq. - ) has only one root, R(c0)
increases continuously with 3, if Eq. (I5) has three roots, a
saddle-node bifurcation will occur, which leads to a discon-
tinuous change in R(co)[46]. The nontrivial solution corre-
sponds to the point at which the equation

5)

Hw(OO) = ’Y)Aw +

>\w Zk kp(k)¢(k—1,00)
(k)
— ) Aw +7
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1
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FIG. 1: Time evolutions of densities of nodes in different states, de-
noted by S(t) (blue circles), A(t) (red squares), and R(t) (black left
triangles), respectively. Analytical results are plotted in lines, which
match well with simulation results (symbols). The parameters for
the simulations are N=10,000, (k) = 10, (w) = 8, ax=2.1, ay=2.4,
£=0.18, Ap=0.1 and T'=3.

is tangent to horizontal axis at the critical value of 6.(c0), in
which 6. (co) means the critical probability that the informa-
tion is not transmitted to u via an edge at the critical transmis-
sion probability when ¢ — co. We obtain the critical condition
of contagion by:

df (6(0))
_— = 0. 17

d0(o0) |6, (c0) A7)
Plugging 6.(c0) into Eq. (2) provides us with the critical prob-
ability S..

B. Simulation Results

We report results of analytical solutions along with numeri-
cal simulations. We consider networks with power-law degree
and weight distributions: p(k) ~ k=% and g(w) ~ w~ .
We use Ay = 0.1 across paper but the results are robust with
arange of Ag. Also we use, for each parameter combination,
50 network realizations, on each of which we run 100 inde-
pendent simulations.

Figure [I] illustrates the time evolutions of susceptible (S),
adopted (A) and recovered (R) nodes. Naturally, it displays
a very similar dynamics with SIR model. Our analytical re-
sults (lines) agree well with simulation results (symbols). In
Fig. a), we show the final adoption size (R(c0)) in relation-
ship with unit transmission probability (3) for networks with
different degree and weight distributions along with the ana-
Iytical results (shown in black line, which match well with the
simulation results). Now, let us focus on the influence of het-
erogeneous degree distribution on social contagion processes
from two perspectives: the transition type of R(co) with g
and the final adoption size. We summarise our results as fol-
lowing.



FIG. 2: Final states of complex contagion dynamics on weighted net-
works. (a) Final adoption size (R(c0)) versus the unit transmission
probability (3) on different networks with tunable parameters. The
inset shows the numerical solutions of mean transmission rate (A, )
as function of B for three different values of a,, (i.e., 2.1, 2.5, and
4.0). (b) Final subcritical size (Ar—1(00)) versus the 3 on different
networks with tunable parameters. The parameters for all the simu-
lations are N=10,000, (k) = 10, (w) = 8, Ap=0.1 and T'=3.

First, the degree exponent determine the discontinuity of
the transition as shown in a previous work [43]. Figure 2[a)
shows that R(oo) increases continuously with 8 with hetero-
geneous degree distribution (e.g., o, = 2.1), while exhibiting
a discontinuous transition when oy, = 4.0. The results of bi-
furcation analysis on Eq. (I3) show that there exists one crit-
ical degree exponent o ~ 4.0, below (above) which R(c0)
versus 3 is continuous (discontinuous). For networks with
ay, = 4.0, the value of /3. can be obtained from Eq. (I3) using
bifurcation theory [46]. Analytical calculations show that for
Eq. (T3), the number of roots in Eq. (I3)) is either one or three
(see Fig.[3). If Eq. has only one root, R(co) increases
continuously with 3; if Eq. (I3) has three roots, a saddle-node
bifurcation occurs[46]. As shown in Fig. 3] there is only one
fixed point of Eq. at a small value of 3 (e.g, 8 = 0.1984)
and then three fixed points (in this case, only the maximum
one is physically meaningful since 6(t) decreases with t) grad-
ually emerge with the increasing of 3. The tangent point that
marked as one red circle is the physically meaningful solution
at the unit transmission probability 5. (e.g, 8 = 0.2006). For
B > B. (e.g, 6 = 0.2039), the solution of Eq. changes
to a smaller solution abruptly, which leads to a discontinuous
change in R(c0). We can demonstrate the type of dependence
and obtain the value of . for other parameters through the
similar measure.

We also explain this phenomena visually by showing

0.02
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0.015 — B=0.2006 |
ool "N\ == $=0.2039 |
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FIG. 3: Illustration of graphical solutions of Eq. @ The black
solid line is the horizontal axis and the red circle denotes the tangent
point. The parameters for the simulations are N=10,000, (k) = 10,
(w) =8, ax = 4.0, ay = 2.1, Ap=0.1 and T'=3.
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FIG. 4: The relationships between o, 3 and R(o0) at a fixed .
Figures (a) and (b) are results of numerical simulation and analytical
method on networks with two different ax; (i.e., 2.1 and 4.0) respec-
tively. The parameters for simulation are N=10,000, (k) = 10, (w)
=8, Ap=0.1 and T'=3.

Ap_1(00) (final subcritical size) in Fig. b). Here nodes
with awareness value 7' — 1 are considered as in subcriti-
cal state. Clearly, for results of , = 4.0 in Fig. |Zkb), the
quick sharp decline of final subcritical size corresponds to a
dramatic increase of final adoption size, thus may induce a
discontinuous dependence. Note that, there is no so-called
critical value of unit transmission probability (5.) for contin-
uous dependence. The critical value (. can also be estimated
by increasing the number of iterations [47] (only those inter-
actions in which appears at least one newly adopted individ-
ual are taken into account). In Fig. |Zkb), we show the esti-
mated (3. with dashed lines, which correspond to the peaks
of Ar_1(00). More details are shown in Fig. El As we ex-
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FIG. 5: The relationships between oy, 8 and R(oco) at a fixed au.
Figures (a) and (b) are results of numerical simulation and analytical
method on networks with two different o, (i.e., 2.1 and 4.0), respec-
tively. The parameters for the simulations are N=10,000, (k) = 10,
(w) =8, Ap=0.1 and T'=3.

pected, R(co) for networks with heterogeneous degree dis-
tribution (Fig. Eka) above) shows a continuous change with
the increasing of 5 while change discontinuously on networks
with homogeneous degree distribution (Fig. dfa) below). An-
alytical results shown in Fig. [b) agree well with numerical
results. The estimated values of (3. are labeled in blue cir-
cle, along with the corresponding analytical critical results are
plotted in blue line (shown in Figs. f[b)).

Second, as a result of continuous-discontinuous transition,
degree heterogeneity enhances the final adoption size at small
£ while hindering it at large 3, which is consistent with that
of epidemic case [25]. For instance, when «,, = 2.1, the fi-
nal adoption size (R(c0)) for oy, = 2.1 is greater than that of
ay, = 4.0 when 5 < 0.2, while opposite situation is obtained
when 8 > 0.2 (shown in Fig. 2[a)). This result can be qual-
itatively explained as following: social contagion propagates
on complex networks in two-stages due to the co-emergence
of more hubs and large amount of small-degree nodes with
increasing heterogeneity of degree distribution. The hubs are
more likely to become adopted early since more neighbors
make them have higher chance to reach the identical aware-
ness threshold 7" thus get adopted. On the contrary, small-
degree nodes are less likely to become adopted due to the
small number of its neighbors. Given a network with hetero-
geneous degree distribution, when unit transmission probabil-
ity /3 is small, the existence of more hubs enhance the conta-
gion thus leads to greater R(co) (promotion region); When 3
is large, the existence of large amount of small-degree nodes
will hinder the contagion, resulting in smaller R(co) (suppres-
sion region). Fig. 5] shows the whole picture of relationship
between «, 8 and R(co) when fixing . Increasing the het-
erogeneity of degree distribution will enhance R(oc0) at small
£ while hinder the adoption size at large /.

Let us address the influence of the heterogeneity of weight
distribution on social contagion processes at a given ay,. The

(a) Numerical (b) Analytical R(a)
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FIG. 6: The relationships between o, a,y and R(00) when the unit
transmission probability [ is fixed. Figures (a) and (b) are results
of numerical simulation and analytical method on the weighted con-
tagion model with two different 5 (i.e., 0.05 and 0.1), respectively.
The parameters for the simulations are N=10,000, (k) = 10, (w) =
8, Ap=0.1 and T'=3.

heterogeneity of weight distribution (smaller value of a,) re-
duces final adoption size R(c0). For instance, if we fix ay
(Fig. 2l)), R(c0) for o, = 2.1 is always smaller than that
of o, = 4.0. This phenomenon can be explained as follows:
when the average weight (w) is fixed, in the network with
smaller «,,, most edges have lower weights and thus transmis-
sion probabilities, leading to a smaller mean transmission rate
(Aw) = >, g(w) A, for arandomly selected edge. As shown
in the inset of Fig. a), (M) Of c;=2.1 is smaller than that
of o, = 4.0 with a given 8. On the other hand, changing the
weight distribution will not change the dependence behavior
of (R(c0), ) with a given degree distribution, which is simi-
lar to the case of simple contagion models [25]. This finding
can be verified from analytical perspective, varying the value
of a, will not change the number of roots in Eq. (I3), thus
will not affect whether saddle-node bifurcation occur or not.
The relationship between «,, and § when fixing «j, is shown
in Fig @] which confirms our finding here.

Finally, Fig. [6] summarizes our results, showing that for
small value of transmission probability (3 = 0.05), the ex-
istence of more hubs that can be easily informed thus enhance
the contagion process (Promotion Region). While for large
value of transmission probability (5 = 0.1), the existence of
large-amount small-degree nodes that difficult to be adopted
will hinder the contagion process (Suppression Region). In
addition, increasing the heterogeneity of weight distribution
will always hinder R(co). Figs.[6(a) and[6{b) show results of
simulation and analytical method respectively, which match
well with each other.

IV. CONCLUSIONS

In summary, we study the effect of heterogenous network
structures on the diffusion of complex contagions. With de-



creasing heterogeneity of degree distribution, the dependence
of final adoption size on unit transmission probability changes
from being continuous to discontinuous. We then show that
the heterogeneity of degree distribution may have two oppo-
site effects depending on the transmission probability: degree
heterogeneity enhances complex contagions when 3 is small
while hindering it when [ is large. By contrast, the hetero-
geneity of weight distribution always reduces final adoption
size though not change the dependence pattern of final adop-
tion size on unit transmission probability.

Our findings offer insights to understand the influence of
underlying network structures for weighed social contagions.
Future work may investigate into the cases where the adoption

threshold of each individual varies with its degree, or a richer
and correlated network structure is assumed.
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