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With ever-increasing amounts of online information aualéa modeling and predicting individual
preferences—for books or articles, for example—is becgmiiore and more important. Good predictions en-
able us to improve advice to users, and obtain a better uiagieiing of the socio-psychological processes that
determine those preferences. We have developed a coltafeofittering model, with an associated scalable
algorithm, that makes accurate predictions of individupteferences. Our approach is based on the explicit
assumption that there are groups of individuals and of itemd that the preferences of an individual for an
item are determined only by their group memberships. Ingmiy, we allow each individual and each item to
belong simultaneously to mixtures of different groups amdike many popular approaches, such as matrix fac-
torization, we do not assume implicitly or explicitly thatiividuals in each group prefer items in a single group
of items. The resulting overlapping groups and the predigteferences can be inferred with a expectation-
maximization algorithm whose running time scales line§plyr iteration) with the number of observed ratings.
Our approach enables us to predict individual preferentéarge datasets, and is considerably more accurate
than the current algorithms for such large datasets.

The goal of recommender systems is to predict what moviemakes them unpractical for large datasets.
we are going to like, what books we are going to purchase, or Here, we develop an approach to predict user ratings that
even who we might be interested in dating. The rapidly grow-makes explicit hypotheses about rating behavior. In paletic
ing amount of data on item reviews, ratings, and purchasesur approach is based on the assumption that there are groups
from a growing number of online platforms holds the promiseof users and of items, and that the rating a given user assigns
to facilitate the development of finer and more informed mod-o a given item is determined probabilistically by their gpo
els for recommendation. At the same time, however, it posememberships. Importantly, we do not assign users and items
the challenge of developing algorithms that can handle sucto a specific group; rather, we allow each user and each item to
large amounts of data both accurately and efficiently. belong simultaneously to mixtures of different groups [B, 4

A plausible expectation when developing recommendatiomll of these elements are combined in a model with a pre-
algorithms is that similar users relate to similar objectsii  cise probabilistic interpretation, which allows for rigais in-
similar manner, i.e., they purchase similar items and diee t ference algorithms. Happily, the inference problem for our
same item similar ratings. This means that we can use the ratrodel can be solved very efficiently: specifically, we prapos
ing history of a set of users to make recommendations, evean expectation-maximization algorithm whose running time
without knowing anything about the characteristics of sggr  per iteration, scales linearly with the number of obsenatd r
items; this is the basic underlying assumption of collabega ings, and which appears to converge rapidly in practice.
filtering, one of the simplest and most common approaches We demonstrate that our model is more realistic than those
in recommender systems [1]. However, most research in re¢mplicit in other approaches (particularly matrix factation)
ommender systems has not focused on precisely formalizingnd that, as a consequence, our approach consistentlyroutpe
these general assumptions into plausible and rigorousisiodeforms state-of-the-art collaborative filtering approasiudten
but rather on the development of scalable algorithms, @ten by a large margin. Moreover, because our model has a clear
the price of implicitly using models that are overly simplis interpretation, it can deal naturally with some situaticmest
tic or unrealistic. For example, matrix factorization aateht  are challenging for other approaches (for example, the cold
feature approaches assume that users and items live in sorsgrt problem) and can help to build theories about usenbeha
abstract low-dimensional space, but whether such a spaceiisr. We argue that our approach may also be suitable for other
expressive enough to accommodate for the rich variety of useareas where matrix factorization is increasingly used ssch
behaviors is rarely discussed. As a result, such stateestitt  image reconstruction, textual data mining, cluster arnslys
scalable approaches have significantly lower accuraces th pattern discovery [5-9].
inference approaches based on models of user prefereates th
are socially more realistic [2]. On the other hand, theseemor

realistic approaches do not scale well with dataset SlZE;l'Wh . A MIXED-MEMBERSHIP BLOCK MODEL WITH
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that each node in the bipartite graph of users and items be- Second, we do not assume that the matrjchave any par-
longs to a mixture of groups. However, unlike in [3, 10], we ticular structure. In particular, we do not assume homgphil
do not assume that these group memberships affect the preshere groups of individuals correspond to groups of items,
ence or absence of an link, i.e., the event that a given utes ra and individuals prefer items that belong to their own group:
a given item. Instead, we take the set of links as given, and athat is, we do not assume tha{r) is larger on the diagonal
tempt to predict the ratings. We do this with an MMSBM-like for higher ratings-. Thus our model, and our algorithm, can
model where the rating a user gives an item is drawn from dearn arbitrary couplings between groups of individuald an
probability distribution that depends on their group membe groups of items, and do so independently for each possible

ships.

Let us set down some notation. We haVeusers and\/
items, and a bipartite grapR = {(u, )} of links, where the
link (u,?) indicates that item was given a rating (observed
or unobserved) by user. For eachu, i) € R, the ratingr,;
belongs to some finite sétsuch ag 1, 2,3, 4,5}. Given a set

rating.

Third, unlike some approaches that use inference methods
similar to ours [16], and as stated above, our goal is not to
predict theexistenceof links. In particular, we do not assume
that individuals only see movies (say) that they like, and we
do not treat missing links as zeroes or low ratings. To pust thi

RO of observed ratings, our goal is to classify the users andifferently, we are not trying to complefe to a full matrix of

the items, and to predict the rating; of a link (u, i) € R for
which the rating is not yet known.

ratings, but only to predict the unobserved rating®if R°.
Thus the only terms in the likelihood of our model correspond

Our generative model for the ratings is as follows. Thereto observed ratings.

are K groups of users ant groups of items. For each pair of
groupsk, ¢, there is a probability distributiopy,(r) oversS of
the ratingr thatu givesi, assuming thai belongs entirely to
groupk andi belongs entirely to groufy

To model mixed group memberships, each useas a vec-
tord, € RX, wheref,;, denotes the extent to which usebe-
longs to grougk. Similarly, each itemi has a vector; € R”.
These vectors are normalized, i.8;, 0ur = > ,ni¢ = 1.
Givend,, andn;, the probability distribution of the rating,;
is then a convex combination,

Pr[ry =71] = Z OurNiepre(T) - 1)
et

Abbreviating all these parametersag), p, the likelihood of
the observed ratings is thus

P(ROIO,m,p) = [ D Ousmiepre(rui).

(u,i)€RO kL

(2)

As we describe below, our model also has the advantage
of being mathematically tractable. It yields an expectatio
maximization algorithm for fitting the parameters which is
highly efficient: each iteration takes linear time as a fiorct
of the number of users, items, and observed links. As a result
we are able to handle quite large datasets, and achieveerhigh
accuracy than standard methods.

Il. SCALABLE INFERENCE OF MODEL PARAMETERS

In most practical situations, marginalizing exactly oves t
group membership vectosand»n and the probability ma-
tricesp (similar to Ref. [2]) is too computationally expen-
sive. As an alternative we propose to obtain the model param-
eters that maximize the likelihood (2) using an expectation
maximization (EM) algorithm.

In particular, we use a classic variational approach (see
Methods) to obtain the following equations for the model pa-

As we discuss below, we infer the values of the paramerameters that maximize the likelihood,

ters §, 7, p that maximize this likelihood using an efficient
expectation-maximization algorithm. We can then use the in

ferred model to predict unobserved ratings.

Our work is different from previous work on collaborative

filtering in several ways. First, unlike matrix factorizatiap-
proaches such as [11] or their probabilistic counterpds-[
14], we do not think of the ratings,; € {1,2,3,4,5} as inte-

gers. As has been established in the literature, giving @aenov

Zieau > wui(k, £)

Our = a. 3)
Zu zz WUi(k’ f)
Nie = S dk ) (4)
Z w.i Oy ,:Twui(kvé)
pre(r) = ZLDERT s (5)

Z(u,i)eRO wai(k, £)

a rating of 5 instead of 1 does not mean the user likes it five

times as much [15]. Our results suggest that it is betterimdth
of different ratings simply as different labels that appmathe

Heredu = {i|(u,i) € R°} anddi = {u|(u,i) € R°} de-
note the neighborhoods afandi respectivelyy,, = |0u| and

links of the network. Moreover, our method yields a distribu d; = |0i| are the node degrees, i.e., the number of observed

tion over the possible ratings directly, rather than a igtr

ratings for user and iteni respectively; and

tion over integers or reals that must be somehow mapped to

the space of possible ratings [12—14]. From this point ofwyie

our model is a bipartite MMSBM with metadata (or labels)

OurNieDre (Tui)
wyi(k, l) =
uz( ) Zk’,f’ Quk,niglpk/g/ (T‘uz)

(6)

on the edges; a similar model based on the stochastic block
model (SBM), where each user and item belongs to only onés the variational method’s estimate of the probabilityt tine
group, was given in [2]. An alternative approach would be torating r,,; is due tou andi belonging to groupg and/ re-

consider a multi-layer representation of the data as in [4].

spectively.
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These equations can be solved iteratively with an EM al-of ratings that results from the average of the probabslifoe
gorithm. Starting with an initial estimate éf n, andp, we  all the sampling set. Therefore, we can choose how to make
repeat the following steps until the parameters converge:  predictions from the probability distribution of ratingshe

] most likely rating, the mean or the median. In contrast, rec-

1. (Expectation step) use (6) to computg;(k, () for  ommender systems like MF and item-item give only the most

(u,1) € RO, probable rating. We measure the performance in terms of ac-
curacy, i.e., the fraction of ratings that are exactly prest

by each algorithm, and the mean absolute error (MAE). For

The number of parameters and terms in the sums in Egs. (3pur algorithm, we find that the best estimator for the acgurac
(6) is NK + ML + |R°|K L. Assuming thatk andL are IS the most likely rating from the probability distributicof
constant, this i)(N + M + |R°|), and hence linear in the ratings, while for the MAE the best estimator is the median.
size of the dataset (see Fig. S1 in Supplementary Materials We find that in most cases our approach outperforms the
(SM)). As the set of observed rating?® is typically very  item-item algorithm and matrix factorization (Fig. 1). ket,
sparse because only a small fraction of all possible user-it When considering the accuracy, i.e., the fraction of times a

pairs have observed ratings, our algorithm is feasible éwen algorithm exactly predicts the correct rating, the MMSBM
very large datasets. is significantly better than matrix factorization for alleth

datasets we tested, and better than the item-item algohithm
five out of six datasets, the only exception being the Amazon

2. (Maximization step) use (3)-(5) to computen, andp.

Il. RESULTS Books dataset. In terms of the mean absolute error (MAE), the
MMSBM is the most accurate in four out of the six datasets
A. The MMSBM predicts ratings accurately (item-item and matrix factorization produce smaller MAE in

the Amazon Books and MovieLens 10M datasets). [20]

. S Interestingly, our approach produces results that arestimo
We test the performance of our algorithm by Cor]Sldermgdentical to t%(})/se of tﬁg un-mi>F<)ed SBM [2] for the two exam-

six datasets: the MovieLens 100K and 10M datasets witﬁI f hich inf ith the SBM is feasible. | "
100,000 and 10,000,000 ratings respectively, Yahoo! song? es forwhich interence wi e IS feasible. n partic-

Amazon books [17, 18], and the dataset from LibimSeTi.CZUIar’ we achieve the same accuracy wih= L = 10 in the

dating agency [19], which we split into two datasets, cdnsis mixed-membership model as with arousitigroups in the un-

ing of males rating females and vice versa. These datasets arlmxed SB.M' This suggests that many of the groups observed
diverse in the types of items considered, the sjZ=f the In [2] are in fgct mixtures ofa smaller number of groups, and
sets of possible ratings, and the density of observed ratinihat the addlt.|onal EXPressiveness of the MMSBM allows us
(see Table I). For each dataset we perform a five-fold cros 0 succeed with a lower-dimensional model.
validation, splitting it into five equal subsets, and usiaghe
one as a test set after training the model on the union of the
other four. B. MMSBMs generalize matrix factorization and provide

We compare our algorithm to three benchmark algorithms more expressive models
(see Methods): a baseline naive algorithm that assign<to ea
test ratingr,; the average of the observed ratings for item Matrix factorization (MF) is one of the most successful and
i; the item-item algorithm, which predicts,; based on the popular approaches to collaborative filtering, both in d&S-
observed ratings of user for items that are the most simi- sical” [11] and its probabilistic form [12-14, 16]. Howeyas
lar to i; and “classical” matrix factorization [11, 16]. For all we have just discussed, our MMSBM gives consistently more
these benchmark algorithms we use the implementation in thaccurate results for the ratings, often by a large margimeHe
LensKit package [15]. Additionally, for the smallest dass ~ we analyze the origin of this improvement in performance.
we also use the (un-mixed) stochastic block model approach We start by giving an interpretation of matrix factorizatio
of Ref. [2]; however, that algorithm does not scale well toin terms of our MMSBM. A matrix is of ranls if and only if
larger datasets. its entries can be written as inner productdoiimensional

For our algorithm, we sek = L = 10, i.e., we assume vectors associated with its rows as columns. Based on this
that there are 10 groups of users and 10 groups of items (rédea, matrix factorization assumes that the expectedy it
call that we do not assume any correspondence between thesger« gives items: is 7, = 6, - 7;, whered,, and7; are
groups). We considered some other choicedofind L as K -dimensional vectors representing the user and the item re-
well (see Fig. S2 in the SM). Since iterating the EM equa-spectively. One can apply a variety of noise models or loss
tion of Egs. (3)-(6) can lead to different solutions depenqdi functions, as well as regularization terms for the model pa-
on the initial conditions, we perform sampling of 500 inde- rameters [11], but this does not alter significantly the abns
pendent runs with random initial conditions. We average theerations that we present next.
predicted probabilities over the 500 runs because we tijpica  The limitations in expressiveness of matrix factorizatien
do not observe that one solution has much higher likelihoodtome apparent when we interpret matrix factorization as a
than the others (see Fig. S3 of the SM for results obtained ugnixture model. Assume that there akegroups of users and
ing the maximum likelihood solution). As a result, for eachthatd,,;, is the probability that user belongs to group. Sim-
rating a user gives an item we have a probability distributio ilarly, assume that there af€ groups of items and thag; is
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the probability that iteni belongs to groug. Finally, assume

that users in group only like items in groupk; in particular,
users ink assign a baseline rating dto items in groupg: and

a rating of0 to items in all other groups. Finally, lef, > 0
ands; > 0 be user and item “intensities” that correct for the
fact that some users rate on average higher than others, and
that some items are generally more popular than others. Then
the expected ratings are given by

fui - Z Suouksinik . (7)
k

Identifying Ouk = Subuk and7, = s;0;, this becomes the
matrix factorization modef,; = 6, - 7;. Thus (nonnega-
tive) matrix factorization corresponds to a model wheréheac
group of users corresponds to a group of items, and users in
a given group only like items in the corresponding group. We
argue that these assumptions are too limiting to model user
recommendations realistically. (Note that our interpreta

of matrix factorization as a mixture model is independent of
attempts in the literature to combine matrix factorizatigth
other mixture models [21].)

Our MMSBM relaxes these implausible assumptions by al-
lowing the distribution of ratings to be given by arbitrargm
tricesp, where the entryy,(r) is the probability that a user
in groupk gives an item in group the ratingr-. Matrix factor-
ization is roughly equivalent to assuming that is diagonal,
at least for high ratings. We believe that the improved gerfo
mance of the MMSBM over matrix factorization is due to this
greater expressive power. Indeed, Fig. 2 shows that the-matr
cesp inferred by our model are far from the purely diagonal
structure implicitly underlying matrix factorization.

Moreover, the generality of the MMSBM allows it to ac-
count for many of the features of real ratings. For instance,
the distribution of ratings is highly nonuniform: as shown i
Fig. 2,7 = 1 is quite rare whereas = 4 is quite common.
Different groups of users have very different distribusaf
ratings: users in group = 1 rate most movies withr = 5,
while those in grouge = 7 often give ratings: = 1. Sim-
ilarly, movies in group/ = 3 are consistently rated = 5
by most users, while movies in grodp= 9 are rated- = 1
quite often. It is also interesting that some groups of users
agree on some movies but disagree on others: for example,
users in groupg = 9,10 agree that most movies in group
¢ = 3 should be rated = 5, but they disagree on movies
in group? = 9, rating themr = 1 andr = 3 respectively.
These observations highlight the limitation in expressess
of matrix factorization, and explain why our approach based

spond to the standard error of the mean. The SBM algorithrs doeg, MMSBM yields better predictions of the ratings.

not scale to the larger datasets, but achieves similar acguo the
MMSBM on the datasets it can handle. The MMSBM model and
algorithm of this paper achieves the best (highest) acguraive
out of size datasets, and the best (lowest) MAE in four outixf s

datasets.

C. The MMSBM provides a principled method to deal with
the cold start problem

Because in the MMSBM all terms have a clear and precise
(probabilistic) interpretation, our approach can natyradéal
with situations that are challenging for other algorithms
example of this is the cold start problem, that is, a situnsitio
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FIG. 2. The inferred values for the probability matrigeérom the MovieLens 100K dataset. Left to right, the five nes correspond to
the ratingsr = 1,2, 3,4,5. For each one them, the rows and columns correspond to tie ard item’s groups; her& = L = 10. Each
element, shown as a heat map, gives the probahilityr) that a user in groug gives a rating- to an item in groug/. The matrices are
normalized as shown in (A2). Notice that there is no ordeahtie probability matrices that would make them diagonal.

which we want to predict ratings for users or items (or both) Figure 4 shows that when when we divide users according
for which we do not have training data [13, 22, 23]. to gender, pairs of male users have more similar profiles than
In the MMSBM, thep matrices are the same for all users pairs of female users or male-female pairs (see Fig. 4A). In-
and items; in this sense, new users or items pose no particterestingly, when we combine gender and age to define user
lar difficulty. However, for a new user we need to calculate groups, we find that gender profile similarities are not inde-
their group membership vectéy, (and analogously; fora  pendent of the age groups (see Fig. 4B). In fact, we observe
new item). Since on average users tend to have a higher protie general tendency that young users within a gender group
ability of belonging to some groups than to others, lackihg a seem to have larger profile similarities than older usertrin
information about a user we can assume that they are propoestingly, this tendency is more apparent for female users wh
tionally more likely to belong to the same groups. In pragtic are the group with larger similarity for ages 10-20 and the on
this means that to any new usewe can assign a group mem- with lower similarity for ages 40-50.
bership vector thatis the average of the vectors of the gbder
users,
1 IV. DISCUSSION
Gnk = N Zouk . (8)
u Our results show that the MMSBM we propose, and its

. . o _ associated expectation-maximization algorithm, is a sgbu
This provides a principle method to deal with the cold Sta”\/\/ell-performing, and scalable solution to predict userit

problem, without the need to add additional elements to th?atings in different contexts. Additionally, the interfabil-

model .[13]' . L ity of its parameters enables the analysis of the underlying
In Fig. 3 we show that, also in cold start situations, ourggia| hehavior of users. For example, we found that the sim-
MMSBM outperformst_he alternatives in most cases. Interm larity of users' behavior is correlated with their gendeda
of accuracy, MMSBM is always more accurate than MF (al-yqir age. These findings could conceivably lead to extessio
though in one case the difference is not significant), andemor ¢ \he model that take such behavioral considerations ioto a
accurate than just assigning the most common rating to aBount, for example by adding metadata to users (e.g. age and
item in all cases but one. In terms of mean absolute_error, OWender) and items (e.g. genre). In fact, stochastic bloo-mo
approach is more accurate than MF in four out of five casegq ith node metadata have recently been proposed [24] and
(in one, not S|gn|f|cantly), and more accurate than using th?nay be a promising way to extend our approach.
most common rating in four out of five cases. Another advantage of the interpretability of our model and
its parameters is that it can be readily applied to (and perso
well in) situations that are challenging to other approache

D. Groups inferred with the MMSBM reflect features of users such as a cold start where no prior information is available
about a new user or item.

Finally, the expressiveness of the MMSBM enables us to Finally, the MMSBM outperforms matrix factorization in
investigate the social and psychological processes that-de all the cases we consider, often by a large amount. As we
mine user behaviors. To illustrate this idea, we analyze théave discussed, this is due to the fact that MMSBM is a
user profiles in the MovieLens 100K dataset, which lists themore expressive generalization of the model underlying ma-
age and gender of each user. trix factorization; matrix factorization corresponds ghily to

Specifically, we compare the user profiles of pairsthe special case of MMSBM where the matriges are di-
of users (u,v) by computing the cosine similarity agonal, and where we assume the rating probabilitie&-)

Dk Ourbor /(|0u]2]04]2). for differentr are strongly correlated (corresponding to treat-
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Similarly, the matricegy,(r) are normalized to give proba-
FIG. 3. Algorithm performance for the cold start problem.offir  bility distributions of ratings ovef = {1,2,3,4,5},
top to bottom: the MovieLens 100K dataset with 7% of cold start
cases on average; the Movielens 10M data&60(5%); men rating V. (- -1 A2
women (M-W) in the LibimSeTi datase0.625%); women rating T ZPM(T) ' (A2)
men (W-M) in the LibimSeTi datase031%); and Amazon books

(6.?%): We didl not encqunter any cold start.cafses in the crossy\ie maximize the likelihood (2) as a function @y, p using
validation experiments with Yahoo! Songs; this is to be exp@t 5 oy e ctation maximization (EM) algorithm. We start with a

since Yahoo! Songs requires that users and songs have ap@as standard variational trick that changes the log of a sumanto
ratings. The left column displays the accuracy for eachsgdtand o 9 9
sum of logs, writing

the right column the mean absolute error. The bars show #rage
of a five-fold cross-validation and the error bars show tlaadard

res

error of the mean. log P(RO|97 7,P) = Z logz Ourniepre(Tui)
(u,i)€RO ket
_ kit Pt (Ti )
ing  as a number rather than a symbol). Matrix factoriza- - Z logzwui(k’@ wi (K, 0)
tion is a widely used tool with many applications beyond (wi)€RO kb
o gi indi eu i wi
recomm(_ender systems; given our fm_dmgs and the scalable > Z Zwm(k,f) log kNiePke(Tui)
expectation-maximization algorithm, it may make sense to ‘s Wik, £)
use MMSBMs in those other applications as well. (wi)ERS ke (A3)

Herew,,;(k, ¢) is the estimated probability that a given ranking
r4; 1S due tou andi belonging to groups and/ respectively,
and the lower bound in the third line is Jensen’s inequality
log T > log 2. This lower bound holds with equality when

Appendix A: Update equations

In the MMSBM, each uset has a vecto#f,,;, describing
how much she belongs to groképand each itemhas a vector

_ _ Ourniepre(Tui)
n;¢ describing how much it belongs to grodpWe treat these i (K, €) ’ (A4)

B Zk/g/ euk’né’ipk’f’ (ruz)




giving us the update equation (6) for the expectation step. The predicted rating-,; is the similarity-weighted average

For the maximization step, we derive update equation®f the k closest neighbors of that useru has rated. We
for the paremeterd,n,p by taken derivatives of the log- use the default, optimized implementation of the algorithm
likelihood (A3). Including Lagrange multipliers for the ro  LensKit [15] with & = 50.

malization constraints (A1), we obtain Matrix factorization One of the most widely used recom-
mendation algorithms is matrix factorization (MF) [11, 26]
0., — 2icou 2 Wuilk ) Yicou 2 wuilk, 1) Like the block model, the intuition behind matrix factottiza
Y o one wui (kL 0) dy ’ is that there should be some latent features that deterroime h
(A5) a user rates an item. However, it uses linear algebra to eeduc
whered,, is the degree of the user Similarly, the dimensionality of the problem. Specifically, it assumes
that the matrix of rating® (with N rows andM columns) is
L 2ueoi 2 Wuilky ) Y ucoi 2op wui(k, £) of rank %, in which case it can be writteR = P(Q whereP
it = >ucoi Sope wui(k, 0) d; ’ isaN x k matrix and@ is ak x M matrix. If we denote

the rows of matrixP asp, and the columns of) asg;, then
whered; is the degree of itemi. This completes the deriva- individual ratings are inner products; = p,, - ¢;.
tion of (3) and (4). Finally, including a Lagrange multiglie ~ We then assume that some noise and/or bias has been ap-

for (A2), we have plied to R to produce the observed rating$’. For example,
some users rate items higher than others, and some items are
_ Z(u,i)GRO\rm:r wui(k, ) systematically highly rated. In order to take this into ddns
Pre(r) = Z(W)eRo wui(k, 0) eration, the unobserved ratingg are estimated using
completing the derivation of (5). Tui = Pu G + 0+ bu +b; (C2)

whereb,, andb; are the biases of users and items respectively
andy is the average rating iR. For the purpose of making
recommendations, it is convenient to pose the decompnsitio
problem as an optimization one; in particular, minimizihg t
We perform experiments on six different datasets: th@2 error and applying a regularization term gives
MovieLens 100K and 10M datasets (movielens.umn.edu),
Yahoo! Songs (research.yahoo.com/AcadeRetations, {p., ¢} = argmin Z [(rm- — Pu - Gi — . — by — b;)?
ydata-ymusic-user-artistratings-0}, Amazon  books Pusti (4 ) RO
(imcauley.ucsd.edu/data/amazon/), and the LibimSeTi.cz A(p]? + WHQH
dating agency (occamslab.com/petricek/data/). We dpdit t “ ! ’ (C3)
LibimSeTi.cz dataset into two datasets: women rating men
(W-M) and men rating women (M-W). We neglected the linkswhere \ is a regularization parameter. As Funks originally
of women rating women and men rating men; unfortunatelyproposed [11] one can solve this problem numerically using
these links constituted only 1% of the dataset. In Table I, westochastic gradient descent [27]. We use the LensKit imple-
show the characteristics of each dataset in terms of the scammentation of the algorithm, with = 50 and a learning rate of
of ratings S, the total number of users, the total number of(.002 as suggested in Ref. [15].
items, the number of ratings and the average percentage of Stochastic block model The stochastic block model
cold start cases. The MovieLens 100K dataset also providgSBM) [28-30] assumes that the probability that two nodes
demographic information for the users, namely the age iform a link between them, such as a relationship between ac-
years and gender. tors in a social network, depends on what groups they belong
to. Analogously, the SBM recommender algorithm [2] as-
sumes that the probability of a rating; of a user: for an item
Appendix C: Benchmark algorithms i depends on the groups,, o; to which they belong; unlike
this paper, it assumes that each user or item belongs to a sin-
Naive model As a baseline for comparison, we considergle group rather than a mixture. It uses a Bayesian approach
a naive model. lIts prediction for a rating,; is simply the that deals rigorously with the uncertainty associated with

Appendix B: Datasets

average of’s observed ratings, models that could potentially account for the observedgsti
Mathematically, the problem is to estimatér,; = r|R°)
T = 1 Z Tt - (C1) that the unobserve_d ra('ging o_f if[ezhh)y_useru STy =7 give_n
d; Brper the observable rating?™. This is an integral over all possible
' block models)/,

Item-item The item-item algorithm uses the cosine simi-
larity between items, based on thedimensional vectors of  p(r.; = r|R°) = / dM p(ry; = r|M) p(M|R?), (C4)
ratings they have received, adjusted to remove user biases t M
wards higher or lower ratings [25]. The cosine similarity of wherep(r,; = r|M) is the probability that.,; = r if the rat-
itemsi andj is thencos(r;,r;) = Ziv riurju/(I7il2|ril2).  ings where actually generated using modiglandp(M|R©)



TABLE |. Dataset characteristics. The total number of gassiatings is different for each dataset; ratings are inadesitom 1 to 5 in all
datasets for the two dating agency datasets, which haveng smtale from 1 to 10. Ratings are integers except for theidlens 10M dataset
which allows half-integer values. Note that, in the lattese we expect a smaller MAE than if only integer values wdosvad. All datasets
have millions of ratings except for MovieLens 100K and Yah8ongs. The average percentage of cold start cases is tagealb5 test sets
in the five-fold cross-validation experiment.

Dataset Ratings scale&s | #Users #ltemg #RatinggAverage cold start (%)
MovieLens 100K {1,2,3,4,5} 943 1,682 100,000 0.17%
MovieLens 10M |{0.5,1,1.5,...,5}| 71,567 65,13310,000,00( 0.0015%
Yahoo! Songs {1,2,3,4,5} 15,400 1,000 311,704 -
M-W dating agency {1,2,...,10} |220,970135,359 4,852,454 0.31%
W-M dating agency {1,2,...,10} |135,359220,97(10,804,04( 0.625%
Amazon book {1,2,3,4,5} 73,091539,145 4,505,893 6.7%

is the probability of modeM given the observation (assum- ACKNOWLEDGMENTS

ing for simplicity that all models\/ are equally likely a pri-

ori). This integral is over the continuous and discrete para
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