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The free-space transfer of high-fidelity optical signals between remote locations has many appli-
cations, including both classical and quantum communication, precision navigation, clock synchro-
nization, etc. The physical processes that contribute to signal fading and loss need to be carefully
analyzed in the theory of light propagation through the atmospheric turbulence. Here we derive the
probability distribution for the atmospheric transmittance including beam wandering, beam shape
deformation, and beam-broadening effects. Our model, referred to as the elliptic-beam approxima-
tion, applies to weak, weak-to-moderate, and strong turbulence and hence to the most important
regimes in atmospheric communication scenarios.

Introduction.– The transmission of quantum light to
remote receivers recently attracted great interest in con-
nection with the implementation of quantum communi-
cation protocols over large distances. Experimental ad-
vances in this field allowed one to demonstrate the suc-
cessful quantum-light transmission over horizontal com-
munication links [1–7] and paved the way for the realiza-
tion of ground-to-satellite quantum communication [8–
10]. The main obstacle for the transmission of quantum
light in free space is the atmospheric turbulence, which
leads to spatial and temporal variations of the refractive
index of the channel. The transmitted signal is usually
measured by detectors with a finite aperture. Typically,
the recorded data are contaminated by fluctuating losses
due to beam wandering, beam broadening, scintillation,
and degradation of coherence.

The theory of classical light propagation through the
atmosphere is well developed [11–16]. Some progress was
also achieved in the theory of free-space propagation of
quantum light [17–24]. The atmosphere is considered as
a quantum channel characterized by fluctuating trans-
mission properties. In terms of the Glauber-Sudarshan
P function [25–27], which is a quasiprobability as it may
attain negativities, the relation between input Pin(α) and
output Pout(α) states can be written as [22, 24]

Pout(α) =

1∫
0

dηP(η)
1

η
Pin

( α
√
η

)
. (1)

Here P(η) is the probability distribution of the transmit-
tance (PDT), η being the intensity transmittance. Hence,
the description of quantum-light propagation through the
turbulent atmosphere merely reduces to identifying this
probability distribution. In Ref. [24] we have derived the
PDT for the case when the leading effect of fluctuating
losses in the atmosphere is beam wandering, as it is the
case for weak turbulence.

In this Letter, we present a substantially extended
model of PDT, based on the elliptic-beam approximation
that incorporates effects of beam wandering, broadening,
and deformation. Our theory properly describes atmo-

spheric quantum channels in the limits of relatively weak
turbulence, as in experiments in Erlangen with an at-
mospheric link of 1.6 km length [7, 28]. For the case
of strong turbulence, our theory also yields a reasonable
agreement with the log-normal model [13–20], which has
been verified in experiments on the Canary Islands [4].
Most importantly, our elliptic-beam model overcomes the
deficiency of physical inconsistencies inherent in the log-
normal distribution.
The aperture transmittance.– Temporal and spatial

variations of temperature and pressure in atmospheric
turbulent flows cause random fluctuations of the refrac-
tion index of the air. Consequently, the atmosphere acts
as a source of losses for transmitted photons which are
measured at the receiver by a detection module with a
finite aperture. The transmitted signal is degraded by ef-
fects like beam wandering, broadening, deformation, and
others. Let us consider a Gaussian beam that propa-
gates along the z axis onto the aperture plane at distance
z = L. In general, the fluctuating intensity transmittance
of such a signal is given by [24]

η=

∫
A

d2r I(r;L), (2)

whereA is the aperture area and I(r;L) is the normalized
intensity with respect to the full r={x, y} plane.

The Gaussian beam underlies turbulent disturbances
along the propagation path. Within our model we as-
sume that these disturbances lead to beam wandering
and deformation of the beam profile into an elliptical
form. This is justified for weak turbulence, when speck-
les play no essential role. For strong turbulence the beam
shape is the result of many small spatially averaged dis-
tortions. The intensity of the elliptic beam at the aper-
ture plane is given by

I(r;L) =
2

π
√

detS
exp
[
−2(r−r0)TS−1(r−r0)

]
, (3)

with r=(x y)T. It is characterized by the beam-centroid
position r0 = (x0 y0)T and the real, symmetric, positive-
definite spot-shape matrix S. The eigenvalues of this
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matrix, W 2
i , i=1, 2, are squared semiaxes of the elliptic

spot. The semiaxis W1 has an angle φ∈ [0, π/2) relative
to the x axis, and the set

{
W 2

1 ,W
2
2 , φ

}
uniquely describes

the orientation and the size of the ellipse.
For an elliptic-beam profile, the transmittance η is

obtained by substituting Eq. (3) into Eq. (2). The re-
sulting integral cannot be evaluated analytically. Here
we adapt the technique proposed in Ref. [24] to derive
an analytical approximation. For this purpose we con-
sider the displacement of the beam centroid to the point
r0= (r0 cosϕ0 r0 sinϕ0)

T. Regarding the transmittance
η as a function of r0, for given χ=φ−ϕ0, we observe that
it behaves similar to the transmittance of the circular
Gaussian beam with the effective squared spot radius

W 2
eff (χ)=4a2

[
W
( 4a2

W1W2
e
a2

W2
1

{
1+2 cos2χ

}
× e

a2

W2
2

{
1+2 sin2χ

})]−1

, (4)

where W(ξ) is the Lambert W function [29] and a is
the aperture radius. In this case the transmittance is
approximated by

η = η0 exp

−
 r0/a

R
(

2
Weff (φ−ϕ0)

)
λ
(

2
Weff (φ−ϕ0)

) . (5)

Here η0 is the transmittance for the centered beam, i.e.
for r0=0,

η0=1−I0

(
a2
[ 1

W 2
1

− 1

W 2
2

])
e
−a2
[

1

W2
1

+ 1

W2
2

]
−2

[
1−e−

a2

2

(
1
W1
− 1
W2

)2
]

× exp

−
[ (W1+W2)2

|W 2
1−W 2

2 |

R
(

1
W1
− 1
W2

)]λ
(

1
W1
− 1
W2

) , (6)

R(ξ) and λ(ξ) are scale and shape functions, respectively,

R (ξ) =
[
ln
(

2
1− exp[− 1

2a
2ξ2]

1− exp[−a2ξ2]I0

(
a2ξ2

))]− 1
λ(ξ)

, (7)

λ (ξ) = 2a2ξ2 e−a
2ξ2

I1(a2ξ2)

1− exp[−a2ξ2]I0

(
a2ξ2

)
×
[
ln
(

2
1− exp[− 1

2a
2ξ2]

1− exp[−a2ξ2]I0

(
a2ξ2

))]−1

, (8)

and Ii(ξ) is the modified Bessel function of ith order.
Since φ is defined by modulo π/2, the transmittance η is
a π/2-periodical function of φ. For the limit W 2

1 =W 2
2 ,

Eq. (5) reduces to the transmission coefficient of a Gaus-
sian beam with a circular profile [24]. For details of
the approximation see Supplemental Material [30] and
Ref. [31].

The probability distribution of the transmittance.–
The aperture transmittance η, cf. Eq. (5), is a func-

tion of five real parameters, {x0, y0,Θ1,Θ2, φ}, randomly
changed by the atmosphere, where W 2

i =W 2
0 exp Θi, and

W0 is the initial beam-spot radius. For these parame-
ters we assume a Gaussian approximation, with φ being
a π/2-periodical wrapped Gaussian variable [32]. We re-
strict our attention to isotropic turbulence. In this case
the wrapped Gaussian distribution for φ reduces to a
uniform one and its correlations with other parameters
vanishes. In the reference frame with

〈
r0

〉
=0, there are

also no correlations of x0, y0, and Θi.
The variances 〈∆x2

0〉 = 〈∆y2
0〉 = 〈x2

0〉, which describe
beam wandering, are expressed in terms of the classical
field correlation function of the fourth order, Γ4(r1, r2) =
〈I(r1;L)I(r2;L)〉, in the aperture plane (see, e.g., [13–
16, 33–37]):

〈x2
0〉 =

∫
R4

d4rx1x2 Γ4(r1, r2), (9)

where d4r = d2r1d2r2. The means and the (co)variances
of Θi are functions of the means and the (co)variances
(first and second moments) of W 2

i :

〈Θi〉 = ln

[
〈W 2

i 〉
W 2

0

(
1 +
〈(∆W 2

i )2〉
〈W 2

i 〉2

)−1/2
]
, (10)

〈∆Θi∆Θj〉 = ln

[
1 +
〈∆W 2

i ∆W 2
j 〉

〈W 2
i 〉〈W 2

j 〉

]
. (11)

In general, the evaluation of 〈W 2
i 〉 and 〈∆W 2

i ∆W 2
j 〉 in

Eqs. (10) and (11) is almost intractable. However the as-
sumptions of Gaussianity and isotropy enable to express
these quantities in a tractable form as (for details cf. the
Supplemental Material [30])

〈W 2
i 〉=4

[∫
R2

d2rx2Γ2(r)−〈x2
0〉
]
, (12)

〈W 2
i W

2
j 〉 = 8

[
−8 δij〈x2

0〉2−〈x2
0〉〈W 2

i 〉 (13)

+

∫
R4

d4r
[
x2

1x
2
2 (4δij−1)− x2

1y
2
2 (4δij−3)

]
Γ4(r1, r2)

]
,

where Γ2(r)=〈I(r;L)〉 is the classical field correlation
function of the second order.

Therefore, the means and the covariance matrix of
the random vector v=

(
x0 y0 Θ1 Θ2

)T, i.e. µi= 〈vi〉 and
Σij= 〈∆vi∆vj〉, respectively, are expressed in terms of
classical field correlation functions Γ2 and Γ4. These
functions are important characteristics of atmospheric
channels, which are widely discussed in the literature;
see, e.g., [13–16, 33–35]. In the Supplemental Mate-
rial [30], we derive µi and Σij for horizontal links by
using the phase approximation of the Huygens-Kirchhoff
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method and the Kolmogorov turbulence spectrum [33–
35].

With the given assumptions, the PDT in Eq. (1) reads
as

P (η) =
2

π

∫
R4

d4v

π/2∫
0

dφ ρG(v;µ,Σ)δ [η−η (v, φ)] , (14)

where η (v, φ) is the transmittance defined by Eq. (5)
as a function of random parameters and ρG(v;µ,Σ) is
the Gaussian probability density of the vector v with the
mean µ and the covariance matrix Σ. In general, the
PDT can be evaluated with the Monte Carlo method.
For this purpose, one has to simulate the Gaussian ran-
dom vector v and the uniformly distributed angle φ. For
practical purposes, we apply the Rayleigh distribution
for r0, a uniform distribution for χ, and a Gaussian
one for Θi. The obtained values should be substituted
in the transmittance; cf. Eq. (5). Within the standard
procedure of estimation, one obtains the mean value of
any function of the transmittance, 〈f(η)〉. The PDT can
be obtained within the smooth-kernel method [38]. The
cumulative probability distribution, F(η)=

∫ η
0

dη′P(η′),
and the exceedance F(η) = 1 − F(η) are estimated by
the technique of empirical distribution functions [39].
From weak to strong turbulence.– Let us distinguish

the regimes of weak, moderate, and strong turbulence,
through the values of Rytov parameter σ2

R < 1, σ2
R ≈

1 . . . 10, and σ2
R � 1, respectively. The Rytov parame-

ter is defined as σ2
R=1.23C2

nk
7
6L

11
6 , where C2

n is the at-
mospheric index-of-refraction structure constant and k is
the optical wave number; for more details and the corre-
sponding motivation, see Ref. [13]. For weak turbulence
the atmosphere mainly causes beam wandering. In this
case Eq. (14) reduces to the log-negative Weibull dis-
tribution [24]. For the weak-to-moderate transition and
for strong turbulence, broadening and deformation of the
beam occur, resulting in a smooth PDT. More problem-
atic is the evaluation of v and Σ for the moderate-to-
strong turbulence transition. Hence we will restrict our
considerations to the ranges of weak-to-moderate and
strong turbulence.

Figure 1 shows the probability P(η) derived by the
elliptic-beam approximation for the conditions of weak-
to-moderate turbulence. This distribution is compared
with the corresponding ones obtained from the beam-
wandering model [24] and from the log-normal model,
see Supplemental Material [30]. The inset shows the ex-
perimental data given in Ref. [28]. It is obvious that the
elliptic model yields the best agreement with the mea-
sured data.

The log-normal distribution is quite popular for model-
ing atmospheric turbulence effects [13–20]. Usually this
model is applied for the description of intensity fluctu-
ations in one spatial point. In Fig. 1, the log-normal
model is applied to the signal detection with a finite aper-
ture; see Supplemental Material [30]. The dashed line

Figure 1. The PDTs (a) and the corresponding exceedances
(b): elliptic-beam approximation, log-normal, and beam wan-
dering [24]. The shaded area in (a) shows the experimental
PDT from Ref. [28]. The inset in (b) shows the tail of the
exceedance. For the log-normal exceedance, it extends to the
unphysical region, η > 1 (shaded gray). Further parameters:
wavelength 809 nm, initial spot radius W0=20mm, propaga-
tion distance 1.6 km, Rytov parameter σ2

R=1.5, aperture ra-
dius a = 40mm, deterministic attenuation of 1.25dB.

in Fig. 1 (a) shows that the log-normal distribution dif-
fers significantly from the measured PDT. Moreover, the
log-normal PDT is not limited to the physically allowed
interval η ∈ [0, 1]. This feature is clearly seen in Fig. 1
(b) where the exceedance functions F(η), i.e., the prob-
ability that the transmittance exceeds the value of η, are
shown for the elliptic model, the beam-wandering model,
and the log-normal model. As was shown in Ref.[23, 24],
the tails of F with large values of η are important for
preserving nonclassical properties of transmitted light,
which are overestimated by the log-normal model.

It has been shown in experiments with coherent light
propagating through a 144 km atmospheric channel on
the Canary Islands [4] that the log-normal distribution in
its physical domain demonstrates a good agreement with
the experimental data under the conditions of strong tur-
bulence. In Fig. 2, we compare the PDTs derived from
the elliptic-beam approximation with the ones obtained
in the beam-wandering and the log-normal models. Al-
though in this case we consider a short propagation dis-
tance, the turbulence is quite strong. Similar conditions
may occur, e.g., for the case of near-to-ground propaga-
tion on a hot summer day.

From Fig. 2 one can clearly conclude that the beam-
wandering model strongly differs from the log-normal dis-
tribution and, consequently, it cannot well describe the
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strong turbulence scenario. However, the elliptic-beam
model gives a reasonable agreement with the log-normal
distribution in the physical domain of the latter. From
this fact, one may conclude that our model consistently
describes also the case of strong turbulence. A clear ad-
vantage of the elliptic-beam model is that the correspond-
ing PDT does not attain nonzero values in the unphysical
domain, η>1, which is the case for the log-normal distri-
bution. Hence, the usage of the elliptic-beam model gives
physically consistent results, whereas the log-normal dis-
tribution may yield unphysical artifacts, e.g., the cre-
ation of photons by the atmosphere [19]. Such artifacts
may cause an overestimation of the security of quantum
communication protocols. Finally, we note that in some
cases beam wandering is suppressed by tracking proce-
dures [1, 8]. Under such conditions, the beam-wandering
model is no longer useful but the elliptic-beam model
does apply.

Figure 2. The PDTs and the corresponding exceedances,
similar to those shown in Fig. 1, but for the case of strong
turbulence. Further parameters: wavelength 780 nm, initial
spot radiusW0=50mm, propagation distance 2 km, Rytov pa-
rameter σ2

R=31.5, aperture radius a = 150mm and no deter-
ministic attenuation.

Application: quadrature squeezing.– The PDT (14)
in the elliptic-beam approximation allows one to ana-
lyze the quantum properties of light transmitted through
the turbulent atmosphere by means of the input-output
relation (1). As an example, we analyze the squeez-
ing properties after a weak-to-moderate turbulent atmo-
spheric channel. We consider the 1.6 km link in the city
of Erlangen [7]. The transmitter generates squeezed light
(−2.4 dB) at λ = 780 nm and sends it through the link
with the Rytov parameter σ2

R = 2.6. The receiver detects

−0.95 dB of squeezing.

Figure 3. Transmitted value of squeezing as a function
of the postselection threshold ηmin. Initially squeezed light
(to −2.4dB, λ = 780 nm, spot radius W0 = 25mm) is
sent through a 1.6 km atmospheric link (σ2

R = 2.6) and de-
tected with an aperture radius of a = 75mm. The deter-
ministic attenuation is 1.9 dB. The output signal is squeezed
by −0.95dB. With the postselection protocol, the squeez-
ing value can be improved depending on the postselection
threshold ηmin. The theory is shown for the elliptic-beam,
log-normal, and beam-wandering models, compared with the
experimental results (shaded area lies within the error bars)
from Ref.[7].

The postselection procedure of transmission events
with η ≥ ηmin yields larger detected values for the trans-
mitted squeezing. In Fig. 3, we compare the values of de-
tected squeezing as functions of postselection thresholds
ηmin, for the experimental values given in Ref. [7]. The
beam-wandering model yields smaller values of postse-
lected squeezing as detected in the experiment, as it does
not properly describe the distribution tails for high val-
ues of η; cf. Fig. 1. The postselected values of squeezing
calculated within the elliptic-beam approximation agree
very well within the error bars with the experimentally
measured values. The shown log-normal model gives the
correct values for the first two moments of η, but it dif-
fers in higher moments from the experimentally measured
distribution. This feature allows one to obtain the cor-
rect value of squeezing for the transmitted signal from
the log-normal model. However, this model completely
fails to describe the postselection procedure, where the
higher moments play a dominant role.
Summary and Conclusions.– We have introduced a

model for the atmospheric turbulence effects on quan-
tum light, which is based on an elliptic-beam approxi-
mation. Surprisingly, it yields a reasonable agreement
with experiments for the conditions of weak-to-moderate
turbulence. In this case, we get an excellent description
of the transfer of squeezed light through a 1.6 km chan-
nel, analyzed with data postselection.

For the case of strong turbulence, we have shown that
our theory gives a reasonable agreement with the log-
normal distribution. In experiments using a 144 km chan-
nel under strong turbulence conditions, the log-normal
model also yields a proper description of the transmis-
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sion of coherent light. Hence, our theory describes in a
unified manner the quantum-light transfer through atmo-
spheric channels under dissimilar turbulence conditions.
The case of the transition regime of moderate-to-strong
turbulence requires further research.

The authors are grateful to P. Villoresi, G. Vallone,
Ch. Marquardt, B. Heim, and C. Peuntinger for useful
and enlightening discussions. The work was supported
by the Deutsche Forschungsgemeinschaft through Project
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The supplement is structured as follows:
In Sec. A we discuss the properties of Gaussian elliptical beams. In Sec. B we derive the analytic expression for
the transmittance of the elliptical beam through the circular aperture. In Sec. C the statistical properties of the
elliptical beam transmitted through turbulence are discussed in Gaussian approximation. In Sec. D we discuss the
simplifications which arise from the assumption that the atmospheric turbulence is isotropic. Here we derive the
formulas that connect the statistical characteristics of the elliptical beam in the isotropic atmosphere with the field
correlation functions. In Sec. E the phase approximation of the Huygens-Kirchhoff method is presented and the
general expressions for field correlation functions are derived. In Sec. F and in Sec. G we derive the means and
(co)variances connected with beam wandering and beam shape deformation, respectively. These results are evaluated
for limits of weak and strong turbulence and are summarized in the table in Sec. H. Finally, in Sec. I the log-normal
distribution for the beam transmittance is considered.

A. ELLIPTIC BEAMS

In this Section we discuss the properties of elliptical
beams, which are crucial for the consideration of light
transferring through the turbulent atmosphere. In the
paraxial approximation the beam amplitude u(r, z) sat-
isfies the equation, cf. Ref. [15],

2ik
∂u(r, z)

∂z
+ ∆ru(r, z) + 2k2δn(r, z)u(r, z) = 0, (A1)

where k is the wave number, δn(r, z) is a small fluctuating
part of the index of air refraction, r= (x y)

T is the vector
of transverse coordinates. The boundary condition in the
transmitter plane z = 0 for the initially Gaussian beam
is given by

u(r, z=0)=u0(r)=

√
2

πW 2
0

exp
[
− 1

W 2
0

|r|2− ik

2F
|r|2
]
.

(A2)

Here W0 is the beam spot radius, F is the wavefront
radius in the center of the transmitting aperture at z=0.
The intensity of light is defined as

I(r, z) = |u(r, z)|2 . (A3)

This function can be chosen in the normalized form∫
R2

d2r I(r, z) = 1, (A4)

and Eq. (A1) implies that this norm preserves for any z.
For our purposes it is also important that I(r, z)≥0.

Consider the transverse Fourier transform of intensity,

C(k, z) =

∫
R2

d2r I(r, z)eik·r, (A5)

where k·r denotes the scalar product of two vectors. Sim-
ilar to the cumulative expansion in the probability theory
one writes

lnC(k, z) = ik·r0−
1

8
kTSk + . . . , (A6)

where

r0 =

∫
R2

d2r r I(r, z) (A7)

is the beam-centroid position,

S =

(
Sxx Sxy
Sxy Syy

)
(A8)

= 4

∫
R2

d2r
[
(r− r0)(r− r0)T

]
I(r, z)

is the spot-shape matrix. Within the elliptic-beam ap-
proximation we suppose that the expansion (A6) in the
aperture plane can be restricted by the second (Gaussian)
term. Substituting it into the inversion of Eq. (A5),

I(r, z) =
1

(2π)
2

∫
R2

d2rC(k, z)e−ik·r. (A9)

one gets for the intensity of the elliptic beam

I(r, z) =
2

π
√

detS
exp
[
−2(r−r0)TS−1(r−r0)

]
. (A10)

In the particular case, when the spot-shape matrix is
proportional to the identity matrix, this expression is re-
duced to the intensity of a circular Gaussian beam.

Two eigenvalues,W 2
1 andW 2

2 , of the spot-shape matrix
S correspond to two semi-axes of the beam ellipse. They
are related to the elements of the matrix S as

Sxx = W 2
1 cos2φ+W 2

2 sin2φ, (A11)

Syy = W 2
1 sin2φ+W 2

2 cos2φ, (A12)

Sxy =
1

2

(
W 2

1 −W 2
2

)
sin 2φ, (A13)
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Figure A1. (Color online) The aperture of radius a and
the elliptical beam profile with the half-axis W1 rotated on
the angle φ relative to the x-axis and on the angle χ relative
to the r0-associated axis are shown. The beam centroid is
situated in the point r0 with the polar coordinates (r0, ϕ0).
The x′-y′ coordinate system is associated with the elliptical
beam centroid.

where φ∈ [0, π/2) is the angle between the x-axis and the
ellipse semi-axis related to W 2

1 . The set of three param-
eters

(
W 2

1 ,W
2
2 , φ

)
uniquely defines all possible orienta-

tions of the ellipse.
The introduced representation of the ellipse assumes

that we do not distinguish between major and minor
semi-axes of the ellipse. The semi-axis related to W 2

1 is
defined as being situated in first and third quarter-planes
of the x′-y′ coordinate system, cf. Fig. A1, while W 2

2 is
in the second and fourth ones. Within this definition the
values of W 2

1 and W 2
2 are not ordered.

B. APERTURE TRANSMITTANCE FOR
ELLIPTIC BEAMS

In this Section we derive in details an analytical
approximation for the transmittance of elliptic beams
through a circular aperture. For the aperture situated
in the point z=L the transmittance is determined via
the expression, cf. Ref. [24],

η =

∫
A

d2r I(r, L), (B1)

where I(r, L) is the normalized intensity defined by
Eq. (A3) and integration is performed in the aperture
opening area. Substituting Eq. (A10) into Eq. (B1)
and considering the structure of spot-shape matrix S,
cf. Eqs. (A8) and (A11)-(A13), one gets for the transmit-

tance,

η =
2

πW1W2

a∫
0

dr r

2π∫
0

dϕe−2A1

(
r cosϕ−r0

)2

× e−2A2r
2 sin2 ϕe−2A3

(
r cosϕ−r0

)
r sinϕ. (B2)

Here a is the aperture radius, r, ϕ are polar coordinates
for the vector r,

x=r cosϕ, (B3)
y=r sinϕ, (B4)

r0, ϕ0 are polar coordinates for the vector r0,

x0=r0 cosϕ0, (B5)
y0=r0 sinϕ0, (B6)

A1 =
(cos2(φ− ϕ0)

W 2
1

+
sin2(φ− ϕ0)

W 2
2

)
, (B7)

A2 =
( sin2(φ− ϕ0)

W 2
1

+
cos2(φ− ϕ0)

W 2
2

)
, (B8)

A3 =
( 1

W 2
1

− 1

W 2
2

)
sin 2(φ− ϕ0), (B9)

and φ is defined with the modulo π/2 such that η in
Eq. (B2) is a π/2-periodical function of φ.

For the given angle χ = φ−ϕ0 the transmittance η as a
function of r0 has a behavior similar to the transmittance
of the circular Gaussian beam with a certain effective
spot-radius Weff(χ). Applying the method developed in
Ref. [24] one can write the corresponding approximation,

η = η0 exp

−
 r0/a

R
(

2
Weff (φ−ϕ0)

)
λ
(

2
Weff (φ−ϕ0)

) .

(B10)

Here η0 is the beam transmittance at r0=0, and

R (ξ) =
[
ln
(

2
1− exp[− 1

2a
2ξ2]

1− exp[−a2ξ2]I0

(
a2ξ2

))]− 1
λ(ξ)

, (B11)

λ (ξ) = 2a2ξ2 e−a
2ξ2

I1(a2ξ2)

1− exp[−a2ξ2]I0

(
a2ξ2

)
×
[
ln
(

2
1− exp[− 1

2a
2ξ2]

1− exp[−a2ξ2]I0

(
a2ξ2

))]−1

(B12)

are scale and shape functions, respectively.
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The transmittance η0 is obtained from Eq. (B2) by
setting the beam-centroid position r0 = 0,

η0 =
2

πW1W2

a∫
0

dr r

2π∫
0

dϕe
−
{

1

W2
1

+ 1

W2
2

}
r2

× e
−
∣∣∣∣ 1

W2
1
− 1

W2
2

∣∣∣∣r2 cos 2(ϕ−ϕ̃)

=
2

|W1W2|

a2∫
0

dt e
−
{

1

W2
1

+ 1

W2
2

}
t
I0

(∣∣∣∣ 1

W 2
1

− 1

W 2
2

∣∣∣∣ t),
(B13)

where ϕ̃= 1
2 arctan[A3/(A1−A2)]. It is expressed in terms

of the incomplete Lipshitz-Hankel integral, cf. Ref. [31],
as

Ie0(a, z) =

∫ z

0

dte−atI0(t), (B14)

that results in

η0 =
2W1W2

|W 2
1 −W 2

2 |
Ie0

( W 2
1 +W 2

2

|W 2
1 −W 2

2 |
, a2 |W 2

1 −W 2
2 |

W 2
1W

2
2

)
.

(B15)

The incomplete Lipshitz-Hankel integral can be evalu-
ated numerically. However, using the relation between
the incomplete Lipshitz-Hankel (Ie0) and Weber (Q̃0) in-
tegrals [31], we can rewrite Eq. (B15) as

η0 = 1− e
−a2 W

2
1 +W2

2
W2

1W
2
2

[
I0

(
a2 |W 2

1 −W 2
2 |

W 2
1W

2
2

)
+ 2Q̃0

(
a2 (W1 +W2)2

2W 2
1W

2
2

, a2 |W 2
1 −W 2

2 |
W 2

1W
2
2

)]
. (B16)

In Ref. [24], an analytical approximation for Q̃0 is de-
rived. Applying here the same procedure for the approx-
imation of the incomplete Weber integral in Eq. (B16)
one obtains

η0=1−I0

(
a2W

2
1−W 2

2

W 2
1W

2
2

)
e
−a2 W

2
1 +W2

2
W2

1W
2
2

−2

[
1−e−

a2

2

(
1
W1
− 1
W2

)]

× exp

[
−

{ (W1+W2)2

|W 2
1−W 2

2 |

R
(

1
W1
− 1
W2

)}λ
(

1
W1
− 1
W2

)]
, (B17)

where R(ξ) and λ(ξ) are defined by Eqs. (B11) and
(B12), respectively. For the case when W 2

1 =W 2
2 =W 2,

Eqs. (B16) and (B17) are reduced to η0=1−e−2a2/W 2

that is the maximal transmittance of the circular beam,
cf. Ref. [24].

In order to get an approximate value for the effective
spot-radius Weff(χ) we assume that the intensity of the

corresponding circular beam is equal to the intensity of
the elliptic beam at the aperture plane, i.e.

1

W 2
eff(χ)

e
− 2

W2
eff

(χ)
(r2+r2

0+2 r r0 cosϕ)
=

1

W1W2

× e−2A1(χ)r2
0e2r0r

{
2A1(χ) cosϕ+A3(χ) sinϕ

}
× e−2r2

{
A2(χ)+[A1(χ)−A2(χ)] cos2 ϕ+

A3(χ)
2 sin 2ϕ

}
.

(B18)

In the most general case this equality cannot be satisfied
exactly. However, we can find such a value of Weff(χ)
that Eq. (B18) will be fulfilled approximately. For this
purpose we expand both sides of this equation in series
with respect to eiϕ. Then we equate the zeroth-order
terms of these expansions at the point r=r0=a. This
results in the expression

4
a2

W 2
eff(χ)

+ ln
[W 2

eff(χ)

a2

]
− 2a2

[
1

W 2
1

+
1

W 2
2

]
−a2

[
1

W 2
1

+
1

W 2
2

]
cos 2χ− ln

(
W1W2

a2

)
= 0. (B19)

Solving this equation with respect to Weff (χ) one gets

W 2
eff (χ)=4a2

[
W
( 4a2

W1W2
e
a2

W2
1

{
1+2 cos2χ

}
× e

a2

W2
2

{
1+2 sin2χ

})]−1

, (B20)

where W(x) is the Lambert function [29].
In Fig. B1 we compare the transmittance η obtained

by numerical integration of Eq. (B2) and its analytical
approximation. The approximation, cf. Eq. (B10), gives
a reasonable accuracy especially in the case of small beam
ellipticity. It is also important to note that W 2

eff (φ− ϕ0)
and η, cf. Eqs. (B20) and (B17), respectively, are π/2-
periodical functions of the φ, since this angle is defined
with the modulo π/2.

C. GAUSSIAN APPROXIMATION

In this Section we discuss in detail the statistical prop-
erties of elliptic beams and discuss the applicability of
the Gaussian approximation. Any spot in the elliptic-
beam approximation at the aperture plane is uniquely de-
scribed by the set of five parameters (x0, y0,W

2
1 ,W

2
2 , φ).

While the beam passes through the turbulent atmo-
sphere, these parameters are randomly changed. Each
part of the path slightly contributes in these values. Also
it is important to note that these parameters can be cor-
related.

Random fluctuations of the beam-centroid position r0,
i.e. the parameters x0 and y0, lead to the effect of beam
wandering. These parameters can be considered as af-
fected by an additive noise during the propagation. A
large number of small additive contributions is a good
argument for using the Gaussian approximation for the
beam-centroid position, cf. Ref. [24].
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Figure B1. (Color online) The transmittance of the ellipti-
cal beam (half-axes |W1|, |W2|) through the circular aperture
(radius a) as a function of the beam-centroid displacement r0:
(a) |W1| = 0.2a, |W2|=0.1a, χ = π/3; (b) |W1|=a, |W2|=0.9a,
χ = π/4; (c) |W1|=1.8a, |W2|=1.7a, χ = π/5. The solid line
for η is obtained by numerical calculation, the dashed line
represents the analytical approximation, cf. Eq. (B10).

C.1. Wrapped Gaussian model for φ

Similar argumentations work for the angle φ. This
parameter can also be considered as affected by a large
number of the small additive contributions. An impor-
tant difference is that the angle φ is a π/2-periodical
variable. For this reason one should use in this case the
wrapped Gaussian distribution, cf. Ref. [32],

ρ(φ) =
1√

2π σφ

+∞∑
k=−∞

exp

[
−
(
φ− µφ + π

2 k
)2

2σ2
φ

]
, (C1)

where µφ is the mean direction and σφ is the unwrapped
standard deviation. For σφ→+∞ Eq. (C1) becomes the
probability density of the uniform distribution.

C.2. Multiplicative-noise model for W 2
i

In this model one assumes that each small kth part of
the atmospheric channel multiplicatively changes values
of W 2

i , i=1, 2, with the factor ε ki ∈ R+. As a result at
the aperture plane the value of W 2

i is

W 2
i = W 2

0

N∏
k=1

ε ki , i=1, 2. (C2)

The large number N of small random contributions gives
a good argument for assuming W 2

i log-normally dis-
tributed.

Let us introduce the random parameters

Θi = ln
W 2
i

W 2
0

. (C3)

In framework of the considered model these parameters
yield a two-fold normal distribution. For the complete

characterization of this distribution we need the means
and the (co)variances of Θi. They can be expressed in
terms of the means and the (co)variances of W 2

i as

〈Θi〉 = ln

 〈W 2
i 〉

W 2
0

(
1 +

〈(∆W 2
i )2〉

〈W 2
i 〉2

)1/2

 , (C4)

〈∆Θi∆Θj〉 = ln

(
1 +
〈∆W 2

i ∆W 2
j 〉

〈W 2
i 〉〈W 2

j 〉

)
, i, j = 1, 2

(C5)

which can be used for the corresponding calculations.

D. ISOTROPY OF TURBULENCE

In this Section we discuss simplifications, which follow
from the assumption that the atmospheric turbulence is
isotropic. We also assume that

〈r0〉=0, (D1)

i.e. beam wandering fluctuations are placed around the
reference-frame origin. We consider the field intensity at
the aperture plane, I(r, L), as a stochastic field charac-
terized by the probability density functional ρ [I(r, L)].
The above assumptions mean that

ρ [I(O r, L)] = ρ [I(r, L)] , (D2)

where O is a representation of the O(2) group. In
the following we consider important consequences from
Eqs. (D1) and (D2).

D.1. Uniform distribution for the angle φ

A clear consequence from the isotropy assumption is
the fact that the angle parameter φ appears to be uni-
formly distributed. This fact is a consequence from
Eq. (D2). Indeed, according to this requirement the
probability density ρ(φ) does not depend on the choice
of the reference frame, i.e. for any angle ζ

ρ(φ+ ζ) = ρ(φ). (D3)

This equation holds true only for the uniform distribu-
tion. For details of circular distributions see Ref. [32].

D.2. Correlations between linear and angle
parameters

Let v be a random vector, which consists of variables
vi with the support R,

v =
(
x0 y0 Θ1 Θ2

)T
. (D4)
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The parameters vi, i=1, .., 4 of Eq. (D4) and the angle pa-
rameter φ are distributed according to the two-fold nor-
mal distribution, which is wrapped for φ, cf. Section C,

ρ (vi, φ) =
1

2π
√

det Σvi,φ

+∞∑
k=−∞

exp

(
−1

2
νT
k Σ−1

vi,φ
νk

)
,

(D5)

where

νk =
(
vi − 〈vi〉 φ− µφ + π

2 k
)T
, (D6)

µφ is the mean direction of φ

Σvi,φ =

(
σ2
vi sσviσφ

sσviσφ σ2
φ

)
(D7)

is the covariance matrix, σ2
vi is the standard deviation

of vi, σ2
φ is the unwrapped variance of φ, and s is the

correlation coefficient.
The considered probability distribution can also be

rewritten in the form, cf. Ref. [32],

ρ (vi, φ) =
1√

2πσvi
e
− 1

2

(vi−〈vi〉)
2

σ2
vi

2

π

{
1 (D8)

+2

∞∑
n=1

e−8(1−s2)σ2
φn

2

cos
[
4n
(
φ−µφ−s

σφ
σvi

[vi−〈vi〉]
)]}

.

As it has been already shown, in the case of isotropic tur-
bulence the marginal distribution for φ is uniform. This
corresponds to the case of σ2

φ→+∞. If the correlation is
imperfect, i.e. s2 6=1, Eq. (D8) is factorized in the normal
distribution for vi and the uniform distribution for φ,

ρ (vi, φ) =
1√

2πσvi
e
− 1

2

(vi−〈vi〉)
2

σ2
vi

2

π
, i=1, ..., 4. (D9)

Hence, for the isotropic turbulence correlations between
the angle φ and the linear parameters vanish.

D.3. Correlations between beam-centroid position
and spot-shape parameters

Consider the random variables Θi, i=1, 2, which de-
scribe the spot shape, cf. Eq. (C3). We will be interested
in the correlations 〈∆Θi ∆r0〉. With the considered as-
sumption

〈∆Θi ∆r0〉 = 〈Θi r0〉, i=1, 2, (D10)

because the beam centroid is fluctuating around the
reference-frame origin, cf. Eq. (D1).

By using the definition of r0, cf. Eq. (A7), the correla-
tion coefficient is written as

〈∆Θi ∆r0〉 =

∫
R2

d2r r 〈Θi I(r, L)〉. (D11)

The assumption of isotropy, cf. Eq. (D2), results in the
statement that 〈Θi I(r, L)〉 is invariant with respect to
the rotations in the (x, y) plane. Hence, this function
has the central symmetry. This leads to the conclusion
that

〈∆Θi ∆r0〉 = 0, (D12)

because the integral in Eq. (D11) vanishes.
We assume that Θi and r0 are Gaussian variables,

cf. Section C. Together with Eq. (D12) this yields

〈F (Θi)G(r0)〉 = 〈F (Θi)〉 〈G(r0)〉. (D13)

Here F and G are arbitrary functions.

D.4. Moments and (co)variances of W 2
i

In Section C it has been shown that for the charac-
terization of probability distributions for elliptic beams
we need among other first and second moments for W 2

i ,
i=1, 2, cf. Eqs. (C4) and (C5). In general, the calcula-
tion of these moments is a complicated task, which re-
quires non-Gaussian functional integration. Here we will
show that the assumption of turbulence isotropy essen-
tially simplifies this problem such that the moments are
expressed in terms of field correlation functions of the
second and fourth orders.

D.4.1. First moments of W 2
i

We start the consideration with averaging the elements
of the matrix S, cf. Eq. (A8), by the atmosphere states,

〈Sxx〉=

4

[∫
R2

d2rx2Γ2(r;L)−
∫
R4

d2r1d2r2 x1x2Γ4(r1, r2;L)

]
,

(D14)
〈Syy〉=

4

[∫
R2

d2r y2Γ2(r;L)−
∫
R4

d2r1d2r2 y1y2Γ4(r1, r2;L)

]
,

(D15)
〈Sxy〉=

4

[∫
R2

d2rxyΓ2(r;L)−
∫
R4

d2r1d2r2 x1y2Γ4(r1, r2;L)

]
.

(D16)

Here

Γ2(r; z) = 〈I(r, z)〉 = 〈u∗(r, z)u(r, z)〉 , (D17)

Γ4(r1, r2; z) = 〈I(r1, z)I(r2, z)〉 (D18)
= 〈u∗(r1, z)u(r1, z)u

∗(r2, z)u(r2, z)〉
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are the field correlation functions of the second and
fourth orders, respectively. The isotropy assumption,
cf. Eq. (D2), results in the equalities,

〈Sxx〉=〈Syy〉, (D19)
〈Sxy〉=0, (D20)

which means that the averaged beam has a circu-
lar shape. Equation (D20) is a consequence of the
fact that due to the turbulence isotropy Γ2(r;L) and∫
R2 dx2dy1 x1y2Γ4(r1, r2;L) have a symmetry in planes

(x, y) and (x1, y2), respectively. This symmetry implies
that the integrals in Eq. (D16) appear to have zero val-
ues.

Combining Eqs. (A13) and (D20) one gets〈
W 2

1

〉
=
〈
W 2

2

〉
, (D21)

where we have used the fact that the angle φ does not
correlate with W 2

i , cf. Eq. (D9). Similarly, averaging
Eqs. (A11) and (A12) one gets〈

W 2
1/2

〉
=
〈
Sxx/yy

〉
. (D22)

This equation together with Eqs. (D14) and (D15) ex-
press the first moments of W 2

i in terms of the field cor-
relation functions Γ2 and Γ4.

D.4.2. Second moments of W 2
i

Similar argumentations enable us to express the sec-
ond moments of W 2

i , i=1, 2, in terms of field correlation
functions. For this purpose we multiply Eq. (A13) by
(W 2

1 +W 2
2 ) and average it,〈

SxyW
2
1

〉
+
〈
SxyW

2
2

〉
=

1

2

(〈
W 4

1

〉
−
〈
W 4

2

〉)
〈sin 2φ〉 .

(D23)

Here〈
SxyW

2
i

〉
= 4

[∫
R2

d2rxy
〈
W 2
i I(r, L)

〉
(D24)

−
∫
R4

d2r1d2r2 x1y2

〈
W 2
i I(r1, L)I(r2, L)

〉]
.

The isotropy condition (D2) implies that the functions〈
W 2
i I(r, L)

〉
and

∫
R2 dx2dy1

〈
W 2
i I(r1, L)I(r2, L)

〉
have

such a symmetry in (x, y) and (x1, y2) planes, respec-
tively, that the integrals in Eq. (D24) are zeros. This
means that the left-hand side of Eq. (D23) is also zero,
which results in 〈

W 4
1

〉
=
〈
W 4

2

〉
. (D25)

The assumption of isotropy also implies that

〈S2
xx〉=〈S2

yy〉, (D26)

i.e. the second moments of Sxx/yy are equal.
Equations (A11) and (A12) enable to express the mo-

ments 〈S2
xx/yy〉 and 〈SxxSyy〉 in terms of the moments

〈W 4
1/2〉 and 〈W

2
1W

2
2 〉,

〈S2
xx/yy〉 =

3

4
〈W 4

1/2〉+
1

4
〈W 2

1W
2
2 〉, (D27)

〈SxxSyy〉 =
1

4
〈W 4

1/2〉+
3

4
〈W 2

1W
2
2 〉, (D28)

where we have utilized the absence of correlations be-
tween W 2

1/2 and the angle φ, cf. Eq. (D9). Inverting
Eqs. (D27) and (D28) one gets

〈W 4
1/2〉 =

3

2
〈S2
xx/yy〉 −

1

2
〈SxxSyy〉, (D29)

〈W 2
1W

2
2 〉 = −1

2
〈S2
xx/yy〉+

3

2
〈SxxSyy〉. (D30)

Since the moments 〈S2
xx/yy〉 and 〈SxxSyy〉 can be ex-

pressed in terms of field correlation functions, we get a
tool for obtaining the moments 〈W 4

1/2〉 and 〈W
2
1W

2
2 〉.

The straightforward expressions for 〈S2
xx/yy〉 and

〈SxxSyy〉 contain the even-order field correlation func-
tions up to Γ8. Analytical methods are quite involved for
evaluation of sixth- and eight-order functions. By using
the assumptions of Gaussianity for the beam parameters
and isotropic properties of the turbulence we can rewrite
these expressions in terms of field correlation functions
Γ2 and Γ4 only.

The moment 〈S2
xx〉 is obtained from Eq. (A8) by squar-

ing and averaging S2
xx,

〈S2
xx〉 =16

(∫
R4

d2r1d2r2 x
2
1x

2
2 Γ4(r1, r2;L) + 〈x4

0〉

(D31)

−2

〈
x2

0

∫
R2

d2rx2 I(r;L)

〉)
,

and similarly for the moment 〈S2
yy〉. The second term

on the right-hand side of this expression contains the
field correlation function Γ8. However, assuming that
the beam-centroid coordinate, x0, is a Gaussian variable
and utilizing Eq. (D1), this term can be written as

〈x4
0〉 = 3〈x2

0〉2. (D32)

Here

〈x2
0〉 =

∫
R4

d2r1d2r2x1x2 Γ4(r1, r2;L), (D33)

which is expressed in terms of the field correlation func-
tion Γ4.

Consider the third term in right-hand side of
Eq. (D31). By using Eqs. (A8), (A11), (D9), and (D32)
one gets〈

x2
0

∫
R2

d2rx2 I(r;L)

〉
=

1

4
〈x2

0W
2
1/2〉+ 3〈x2

0〉2. (D34)
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Because the assumption of isotropy results in the fact
that the beam-centroid coordinate x0 does not correlate
with the spot-shape parameters, cf. Section D.3, we can
write

〈x2
0W

2
1/2〉 = 〈x2

0〉〈Sxx/yy〉, (D35)

where we have also used Eq. (D22). Next, the expression
for the moment 〈S2

xx〉, cf. Eq. (D31), in terms of the
second- and fourth-order field correlation functions reads
as

〈S2
xx〉 =16

(∫
R4

d2r1d2r2 x
2
1x

2
2 Γ4(r1, r2;L) (D36)

−3〈x2
0〉2 −

1

2
〈x2

0〉〈Sxx〉
)
.

Similar considerations should be applied for the calcula-
tion of the moment 〈SxxSyy〉, taking into account that
〈x2

0y
2
0〉 = 〈x2

0〉2.
Finally, we substitute the obtained expressions for the

moments 〈S2
xx〉 and 〈SxxSyy〉 in Eqs. (D29) and (D30).

This results in relations for the moments 〈W 4
1/2〉 and

〈W 2
1W

2
2 〉 in terms of field correlation functions Γ2 and

Γ4,

〈W 4
1/2〉=8

(
3

∫
R4

d2r1d2r2 x
2
1x

2
2 Γ4(r1, r2;L) (D37)

−
∫
R4

d2r1d2r2 x
2
1y

2
2 Γ4(r1, r2;L)−8〈x2

0〉2−〈x2
0〉〈Sxx〉

)
,

〈W 2
1W

2
2 〉=8

(
3

∫
R4

d2r1d2r2 x
2
1y

2
2 Γ4(r1, r2;L) (D38)

−
∫
R4

d2r1d2r2 x
2
1x

2
2 Γ4(r1, r2;L)−〈x2

0〉〈Sxx〉
)
.

Here 〈Sxx〉 and 〈x2
0〉 are given by Eqs. (D14) and (D33),

respectively.

E. PHASE APPROXIMATION OF THE
HUYGENS-KIRCHHOFF METHOD

The parameters, which characterize statistical proper-
ties of elliptic beams, are expressed in terms of the field
correlation functions Γ2 and Γ4, see Section D. Here we
briefly discuss the method of obtaining these functions
as proposed in Ref. [34]. We start from the paraxial
equation, cf. Eq. (A1), which describes the beam ampli-
tude, u(r, z) and the corresponding boundary condition,
u0(r′), cf. Eq. (A2). For our purposes this equation is
represented in such an integral form,

u(r, z) =

∫
R2

d2r′u0(r′)G0(r, r′; z, 0)G1(r, r′; z, 0)

+
i

2k

z∫
0

dz′
∫
R2

d2r′u(r′, z′)G0(r, r′; z, z′)∆′G1(r, r′; z, z′).

(E1)

Here

G0(r, r′; z, z′) =
k

2πi(z − z′)
exp
[ ik|r− r′|2

2(z − z′)

]
, (E2)

G1(r, r′; z, z′) = exp
[
iS(r, r′; z, z′)

]
, (E3)

S(r, r′; z, z′) = k

z∫
z′

dξ δn
(
r
ξ − z′

z − z′
+ r′

z − ξ
z − z′

, ξ
)
, (E4)

and ∆′ is the transverse Laplace operator acting on func-
tions of r′.

The phase approximation assumes that we consider the
zero-order approximation for the solution of Eq. (E1) in
the aperture plane z=L, i.e.

u(r, L) =

∫
R2

d2r′u0(r′)G0G1(r, r′;L, 0). (E5)

Substituting this expression in the definition of the field
correlation functions, cf. Eqs. (D17) and (D18), one gets

Γ2n(r1, . . . , rn;L) = (E6)∫
R4n

d2r′1 . . . d
2r′2n u0(r′1)u∗0(r′2) . . . u0(r′2n−1)u∗0(r′2n)

× G2n,0(r1, . . . , rn, r
′
1, . . . , r

′
2n;L, 0)

× 〈G2n,1(r1, . . . , rn, r
′
1, . . . , r

′
2n;L, 0)〉 ,

where n=1, 2, . . .,

G2n,i(r1, . . . , rn, r
′
1, . . . , r

′
2n;L, 0) = (E7)

n∏
k=1

Gi(rk, r
′
2k−1;L, 0)G∗i (rk, r

′
2k;L, 0),

and i=0, 1. The assumption that δn(r; z) is a Gaussian
stochastic field enables to average G2n,1 in Eq. (E6), such
that

〈G2n,1(r1, . . . , rn, r
′
1, . . . , r

′
2n;L, 0)〉 = (E8)

exp
[1

2

2n∑
k=2

k−1∑
l=1

(−1)k+lDS(rl, rk; r′l, r
′
k;L, 0)

]
.

Here

DS(rl, rk; r′l, r
′
k;L, 0) (E9)

=

〈[
S(rl, r

′
l;L, 0)− S(rk, r

′
k;L, 0)

]2〉
is the structure function of phase fluctuations of a spher-
ical wave propagating in turbulence.

The correlation function for the index of refraction in
the Markovian approximation, cf. e.g. Ref. [15], reads as

〈δn(r; z)δn(r′; z′)〉 (E10)

= 2πδ(z − z′)
∫
R2

d2κΦn(κ, z)eiκ·(r−r
′).
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Here Φn(κ, z) is the spectrum of turbulence, which we
use in the Kolmogorov form, see Ref. [11],

Φn(κ, z) = 0.033C2
n(z)κ−

11
3 , (E11)

and C2
n(z) is the refractive index structure constant. In-

serting Eqs. (E4), (E10) and (E11) in Eq. (E9), we arrive
at the following expression for the phase structure func-
tion

DS(r, r′) = 2ρ
− 5

3
0

1∫
0

dξ
∣∣∣r ξ+r′(1− ξ)

∣∣∣ 5
3

, (E12)

where we assume that C2
n is constant for the horizontal

link,

DS(rk − rl, r
′
k − r′l) = DS(rl, rk; r′l, r

′
k;L, 0), (E13)

is a simplified notion for the structure function of phase
fluctuations,

ρ0 = (1.5C2
n k

2L)−3/5 (E14)

is the radius of spatial coherence of a plane wave in the
atmosphere.

Finally we substitute Eqs. (E12), (E13) into Eq. (E8).
Then substituting Eqs. (E2) and (E8) into Eq. (E6) and
performing some trivial integrations, we evaluate the field
correlation functions for n = 1, 2,

Γ2(r) =
k2

4π2L2

∫
R2

d2r′e
− g

2|r′|2

2W2
0
−2i Ω

W2
0
r·r′− 1

2DS(0,r′)

(E15)

and

Γ4(r1, r2) =
2k4

π2(2π)3L4W 2
0

∫
R6

d2r′1d2r′2d2r′3

×e
− 1

W2
0

(|r′1|
2+|r′2|

2+g2|r′3|
2)+2i Ω

W2
0

[1−LF ]r′1·r
′
2

× e
−2i Ω

W2
0

(r1−r2)·r′2−2i Ω

W2
0

(r1+r2)·r′3

× exp

[
1

2

∑
j=1,2

{
DS(r1−r2, r

′
1+(−1)jr′2)

−DS(r1−r2, r
′
1+(−1)jr′3)−DS(0, r′2+(−1)jr′3)

}]
.

(E16)

Here

Ω=
kW 2

0

2L
(E17)

is the Fresnel number of the transmitter aperture and
g2=1+Ω2[1−L

F ]2 is the generalized diffraction beam pa-
rameter.

F. BEAM WANDERING

In this Section we derive the beam-wandering variance
for weak and strong turbulence regimes. The beam-
wandering variance 〈x2

0〉 is evaluated by substituting
Eq. (E16) into Eq. (D33)

〈x2
0〉 =

2k4

π2(2π)3L4W 2
0

∫
R10

d2Rd2rd2r′1 d2r′2 d2r′3

×
(
R2
x−

r2
x

4

)
e
− 1

W2
0

(|r′1|
2+|r′2|

2+g2|r′3|
2)
e
−4i Ω

W2
0
R·r′3

×e
2i Ω

W2
0

[1−LF ]r′1·r
′
2−2i Ω

W2
0
r·r′2J (r, r′1, r

′
2, r
′
3), (F1)

with

J (r, r′1, r
′
2, r
′
3) (F2)

= exp
[
ρ
− 5

3
0

1∫
0

dξ
∑
j=1,2

(∣∣rξ+[r′1+(−1)jr′2](1−ξ)
∣∣ 5

3

−
∣∣rξ+[r′1+(−1)jr′3](1−ξ)

∣∣ 5
3−(1−ξ) 5

3

∣∣r′2+(−1)jr′3
∣∣ 5

3

)]
,

where we have used the variables r=r1−r2 and
R=(r1+r2)/2. We integrate over the variables R and r′3
using the properties of Dirac delta function, which occurs
in the integral representation of Eq. (F1). For example
one can show that∫

R4

d2Rd2r′3 R
2 e
−4i Ω

W2
0
R·r′3

f(r′3)

= − (2π)2W 8
0

(4Ω)4
∆2

r′3
f(r′3)

∣∣∣
r′3=0

, (F3)

where ∆2
r′3

is the transverse Laplace operator and f(x) is
an arbitrary function. We arrive at

〈x2
0〉 =

2Ω2

(2π)3W 6
0

∫
R6

d2r d2r′1 d2r′2

(
g2W 2

0

2Ω2
−r2

x

)
×e
− 1

W2
0

(|r′1|
2+|r′2|

2)
e

2i Ω

W2
0

[1−LF ]r′1·r
′
2−2i Ω

W2
0
r·r′2

× exp
[
ρ
− 5

3
0

1∫
0

dξ
(∑
j=1,2

∣∣rξ+[r′1+(−1)jr′2](1−ξ)
∣∣ 5

3

−2 |rξ+r′1(1−ξ)|
5
3−2(1−ξ) 5

3 |r′2|
5
3

)]
. (F4)

Let us consider the cases of weak and strong turbulence
separately.

F.1. Weak turbulence

The weak turbulence is characterized by large values
of the parameter ρ0, cf. Eq. (E14) together with the de-
pendence on the Rytov parameter in (F7). Hence, we
can expand the last exponent of (F4) into series with re-
spect to ρ−

5
3

0 up to the first order. The first term of the
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expansion which is independent of ρ0 in (F4), vanishes
and we obtain

〈x2
0〉 =

2Ω2ρ
− 5

3
0

(2π)3W 6
0

∫
R6

d2r d2r′1 d2r′2

(
g2W 2

0

2Ω2
−r2

x

)
×e
− 1

W2
0

(|r′1|
2+|r′2|

2)
e

2i Ω

W2
0

[1−LF ]r′1·r
′
2−2i Ω

W2
0
r·r′2

×
1∫

0

dξ
(∑
j=1,2

∣∣rξ+[r′1+(−1)jr′2](1−ξ)
∣∣ 5

3

−2 |rξ+r′1(1−ξ)|
5
3−2(1−ξ) 5

3 |r′2|
5
3

)
. (F5)

Performing the multiple integrations in this equation, one
derives for the beam-wandering variance for a focused
beam, L=F (defined in Eq. (A2)), for weak turbulence
the result

〈x2
0〉 = 0.94C2

nL
3W
− 1

3
0 = 0.33W 2

0 σ
2
RΩ−

7
6 , (F6)

where

σ2
R = 1.23C2

nk
7
6L

11
6 = 0.82ρ

− 5
3

0 k−
5
6L

5
6 (F7)

is the Rytov parameter [11].

F.2. Strong turbulence

For the case of strong turbulence the parameter ρ0 is
small. The exponential in Eq. (F2), J (r, r′1, r

′
2, r
′
3), sig-

nificantly differs from zero in the following regions:

|r′2|(1−ξ)� ρ0, |r′3|(1−ξ), |rξ+r′1(1−ξ)| . ρ0; (F8)

|rξ+r′1(1−ξ)| � ρ0, |r′2|(1−ξ), |r′3|(1−ξ) . ρ0; (F9)

|r′2|(1−ξ), |r′3|(1−ξ), |rξ+r′1(1−ξ)| . ρ0. (F10)

This function is negligibly small provided that any of the
conditions

|r′3|(1−ξ)� ρ0, |r′2|(1−ξ), |rξ+r′1(1−ξ)| . ρ0;

|rξ+r′1(1−ξ)|, |r′2|(1−ξ)� ρ0, |r′3|(1−ξ) . ρ0;

|rξ+r′1(1−ξ)|, |r′3|(1−ξ)� ρ0, |r′2|(1−ξ) . ρ0; (F11)
|r′2|(1−ξ), |r′3|(1−ξ)� ρ0, |rξ+r′1(1−ξ)| . ρ0;

|rξ+r′1(1−ξ)|, |r′2|(1−ξ), |r′3|(1−ξ)� ρ0

holds true. The function (F2) can be approximated then
as

J (r, r′1, r
′
2, r
′
3) = exp

[
−ρ−

5
3

0

1∫
0

dξ
∑
j=1,2

∣∣rξ+[r′1+(−1)jr′3](1−ξ)
∣∣ 5

3

] ∞∑
n=0

ρ
− 5

3n
0

n!

{∑
j=1,2

( 1∫
0

dξ
∣∣rξ+[r′1+(−1)jr′2](1− ξ)

∣∣ 5
3

− 3

8

∣∣r′2+(−1)jr′3
∣∣ 5

3

)}n
+ exp

[
−3

8
ρ
− 5

3
0

∣∣r′2+(−1)jr′3
∣∣ 5

3

] ∞∑
n=0

ρ
− 5

3n
0

n!

{∑
j=1,2

1∫
0

dξ
(∣∣rξ+[r′1+(−1)jr′2](1− ξ)

∣∣ 5
3 (F12)

−
∣∣rξ+[r′1+(−1)jr′3](1− ξ)

∣∣ 5
3

)}n
− exp

[
−ρ−

5
3

0

∑
j=1,2

{3

8

∣∣r′2+(−1)jr′3
∣∣ 5

3 +

1∫
0

dξ
∣∣rξ+[r′1+(−1)jr′3](1− ξ)

∣∣ 5
3

}]

×
∞∑
n=0

(
3
8

)n
n!

ρ
− 5

3n
0

{∑
j=1,2

1∫
0

dξ
∣∣rξ+[r′1+(−1)jr′2](1− ξ)

∣∣ 5
3

}n

Here the first term on the right hand side accounts for the
contributions from the regions (F8) and (F9). If one sub-
stitutes the latter into Eqs. (F1) and (F2) and performs
integrations, then the region (F10) would be counted
twice. Therefore, the last term on the right hand side
of (F12) is introduced to eliminate the aforementioned

double-counting. It is worth to mention that already the
first (n = 0, 1) terms of expansion (F12) give a good
approximation of the function J , cf. Ref. [34].

Substituting the right-hand side of Eq. (F12) into
Eq. (F1) and integrating over the variables R, r′3 as it is
described above, we obtain
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〈
x2

0

〉
=

2Ω2

(2π)3W 6
0

∫
R6

d2rd2r′1 d2r′2

(
g2W 2

0

2Ω2
−r2

x

)
e
− 1

W2
0

(|r′1|
2+|r′2|

2)
e

2i Ω

W2
0

[1−LF ]r′1·r
′
2−2i Ω

W2
0
r·r′2 (F13)

×

{
exp
[
−ρ−

5
3

0

1∫
0

dξ
∑
j=1,2

∣∣rξ+[r′1+(−1)jr′3](1− ξ)
∣∣ 5

3

](
1− 3

4
ρ
− 5

3
0 |r′2|

5
3 + ρ

− 5
3

0

∑
j=1,2

1∫
0

dξ
∣∣rξ + [r′1+(−1)jr′2](1−ξ)

∣∣ 5
3

)

+ exp
[
−3

4
ρ
− 5

3
0 |r′2|

5
3

](
1− 2ρ

− 5
3

0

1∫
0

dξ |rξ+r′1(1− ξ)|
5
3 + ρ

− 5
3

0

1∫
0

dξ
∑
j=1,2

∣∣rξ+[r′1+(−1)jr′2](1− ξ)
∣∣ 5

3

)

− exp
[
−ρ−

5
3

0

(3

4
|r′2|

5
3 + 2

1∫
0

dξ |rξ+r′1(1−ξ)|
5
3

)](
1 + ρ

− 5
3

0

1∫
0

dξ
∑
j=1,2

∣∣rξ+[r′1+(−1)jr′2](1− ξ)
∣∣ 5

3

)}

The evaluation of Eq. (F13) is simplified further with the
use of the approximation [14]

exp

[
−
(
|r|
ρ0Ω

) 5
3

]
= exp

[
−
(
|r|
ρ0Ω

)2
]
, (F14)

which gives good accuracy for small values of ρ0,
cf.Ref. [35].

Consecutive integration of (F13) yields for the colli-
mated beam (A2) with F � L the following result

〈x2
0〉=1.78C

8
5
n L

37
15 k−

1
15 = 0.75W 2

0 σ
8
5

RΩ−1. (F15)

A similar expression has been obtained by using the
Markovian-random-process approximation, cf. Ref. [35]
and the references therein.

G. BEAM-SHAPE DISTORTION

In this Section we derive the expressions for the mo-
ments 〈W 2

1/2〉, 〈W
4
1/2〉 and 〈W

2
1W

2
2 〉 for weak and strong

turbulence regimes. From Eqs. (D22), (D36)-(D38) one
can see that these moments are expressed through the in-
tegrals containing the field correlation functions Γ2 and
Γ4. The first moments of W 2

1/2 defined by Eqs. (D14),
(D15), and (D22) contain the following integral

∫
R2

d2rx2Γ2(r) =
W 2

0

π2Ω4

∫
R4

d2rd2r′ x2e−
g2

2Ω2 |r
′|2

× exp
[
−2i

Ω
r·r′−ρ−

5
3

0 W
5
3

0

1∫
0

dξ(1−ξ) 5
3

( |r′|
Ω

) 5
3
]
. (G1)

Here we have used Eqs. (E15) and (E13). The second
moments of W 2

1/2 defined in Eqs. (D37), (D38) contain

the integrals∫
R4

d2r1 d2r2x
2
1x

2
2Γ4(r1, r2) =

Ω2

2(2π)3W 6
0

∫
R6

d2r d2r′1d2r′2

×
(

3g4W 4
0

4Ω4
− g2W 2

0

Ω2
r2
x + r4

x

)
e
− 1

W2
0

(|r′1|
2+|r′2|

2)

× exp

[
2i

Ω

W 2
0

(
1− L

F

)
r′1·r′2 − 2i

Ω

W 2
0

r·r′2
]

(G2)

× exp
[
ρ
− 5

3
0

1∫
0

dξ
(∑
j=1,2

∣∣rξ+[r′1+(−1)jr′2](1−ξ)
∣∣ 5

3

−2 |rξ+r′1(1−ξ)|
5
3−2(1−ξ) 5

3 |r′2|
5
3

)]
and∫

R4

d2r1 d2r2x
2
1y

2
2Γ4(r1, r2) =

Ω2

2(2π)3W 6
0

∫
R6

d2r d2r′1d2r′2

×
(
g4W 4

0

4Ω4
+
g2W 2

0

Ω2
r2
x + r2

xr
2
y

)
e
− 1

W2
0

(|r′1|
2+|r′2|

2)

× exp

[
2i

Ω

W 2
0

(
1− L

F

)
r′1·r′2 − 2i

Ω

W 2
0

r·r′2
]

(G3)

× exp
[
ρ
− 5

3
0

1∫
0

dξ
(∑
j=1,2

∣∣rξ+[r′1+(−1)jr′2](1−ξ)
∣∣ 5

3

−2 |rξ+r′1(1−ξ)|
5
3−2(1−ξ) 5

3 |r′2|
5
3

)]
.

Here we have used the definition of Γ4 given in Eq. (E16)
and performed the four-fold integration in a similar way
as in Eq. (F1), with the aid of formulas similar to (F3).

G.1. Weak turbulence

In the limit of weak turbulence we derive, by substi-
tuting Eqs. (G1), (F6) in Eqs. (D14) and (D22), the fol-



17

lowing result for the first moment of W 2
1/2:

〈W 2
1/2〉=

W 2
0

Ω2
+2.96W 2

0 σ
2
RΩ−

7
6 . (G4)

In Eq. (G1) we have used the approximations
(
|r′|/Ω

) 5
3 ≈(

|r′|/Ω
)2, cf. [14] and

∫ 1

0
dξf(ξ) ≈ f(0), cf. [36]. The

first term in Eq. (G4) describes the diffraction broadening
in free space and the second term gives the amount of
diffraction broadening in turbulence.

The second order moments of W 2
1/2 are evaluated by

substituting Eqs. (F6), (G2), (G4) in Eq. (D37) and cor-
respondingly Eqs. (F6), (G3), (G4) in Eq. (D38). We
evaluate the integrals in Eqs. (G2) and (G3) by expand-
ing the last exponents into series with respect to ρ−

5
3

0 up
to the second order and consecutive integration. For a
focused beam (L=F ) we obtain∫

R4

d2r1 d2r2x
2
1x

2
2Γ4(r1, r2)

=
W 4

0

16Ω4
+ 0.58W 4

0 σ
2
RΩ−

19
6 + 1.37W 4

0 σ
4
RΩ−

7
3 , (G5)

∫
R4

d2r1 d2r2x
2
1y

2
2Γ4(r1, r2)

=
W 4

0

16Ω4
+ 0.51W 4

0 σ
2
RΩ−

19
6 + 1.145W 4

0 σ
4
RΩ−

7
3 . (G6)

The corresponding (co)variances are evaluated as〈
(∆W 2

1/2)2
〉

= 1.2W 4
0 σ

2
RΩ−

19
6 +0.17W 4

0 σ
4
RΩ−

7
3 , (G7)

〈
∆W 2

1 ∆W 2
2

〉
=−0.8W 4

0 σ
2
RΩ−

19
6 −0.05W 4

0 σ
4
RΩ−

7
3 , (G8)

correspondingly. The correlation function for weak tur-
bulence is negative, i.e. the shape of the ellipse is de-
formed in such a way that the increase of the beam width
along one half-axis of the ellipse causes the decrease of
the width in the complementary direction.

G.2. Strong turbulence

For strong turbulence the first moment ofW 2
1/2 is eval-

uated by substituting Eqs. (G1) and (F15) in Eqs. (D14),
(D22). We also use the approximation (F14) for evaluat-
ing (G1) to obtain

〈W 2
1/2〉=γW

2
0 + 1.71W 2

0 σ
12
5

R Ω−1−2.99W 2
0 σ

8
5

RΩ−1, (G9)

where γ=(1+Ω2)/Ω2. It is also assumed that Ω > 1,
cf. Eq. (E17).

For calculating the (co)variances of W 2
1/2 we firstly

evaluate the integrals in (G2) and (G3) by using the ap-
proximation (F12) in the way described in Section F.
Within this approximation one gets, for example

∫
R4

d2r1 d2r2x
2
1x

2
2Γ4(r1, r2) =

Ω2

2(2π)3W 6
0

∫
R6

d2r d2r′1 d2r′2

(
3

4
γ2W 4

0−γW 2
0 r

2
x + r4

x

)
× exp

[
− 1

W 2
0

(|r′1|2 + |r′2|2) + 2i
Ω

W 2
0

r′1 · r′2 − 2i
Ω

W 2
0

r · r′2
]

(G10)

×

{
exp
[
−ρ−

5
3

0

1∫
0

dξ
∑
j=1,2

∣∣rξ+[r′1+(−1)jr′3](1−ξ)
∣∣ 5

3

](
1−3

4
ρ
− 5

3
0 |r′2|

5
3 +ρ

− 5
3

0

∑
j=1,2

1∫
0

dξ
∣∣rξ + [r′1+(−1)jr′2](1−ξ)

∣∣ 5
3

)

+ exp
[
−3

4
ρ
− 5

3
0 |r′2|

5
3

](
1− 2ρ

− 5
3

0

1∫
0

dξ |rξ+r′1(1−ξ)|
5
3 + ρ

− 5
3

0

1∫
0

dξ
∑
j=1,2

∣∣rξ+[r′1+(−1)jr′2](1−ξ)
∣∣ 5

3

)

− exp
[
−ρ−

5
3

0

(3

4
|r′2|

5
3 +2

1∫
0

dξ |rξ+r′1(1−ξ)|
5
3

)](
1 + ρ

− 5
3

0

1∫
0

dξ
∑
j=1,2

∣∣rξ+[r′1+(−1)jr′2](1−ξ)
∣∣ 5

3

)}
.

Performing the multiple integration in (G10), one derives

∫
R4

d2r1 d2r2x
2
1x

2
2Γ4(r1, r2)

= γ2W
4
0

16
+ 4.34γW 4

0 σ
12
5

R Ω−1 (G11)

and similarly∫
R4

d2r1 d2r2x
2
1y

2
2Γ4(r1, r2)

= γ2W
4
0

16
+ 3.16γW 4

0 σ
12
5

R Ω−1. (G12)

Finally, substituting Eqs. (F15), (G9), (G11) and (G12)
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into Eqs. (D37) and (D38) we obtain〈
(∆W 2

1/2)2
〉

= 13.14γW 4
0 σ

12
5

R Ω−1 (G13)

and 〈
∆W 2

1 ∆W 2
2

〉
= 0.65γW 4

0 σ
12
5

R Ω−1. (G14)

It is worth to note that in contrast to weak turbulence
case the covariance (G14) is positive, i.e. the shape of
the beam profile of the ellipse is deformed in such a way
that the increase of beam width along one half-axis of
the ellipse causes the increase in the complimentary di-
rection.

H. MEAN VALUES AND COVARIANCE
MATRIX ELEMENTS

Table I. Mean values and elements of the covariance ma-
trix of the vector v, are given for horizontal links, in terms
of the transmitter beam spot radius, W0, the Fresnel pa-
rameter of the beam, Ω=

kW2
0

2L
, and the Rytov parameter,

σ2
R = 1.23C2

n k
7
6L

11
6 . Here k is the beam wave-number, L

is the propagation distance, C2
n [m−

2
3 ] is the structure con-

stant of the refractive index of the air, and γ=(1+Ω2)/Ω2.

Weak turbulence

〈
Θ1/2

〉
ln

[ (
1+2.96σ2

RΩ
5
6

)2

Ω2

√(
1+2.96σ2

R
Ω

5
6

)2
+1.2σ2

R
Ω

5
6

]

〈
∆x2

0

〉
,
〈
∆y2

0

〉
0.33W 2

0 σ
2
RΩ−

7
6

〈
∆Θ2

1/2

〉
ln

[
1 +

1.2σ2
RΩ

5
6(

1+2.96σ2
R

Ω
5
6

)2

]

〈∆Θ1∆Θ2〉 ln

[
1− 0.8σ2

RΩ
5
6(

1+2.96σ2
R

Ω
5
6

)2

]

Strong turbulence

〈
Θ1/2

〉
ln

[ (
γ+1.71σ

12
5
R

Ω−1−2.99σ
8
5
R

Ω−1
)2√(

γ+1.71σ
12
5
R

Ω−1−2.99σ
8
5
R

Ω−1
)2

+3.24γσ
12
5
R

Ω−1

]
〈
∆x2

0

〉
,
〈
∆y2

0

〉
0.75W 2

0 σ
8
5
RΩ−1

〈
∆Θ2

1/2

〉
ln

[
1 +

13.14γσ
12/5
R

Ω−1(
γ+1.71σ

12
5
R

Ω−1−2.99σ
8
5
R

Ω−1
)2
]

〈∆Θ1∆Θ2〉 ln

[
1 +

0.65γσ
12/5
R

Ω−1(
γ+1.71σ

12
5
R

Ω−1−2.99σ
8
5
R

Ω−1
)2
]

The Table I lists the non-zero means and covariance
matrix elements of the four-dimensional Gaussian dis-
tribution for the random vector v defined in Eq. (D4).

We list the results for weak and strong turbulence. The
weak turbulence results can be applied, e.g., for short
propagation distances with σ2

R . 1. In near-to-ground
propagation the latter condition is fulfilled for optical
frequencies for night-time communication. The strong
turbulence results are applied for short distance commu-
nication, σ2

R � 1. For a near-to-ground communication
scenario this corresponds to the day-time operation at
clear sunny days.

I. LOG-NORMAL MODEL

The log-normal probability distribution for transmit-
tance is

P(η) =
1

ησ
√

2π
exp

−
(
− ln η − µ

)2

2σ2

 (I1)

where

µ = − ln

(
〈η〉2√
〈η2〉

)
(I2)

and

σ2 = ln

(
〈η2〉
〈η〉2

)
, (I3)

are parameters of the log-normal distribution. The pa-
rameters µ and σ are the functions of the first and second
moments of transmittance

〈η〉 =

∫
A

d2rΓ2(r), (I4)

〈
η2
〉

=

∫
A

d2r1d2r2Γ4(r1, r2), (I5)

where the field coherence functions Γ2 and Γ4 are given
by Eqs. (E15) and (E16), respectively. Here the integra-
tion is performed over the circular aperture opening area
A.

The first moment of transmittance (I4) is evaluated
explicitly as

〈η〉 = 1− exp

[
− 2a2

〈W 2〉

]
, (I6)

where a is the aperture radius and

〈W 2〉 = 〈Sxx〉+ 4〈x2
0〉 (I7)

is the so called "long-term" beam mean-square radius
[15]. Here 〈Sxx〉 and 〈x2

0〉 are defined by Eqs. (D14) and
(D33) respectively. For weak turbulence from Eqs. (G4)
and (F6) we evaluate 〈W 2〉 = W 2

0 Ω−2 + 4.33W 2
0 σ

2
RΩ−

7
6 .

However, the integration of Eq. (I5) is more involved. In
this Letter we evaluated Eq. (I5) numerically.
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