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Abstract

Drawing upon the bursting mechanism in slow-fast systems, we propose indicators for the pre-

diction of such rare extreme events which do not require a priori known slow and fast coordinates.

The indicators are associated with functionals defined in terms of Optimally Time Dependent

(OTD) modes. One such functional has the form of the largest eigenvalue of the symmetric part

of the linearized dynamics reduced to these modes. In contrast to other choices of subspaces, the

proposed modes are flow invariant and therefore a projection onto them is dynamically meaningful.

We illustrate the application of these indicators on three examples: a prototype low-dimensional

model, a body forced turbulent fluid flow, and a unidirectional model of nonlinear water waves.

We use Bayesian statistics to quantify the predictive power of the proposed indicators.

Keywords: rare events; probabilistic prediction; Kolmogorov flow; modified nonlinear Schrödinger equation;

intermittency.
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I. INTRODUCTION

Complex irregular behavior is a characteristic of chaotic systems, which is usually vi-

sualized through the time series of an observable. Many natural and engineering systems

exhibit a second level of complexity typified by rare extreme bursts in the time series of

certain observables. They are rare in the sense that they are short-lived and the frequency

at which they occur is significantly smaller than the typical frequency of the time series; and

they are extreme in the sense that they correspond to the values of the observable that are

several standard deviations away from its mean value. Examples of such rare, extreme phe-

nomena in nature include oceanic rogue waves [1, 2], intermittent fluctuations in turbulent

models [3–5] and extreme events in climate dynamics [6, 7]. While the prediction of extreme

events is of utmost importance, our dim understanding of their origins and precursors has

impeded our ability to predict them.

A promising approach is to predict the rare events directly from the time series of the

observable. If the system has a compact, finite-dimensional attractor, the dynamics can

in principle be reconstructed from the observations by delay-coordinate embedding tech-

niques [8–10], or linear and/or nonlinear order reduction methods [11–15]. However, for

high-dimensional chaotic attractors the reconstructed dynamics have a poor forecasting skill

(see e.g. [15, 16]) which is comparable with Mean Square Models (models based on care-

fully tuned Langevin equations [17]). Since rare extreme events are associated with strong

nonlinearities and intermittently positive Lyapunov exponents (i.e., high sensitivity to per-

turbations), their prediction from a finite set of observations is challenging and remains an

active area of research (see, e.g., Giannakis and Majda [18], Bialonski et al. [19]).

A more physically illuminating approach comes from multiscale analysis, where a dy-

namical system model is decomposed into slow and fast variables [20–22] or stable and

unstable manifolds [23, 24]. The bursting mechanism in these models is rather well-

understood [25, 26]. For the most part, the dynamics takes place on the slow manifold.

The slow dynamics may be chaotic, but no bursting event occurs on the slow manifold it-

self. The bursts occur along the unstable manifold (of the slow manifold) and correspond

to the growth of the fast variables. The unstable manifold is typically homoclinic to the

slow manifold such that the flow returns eventually to the slow manifold [27]. This cycle

can repeat indefinitely and, if the slow dynamics is chaotic, irregularly (see figure 1, for an
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Slow dynamics

Fast bursts

FIG. 1. An illustration of slow-fast systems with bursting orbits homoclinic to the slow manifold.

While we depict the slow manifold with a plane, it can in reality be a complicated high dimensional

manifold.

illustration).

While this geometric approach is certainly illuminating, it is of little applicability to

complex systems, since a clear separation of time scales is often not available in realistic

models (e.g., Navier–Stokes equations). Nor does there exist a general recipe to transform

the coordinates into slow and fast variables [28]. This becomes particularly prohibitive in

high dimensional systems.

Here, we introduce a diagnostic indicator for the prediction of rare extreme events in

high dimensional systems. The indicator is based on the aforementioned observations on

the multiscale systems but does not require a priori known fast-slow coordinates. More

precisely we show that a small number of optimally time-dependent (OTD) modes [29],

obtained through a minimization principle and the history of the system state up to the

current time instant, allows for the description of the currently most unstable subspace

in a dynamically consistent fashion. We show that the linearized dynamics projected in

this optimal, time-dependent subspace, can predict an upcoming rare extreme event. We

note that simply computing the eigenvalues of the linearized dynamics is costly and, in

many cases, the results are completely oblivious to transient instabilities (e.g. instabilities

associated with non-normal dynamics, [29]).

In Section II, we review the OTD modes and introduce our indicator. We demonstrate

the application of the indicator on three examples: a low dimensional prototype system

(Section III), a body forced Navier–Stokes equation (Section IV) and a modified nonlinear
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Schrödinger equation as a model for unidirectional water waves (Section V). The concluding

remarks are presented in Section VI.

II. PRELIMINARIES

A. Set-up

Consider the general nonlinear system of ordinary differential equations (ODEs),

u̇ = F(u), u ∈ Rn, (1)

where the vector field F : Rn → Rn is sufficiently smooth. We denote the solutions of (1)

with the initial condition u0 at time t0 by u(t; t0,u0) = ϕtt0(u0) where ϕtt0 is the flow map.

Infinitesimal perturbations around an arbitrary trajectory u(t) satisfy the linear equation

v̇ = Luv, v ∈ Rn, (2)

where Lu(t) :=∇∇∇F(u(t)). For notational simplicity, we will write L instead of Lu.

For a given trajectory u(t; t0,u0), there exists a two-parameter family of linear maps

Φt
t0

(u0) : Rn → Rn such that the solutions of the linear equation (2) satisfy v(t; t0,v0) =

Φt
t0

(u0)v0 [30]. For notationally simplicity, we denote the solutions of the linear equation (2)

by v(t) and write v(t) = Φt
t0

v0 along a given trajectory u(t) = u(t; t0,u0) of the nonlinear

system (1).

In order to introduce the OTD modes, we will need the following definition.

Definition 1. A time-dependent r-dimensional subspace Er(t) of Rn is flow invariant under

the system (2) if, for a fixed initial time t0, we have

v(t) = Φt
t0

v0 ∈ Er(t), ∀v0 ∈ Er(t0), ∀t ≥ t0. (3)

B. Optimally time-dependent modes

For r = n in Definition 1, we have En(t) = Rn for all t and therefore the space is trivially

flow invariant. Lower dimensional flow invariant subspaces can in principle be constructed as
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FIG. 2. An illustration of the OTD modes. The OTD modes vi remain orthonormal for all times

(the dark black squares mark right angles). While differing from their images under the linear

dynamics Φt
t0 , the OTD modes span the same subspace as their images.

follows. Consider a prescribed set of r vectors {v1(t0), · · · ,vr(t0)} spanning an r dimensional

subspace Er(t0). For any later time t > t0, let vi(t) be the solutions of the liner equation (2)

with the initial condition vi(t0) and define Er(t) = span{v1(t), · · · ,vr(t)}. Since the map

Φt
t0

is a bijection, the dimension of the linear subspace Er(t) is equal to r. Moreover, the

subspaces Er(t), constructed as such, are flow invariant by definition.

This procedure is, however, known to be numerically unstable: typically the lengths of

the vectors vi grow exponentially fast and the angle between them vanishes rapidly. As

a result, many numerical techniques have been introduced to compute the flow invariant

subspace in a numerically robust fashion (see, e.g., Greene and Kim [31], Dieci and Elia

[32]).

The OTD equations, introduced recently by Babaee and Sapsis [29], is a modification to

the equation of variations (2) such that its solutions (the OTD modes) remain orthonormal

for all times, yet they span the same flow invariant subspaces as the solutions of the equation

of variations.

Here, we briefly review the OTD equations and the main properties of their solutions,

referring the interested reader to [29] for details. The OTD equations read

v̇i = Luvi −
r∑

k=1

〈Luvi,vk〉vk, i ∈ {1, 2, · · · , r}, (4)

where 〈·, ·〉 denotes an appropriate inner product and 1 ≤ r ≤ n is some prescribed integer.

Equations (4), together with the original system (1), form a set of (r+ 1) coupled nonlinear
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differential equations for vectors vi ∈ Rn and the state u. Note that without the summation

term, the OTD equation (4) coincides with the equation of variations (2). The summation

terms impose the constraint that the solutions vi remain orthonormal with respect to the

inner product 〈·, ·〉.

We refer to the solutions vi of the OTD equation as the OTD modes, which have the

following appealing properties.

1. The OTD equations preserve orthonormality: Let the initial condition for the OTD

equations (4) be a set of orthonormal vectors {v1(t0),v2(t0), · · · ,vr(t0)}. Then the

solution {v1(t),v2(t), · · · ,vr(t)} of the OTD equation remains orthonormal for all

times t [see 29, Theorem 2.1].

2. The OTD modes span flow invariant subspaces: Define

Er(t) = span{v1(t),v2(t), · · · ,vr(t)}, (5)

with {v1(t),v2(t), · · · ,vr(t)} being an orthonormal solution of the OTD equation (4).

Then the subspaces Er(t) are flow invariant under the linear system (2) [see 29, The-

orem 2.4].

3. If u is a hyperbolic fixed point, the OTD modes generically converge to the subspace

spanned by the r least stable eigenvectors of Lu [see 29, Theorem 2.3].

Figure 2 illustrates the geometry of OTD modes for r = 2.

C. Reduction to the OTD modes

Due to the flow invariance of the OTD modes, we can reduce the linear operator Lu

to the OTD subspaces Er(t) in a dynamically consistent fashion. More precisely, consider

the solutions of the form v(t) = V(t)ηηη(t) where V = [v1|v2| · · · |vr] ∈ Rn×r is the time

dependent matrix whose columns are the OTD modes obtained from (4). The vector ηηη ∈ Rr

is the solution v expressed in the OTD basis.

Substituting v(t) = V(t)ηηη(t) in (2) yields the reduced linear equation

η̇ηη = V†LVηηη. (6)
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Conversely, if ηηη(t) solves the reduced equation (6), then v(t) = V(t)ηηη(t) solves the full linear

equation (2) [see 29, Theorem 2.4]. We refer to the linear map Lr : Rr → Rr,

Lr(t) := V†(t)L(t)V(t), (7)

as the reduced linear operator.

The reduced system (6) is a linear system of differential equations with a time dependent

stability matrix Lr(t). As a result, the eigenvalues of Lr may not be used to assess linear

growth or decay of perturbations. Instead we use the invariants of the symmetric part of Lr

as an indicator.

It follows from (6) that

1

2

d

dt
|ηηη|2 = 〈ηηη,Lrηηη〉 = 〈ηηη,Srηηη〉, (8)

where Sr denotes the symmetric part of the matrix Lr, i.e.,

Sr :=
1

2

[
Lr + L†r

]
. (9)

The eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λr of the symmetric tensor Sr ∈ Rr×r, therefore, measure

the instantaneous linear growth (or decay) of perturbations within the OTD subspace Er(t).

Furthermore, the identity (8) implies the inequality

|ηηη(t0)|eλmin(t−t0) ≤ |ηηη(t)| ≤ |ηηη(t0)|eλmax(t−t0), ∀t ∈ [t0, t0 + T ], (10)

for T > 0 and λmin ≤ λmax defined as

λmin := min
τ∈[t0,t0+T ]

λr(τ), λmax := max
τ∈[t0,t0+T ]

λ1(τ). (11)

In particular, if λmin is positive, the perturbations within the OTD subspace Er(t0) grow

exponentially fast over the time interval [t0, t].

Based on the above observation, we use the eigenvalue configuration of the symmetric

tensor Sr as the indicator for an upcoming burst. In so doing, we assume that the OTD

modes capture the most unstable flow invariant subspace along a time-dependent trajectory.

As pointed out in Section II B, this has been proved by Babaee and Sapsis [29, Theorem 2.3]

for hyperbolic fixed points, but remains an open problem for time-dependent trajectories.

In case the slow manifold is known as a graph over the slow variables, the connection

between the largest eigenvalue λ1 of the reduced symmetric tensor Sr and the instabilities

transverse to the slow manifold can be made rigorous as shown by Haller and Sapsis [33].

In practice, this graph is rarely known.

7



III. CONCEPTUAL MODEL

For illustrative purposes, we construct a prototype system which has simple dynamics

with bursting episodes. The system is described by the set of nonlinear ODEs,

ẋ = αx+ ωy + αx2 + 2ωxy + z2

ẏ = −ωx+ αy − ωx2 + 2αxy

ż = −λz − (λ+ β)xz, (12)

where α, ω, λ, β > 0 are constant parameters. We define u = (x, y, z) and denote the right-

hand-side of (12) by F(u). The plane z = 0 is an invariant manifold containing the two

fixed points

u1 = (0, 0, 0), u2 = (−1, 0, 0).

Linearizing around these fixed points, we obtain

∇∇∇F(u1) =


α ω 0

−ω α 0

0 0 −λ

 , ∇∇∇F(u2) =


−α −ω 0

ω −α 0

0 0 β

 . (13)

The plane z = 0 is the linear unstable manifold Eu of u1 corresponding to the eigenvalues

α ± iω. The plane z = 0 is also the linear stable manifold Es of the fixed point u2 with

eigenvalues −α± iω. In the following, we set α = 0.01, ω = 2π and λ = β = 0.1.

Figure 3 shows a trajectory of the system starting near the origin. Perturbations around

the fixed point u1 spiral away from the origin due to the instability in the z = 0 plane. Since

z = 0 is also the stable manifold of the fixed point u2, the perturbed trajectory is attracted

towards u2. Due to the small stability exponent α = 0.01, this process takes place over a

long period of time during which the z component of the trajectory stays small. Once close

enough to the fixed point u2, its unstable manifold repels the trajectory away from z = 0

plane, resulting in a rapid growth of the z component. Finally the trajectory is carried back

to the fixed point u1 along the heteroclinic orbit connecting the two fixed points. The above

process repeats once the trajectory is back in the neighborhood of the origin u1.

Now we investigate the ability of the OTD modes to capture the instability responsible

for the bursts. It is clear from the linearization that around the fixed point u1 the most

unstable direction is within the x − y plane. Near fixed point u2 however the z-direction
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FIG. 3. A trajectory of the system (12) with parameters α = 0.01, ω = 2π, λ = 0.1 and β = 0.1.

The initial condition is (0, 0.01, 0.01). (a) The trajectory u(t) in the state space. (b) The time

series of the z component of the trajectory for 4× 103 time units.
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FIG. 4. (a) The evolution of
√
v2

1,1 + v2
1,2 =

√
1− v2

1,3 (blue) and v1,3 (red) where v1 =

(v1,1, v1,2, v1,3). (b) The evolution of the eigenvalue λ1 as a function of time. The dashed red

line marks λ1 = 0. Three closeup views are shown in the insets.

becomes the most unstable. We solve equation (12) together with the OTD equation (4)

with a single OTD mode (r = 1). We choose the initial conditions u = (0, 0.01, 0.01)> and

v1(0) = 1√
2
(1, 1, 0)>.

Figure 4(a) shows the evolution of
√
v2

1,1 + v2
1,2 and v1,3 where v1,i denote the components
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of v1, i.e., v1 = (v1,1, v1,2, v1,3). For a long time, while the trajectory is spiraling away

from u1, the z-component v1,3 remains almost zero. As the trajectory moves towards the

fixed point u2, a sharp transition occurs around time t = 550 where the OTD mode v1

becomes almost orthogonal to the x − y plane and aligns with the z direction. Note that

this transition (at t = 550) occurs well before the first burst (at t = 950) is observed

(compare to figure 3(b)).

Figure 4(b) shows the eigenvalue λ1 of the reduced symmetric matrix Sr as a function of

time. Since we only use one mode, the eigenvalue is trivial: λ1(t) = 〈v1(t),∇∇∇F(u(t))v1(t)〉.

Over the initial 550 time units, where the OTD mode v1(t) is almost parallel to the x − y

plane, the eigenvalue λ1 oscillates rapidly around zero. As a result any instantaneous growth

in the OTD subspace is rapidly counteracted by an instantaneous decay. After time t = 550,

when the OTD mode reorients orthogonally to the x − y plane, the eigenvalue λ1 becomes

uniformly positive for a long period of time up until the bursting happens. This allows

for persistent growth in the OTD subspace which aligns with the z axis in this period

(cf. equation (10)). This instability persists up until the burst eventually happens around

t = 960. After the burst the eigenvalue λ1 goes back to oscillating around zero.

IV. TURBULENT FLUID FLOW

A ubiquitous feature of turbulent fluid flow is the intermittent bursts observed in the

time series of their measured quantities such as energy dissipation [34, 35]. Even at mod-

erate Reynolds numbers, the dimension of the turbulent attractors are high. Best available

estimates suggest that the attractor dimension scales almost linearly with the Reynold num-

ber [36–38]. Moreover, no appropriate change of coordinates is available to decompose the

system into slow and fast variables [39]. Consequently, intermittencies of turbulent fluid

flow are particularly difficult to analyze and hence serve as a challenging example to test

our indicator.

A. Governing equations and preliminaries

The two-dimensional Kolmogorov flow is the incompressible Navier–Stokes equations

∂tu = −u · ∇∇∇u−∇∇∇p+ ν∆u + f , ∇∇∇ · u = 0, (14)
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FIG. 5. Evolution of the energy dissipation D along a trajectory of the Kolmogorov flow (14) with

n = 4 and Re = 40.

with the sinusoidal forcing f = sin(ny)e1 where e1 = (1, 0)> and n is a positive integer [40].

The flow is defined on the torus x = (x, y) ∈ T2 = [0, 2π] × [0, 2π] (i.e., periodic boundary

conditions). The solution is the time dependent pair of velocity field u(x, t) and pressure

p(x, t). The non-dimensional viscosity ν is the inverse of the Reynolds number, ν = 1/Re.

The energy E, energy dissipation D and energy input I of the system are defined as

E(t) =
1

2L2

∫∫
T2

|u(x, t)|2dx, D(t) =
ν

L2

∫∫
T2

|ω(x, t)|2,

I(t) =
1

L2

∫∫
T2

u(x, t) · f(x, t)dx, (15)

where L = 2π is the size of the domain and ω is the vorticity field. One can show, from

the Navier–Stokes equation (14), that these three quantities satisfy Ė = I − D along any

trajectory.

The Kolmogorov flow has a laminar solution,

ulam =
Re

n2
sin(ny)e1, (16)

which is asymptotically stable for forcing wave number n = 1 and any Reynolds number

Re [41, 42]. For n > 1 and sufficiently high Re, however, the laminar solution is unstable.

Moreover, numerical evidence suggests that, for high enough Reynolds number and n > 1,

the Kolmogorov flow is chaotic [40, 43]. Figure 5, for instance, shows the evolution of

the energy dissipation measured along a trajectory of the Kolmogorov flow with n = 4

and Re = 40. The energy dissipation mostly oscillates irregularly around D = 0.1 and

never settles down to a regular pattern. More interestingly, the energy dissipation exhibits

intermittent, short-lived episodes of higher energy dissipation that we wish to predict.
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B. OTD modes for the Kolmogorov flow

In Section II B, we introduced the OTD modes for ordinary differential equations. The

OTD modes for partial differential equations (PDEs) are defined in a similar manner, al-

though more care should be exercised due to the infinite dimensionality of the system. In

analogy with the ODEs, we define

F(u) = P(−u · ∇∇∇u + ν∆u + f), (17)

where P denotes the projection onto space of divergence-free vector fields, ∇∇∇ · u = 0. As

opposed to the ODEs, where F is a vector field, here it is a nonlinear differential operator

acting on functions u : T2 × R→ R2 that are sufficiently smooth.

We denote the linearization of F around the state u by Lu whose action on sufficiently

smooth functions v : T2 × R→ R2 is given by

Luv := P(−u · ∇∇∇v − v · ∇∇∇u + ν∆v). (18)

The OTD modes {v1,v2, · · · ,vr} then satisfy the set of coupled PDEs

∂vi
∂t

= Luvi −
r∑
j=1

〈Luvi,vj〉vj, i ∈ {1, 2, · · · , r}, (19)

where 〈·, ·〉 denotes some appropriate inner product. Here, we use the L2 inner product

〈v,w〉 :=

∫∫
T2

v(x, t) ·w(x, t)dx. (20)

We integrate equations (19) with initial conditions

vk(x, 0) =
1

π
√

2

sin(ky)

0

 , k = 1, 2, · · · , r , (21)

which are divergence free, mutually orthogonal and have unit L2 norm.

The restriction of the infinite-dimensional operator Lu to the time-dependent OTD sub-

space {vk}1≤k≤r is a reduced finite-dimensional linear operator Lr. In the OTD basis, the

reduced operator Lr is given by the r × r matrix whose entries are given by

[Lr]ij = 〈vi,Luvj〉, i, j ∈ {1, 2, · · · , r}. (22)
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Although the linear operator (18) acts on an infinite dimensional function space, the

reduced operator Lr is a finite dimensional linear map whose symmetric part Sr is defined

by (9).

We numerically integrate the Kolmogorov equation (14) and its associated OTD equa-

tions (19). To evaluate the right hand sides of the equations, we use a standard pseudo-

spectral scheme with 2/3 dealiasing [44]. Unless stated otherwise, 128× 128 Fourier modes

are used for the simulations reported below. For the time integration, we use the Runge–

Kutta scheme RK5(4) of Dormand and Prince [45] with relative and absolute error tolerances

set to 10−5.

C. Asymptotically stable regime

As mentioned earlier, for the forcing wavenumber n = 1, the laminar solution (16) of

the Kolmogorov equation (14) is asymptotically stable at any Re number. Moreover, the

laminar solution is also the global attractor [42]. This regime is not our primary interest. It,

however, does help illustrate the evolution of the OTD modes in an unambiguous setting.

We numerically solve the Kolmogorov equation and its associated OTD equations with

r = 2. The state u is initially random in phase with an exponentially decaying energy

spectrum. The initial conditions for the OTD modes are given in (21). Figure 6 shows the

initial condition and the evolution of the state u and the OTD modes v1 and v2 at select

time instances.

The eigenvalues of the symmetric tensor S2 are shown in figure 7. As the flow evolves

towards the laminar solution, the eigenvalues of S2 oscillate before they converge to their

asymptotic value of −0.025. One of the eigenvalues assumes positive values during this

transition, signaling perturbations that can instantaneously grow. Since the laminar solution

is the global attractor, the instantaneous growth cannot be sustained and decays eventually.

As the state u(t) converges to the laminar solution (16), the OTD modes v1 and v2 converge

to the least stable eigenspace of the linear operator (18) corresponding to eigenvalue −0.025

whose algebraic and geometric multiplicity happens to be equal to 2.
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FIG. 6. The Kolmogorov flow in the asymptotically stable regime with n = 1 and Re = 40. Top

row: The vorticity field at t = 0, 2 and 100. Middle row: curl of the first OTD mode v1 at t = 0, 2

and 100. Bottom row: curl of the second OTD mode v2 at t = 0, 2 and 100. The colors correspond

to the only non-zero component of the curls. All panels show the entire domain [0, 2π]× [0, 2π].

D. Chaotic regime

We turn now to a set of parameters for which the Kolmogorov flow is chaotic. Numerical

evidence suggests that, for n = 4 and Re = 40, the Kolmogorov flow has a strange attrac-

tor [43]. More importantly, the energy dissipation D exhibits an intermittent behavior along

14



0 10 20 30 40

t

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

λ
i

FIG. 7. Eigenvalues of the symmetric matrix S2 along a trajectory of the Kolmogorov flow in the

asymptotically stable regime: n = 1 and Re = 40.

the trajectories on the strange attractor (see figure 5).

Figure 8 shows the energy input I versus the energy dissipation D for a long turbulent

trajectory. During the evolution, the energy input and dissipation assume smaller values

and are very close to each other sitting near the diagonal. The Kolmogorov flow is driven by

the external forcing f such that growth in the energy input I corresponds to the alignment

of the velocity field u and the forcing (see equation (15)). This alignment leads to an abrupt

increase in the energy input I. Consequently, the energy dissipation also increases bringing

the trajectory back to the statistically stationary background.

Based on this observation, one may argue that the growth of the perturbations aligning

with the forcing should signal an upcoming burst in the energy input (and consequently

the energy dissipation). The instantaneous growth of such a perturbation is measured by

〈f ,Luf〉 (cf. equation (8)). For any divergence free velocity field u(t) with zero mean,

however, a straightforward calculation yields 〈f ,Luf〉 ' −7.896. This seemingly paradoxical

result is the consequence of the fact that the forcing f is not a flow invariant subspace and,

as such, the instantaneously negative value of 〈f ,Luf〉 does not imply decay over finite time

intervals. The OTD subspaces, in contrast, are flow invariant and therefore a projection

onto them is dynamically meaningful.

The evolution of the eigenvalues of the symmetric tensor S12 along a turbulent trajectory

are shown in figure 9. The first four eigenvalues are positive for all t in this time window,

signaling the very unstable nature of the flow.
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FIG. 8. (a) Energy input I versus energy dissipation D shown for a long turbulent trajectory.

The dots correspond to 5 × 104 time instances each 0.2 time units apart. The trajectory spends

approximately 91.8% of its lifetime inside the red box. The black line is the diagonal I = D. (b)

The probability density function (PDF) of the energy dissipation. The dashed black line marks

the PDF of a Gaussian districution with mean 0.103 and standard deviation 0.018.
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FIG. 9. Evolution of the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λ12 of the reduced symmetric tensor S12

along a chaotic trajectory of the Kolmogorov flow.

Figure 10 shows select OTD modes at time t = 34.6 right before a burst in the energy

dissipation occurs. The modes themselves do not exhibit a distinguished structural feature

that could suggest an immediate connection to the burst. We notice, however, that the

largest eigenvalue λ1 of the symmetric part of the reduced linear operator Lr increases

16



FIG. 10. Snapshots of the curl of u, v1, v2, v3, v4 and v5 (from top left to bottom right,

respectively) at time t = 34.6. The colors correspond to the only non-zero component of the curls.

All panels show the entire domain [0, 2π]× [0, 2π].

significantly just before the bursting (see figure 11) while the energy dissipation is within one

standard deviation from its mean value at that time. Since the eigenvalue tends to oscillate

rapidly and irregularly, mere visual inspection does not yield a satisfactory conclusion. In

the next section, we quantify the correlation between the eigenvalue λ1 and the energy

dissipation D through conditional statistics.

E. Conditional statistics

In order to quantify the predictive power of the eigenvalues of reduced symmetric matrix

Sr, we use Bayesian statistics [46]. First, for a given scalar quantity q(t), we define

q̄(t; ti, tf ) = max
τ∈[t+ti,t+tf ]

q(τ), (23)
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FIG. 11. Evolution of the energy dissipation D and the eigenvalue λ1 along two different trajectories

(each column corresponds to a separate trajectory). The horizontal dashed lines mark the mean, the

mean plus one standard deviation and the mean minus one standard deviation of the corresponding

quantity.
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FIG. 12. Conditional PDF of the first three eigenvalues of S8 and the maximal dissipation maxτ D

where the maximum is taken over τ ∈ [t+ ti, t+ tf ] with ti = 3 and tf = 4.

where 0 < ti < tf are prescribed numbers. At any time t, the quantity q̄(t; ti, tf ) equals the

maximum value of q over a future time interval [t+ ti, t+ tf ]. For notational simplicity, we

use the shorthand notation q̄(t) for q̄(t; ti, tf ).

We would like to quantify the predictive power of a given indicator α(t). In particular,

we would like to assess whether large peaks of the indicator α(t) at a time t coincide with

large values of the observable q over a future time interval [t+ ti, t+ tf ].

To this end, we use the joint probability density function (PDF) of q̄ and α. The joint
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PDF of q̄ and α is defined as the scalar function pq̄,α : R× R→ R+ that satisfies

P(q1 ≤ q̄ ≤ q2, α1 ≤ α ≤ α2) =

∫ q2

q1

∫ α2

α1

pq̄,α(q̄′, α′)dq̄′ dα′, (24)

for all q1, q2, α1, α2 ∈ R where P denotes the probability. The conditional probability density

function of q̄ (conditioned on α) is then given by

p(q̄|α) =
pq̄,α(q̄, α)

pα(α)
, (25)

where pα is the probability density function of the indicator α.

Roughly speaking, p(q̄(t) = q̄0|α(t) = α0) denotes the likelihood of the maximum of the

scalar q over the time interval [t + ti, t + tf ] being q0 given that the value of α at time t is

α0. More precisely, the conditional probability of q̄ over the time interval [t+ ti, t+ tf ] being

greater than a prescribed value q0 is given by

P
(
q̄(t) > q0|α(t) = α0

)
= P

(
max

τ∈[t+ti,t+tf ]
q(τ) ≥ q0|α(t) = α0

)
=

∫ ∞
q0

p(q̄′|α0)dq̄′. (26)

In particular, if an extreme event corresponds to values of q greater than a prescribed

critical value qc, the probability of the extreme event taking place over the time interval

[t+ ti, t+ tf ], given that α(t) = α0, is measured by

PEE(α0) := P
(

max
τ∈[t+ti,t+tf ]

q(τ) ≥ qc|α(t) = α0

)
=

∫ ∞
qc

p(q̄′|α0)dq̄′, (27)

where PEE denotes the probability of an extreme event taking place over the future time

interval [t+ ti, t+ tf ].

In the case of the Kolmogorov flow, the observed quantity q is the energy dissipation

D and the indicator α is one the eigenvalues λi of the reduced symmetric tensor Sr (see

equation (9)) with r = 8. The joint PDF pD̄,λi and the PDF pλi are approximated from a

large set of numerical simulations containing roughly 85, 000 data points. The conditional

PDF p(D̄|λi) then is computed through the Bayesian relation (25).

Figure 12 shows the resulting conditional PDF p(D̄|λi) for the three largest eigenvalues

of Sr. As the three conditional PDFs are qualitatively similar, we will only discuss the one

corresponding to the largest eigenvalue λ1.

The conditional PDF exhibits a ‘bimodal’ structure. For 0 < λ1(t) < 0.55, the maximal

future value of the energy dissipation maxτ∈[t+ti,t+tf ] D(τ) is most likely to lie between 0
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FIG. 13. ti = 3 and tf = 5. Left: Probability of the extreme energy dissipation PEE as a function

of the value of the indicator λ1.

and 0.15 (the lower left dark region in figure 12(a)). A sharp transition is observed for

0.55 < λ1(t) such that for this range of the eigenvalue λ1, the energy dissipation is more

likely to assume values larger that 0.15 over the future time interval [t+ ti, t+ tf ].

Using this conditional PDF, we compute the probability of extreme events PEE from

equation (27). From the time series presented in figure 5, it is reasonable to associate a

burst with values of the energy dissipation larger than 0.2. We use this value as the critical

energy dissipation (i.e. Dc = 0.2) above which an extreme event is recorded. The resulting

probability function is plotted in figure 13(a). If at a time instant t, the value of λ1 is

smaller than 0.4, the probability of D(τ) > Dc over the future time interval τ ∈ [t+ ti, t+ tf ]

is virtually zero. For larger values of λ1, the probability of an extreme event increases

monotonically. At λ1 = 0.55, the probability of an upcoming extreme event is greater than

50%. Eventually, this probability grows to above 80% at λ1 ' 0.8.

Using the computed probability of extreme event PEE, we predict, at every given time t,

the probability that an extreme event takes place over the future time interval [t+ ti, t+ tf ].

Figure 13 (panels (b) and (c)), shows two select time windows over which an extreme event

occurs. Away from the extreme event, the probability PEE is very low. Just before the

extreme event, this probability grows predicting the upcoming extreme events at least ti = 3

time units in advance.

While the above results are reported at Re = 40, we point out that similar conclusions

hold at higher Reynolds numbers. Figure 14, for instance, shows the conditional PDF and

the probability of extreme events at Re = 100. To fully resolve the flow, the higher resolution

of 256 × 256 Fourier modes are used at this Re number. On the other hand, to keep the
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FIG. 14. Conditional PDF (a) and the probability of upcoming extreme energy dissipation (b) for

Reynolds number Re = 100.

computational cost reasonable, the linearized operator is reduced to four OTD modes, i.e.,

r = 4.

F. Comparison with dynamic mode decomposition

We carry out a caparison in this section to highlight that the correct choice of the modes

to which the linear operator Lu is reduced is essential. To this end, we repeat the analysis

of Section IV E, but this time we reduce the operator Lu to the modes obtain from Dynamic

Mode Decomposition (DMD). DMD was proposed by Schmid [47] for extracting a linear

approximation to the flow map of a nonlinear dynamical system. The resulting dynamic

modes (or DMD modes) have proven insightful in the analysis of fluid flows [48, 49] and

shown to have intricate connections to the Koopman and Fourier modes of time periodic

solutions [50, 51].

Since the DMD modes are not flow invariant (see Definition 1), the reduction of the linear

operator Lu to these modes is not dynamically meaningful. As a result, the eigenvalues of

the symmetric tensor reduced to DMD modes are not expected to reflect the true growth (or

decay) of perturbations. To illustrate this, we use the algorithm introduced by Schmid [47] to

compute DMD modes from 500 sequential snapshots of the Kolmogorov flow, each 0.2 time

units apart. Next we restrict the operator Lu to the eight most dominant DMD modes and

compute the largest eigenvalue of its symmetric part along all previously computed turbulent
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FIG. 15. Same as figure 12(a) but now the linear operator is reduced to the eight most dominant

DMD modes.

trajectories u(t). The resulting conditional PDF is shown in figure 15. As opposed to the

OTD modes (cf. figure 12), the extreme episodes of the energy dissipation do not show a

signature in the DMD-reduced operator.

V. SPATIALLY LOCALIZED EXTREME EVENTS

The energy dissipation in turbulent flows, as discussed in Section IV, is a global feature

of the state. In spatiotemporal chaos, however, local rare extreme events, in the form

of spatially localized structures, are possible . A famous example of such localized extreme

events is the ocean rogue waves. Such localized phenomena cannot be quantified from global

quantities such as the eigenvalues of the linear operator.

In this section, we illustrate that localized features of the OTD modes can still be of

significance for the analysis of spatially localized extreme events. To illustrate this, we

consider the modified nonlinear Schrödinger (MNLS) equation which is an approximation

to the evolution of sea surface elevation in deep waters [52]. The MNLS equation is a higher

order perturbative approximation compared to the nonlinear Schrödinger equation derived

by Zakharov [53]. Recently, more quantitative methods for the analysis of the extreme waves

in the MNLS equation have been developed [54–56].
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A. MNLS equation

For a complex valued function u(x, t), the MNLS equation (in dimensionless variables)

reads

∂tu = F (u), (28)

with

F (u) = −1

2
∂xu−

i

8
∂2
xu+

1

16
∂3
xu−

i

2
|u|2u− 3

2
|u|2∂xu−

1

4
u2∂xu

∗ − iuΦ(u), (29)

where i =
√
−1, x ∈ [0, L] and u(x, t) ∈ C. The asterisk sign denotes the complex conjuga-

tion. The function Φ is derived from the velocity potential φ,

Φ(u) := ∂xφ
∣∣∣
z=0

= −1

2
F−1

[
|k|F [|u|2]

]
, (30)

where F denotes the Fourier transform. The modulus |u(x, t)| is the wave envelope for

the surface elevation h(x, t). To the leading order approximation, we have h(x, t) =

Re [u(x, t) exp(i(x− t))].

We solve the MNLS equation with the initial conditions u(x, 0) = u0(x) with Gaussian

energy spectra and random phases. More precisely, the Fourier transform of the initial

condition is given by

û0(k) =

√
2

2π

L
N(qk)e

iθk , (31)

where

N(qk) :=
ε2

σ
√

2π
e−

q2k
2σ2 , (32)

is a normal distribution, θk are random phases uniformly distributed over [0, 2π] and qk =

2πk/L is the wave number over the periodic domain of length L. There are three free

parameters: ε that controls the wave height, σ which is the standard deviation of the

Gaussian distribution and controls the width of the spectrum of the wave and finally L

which is the length of the periodic domain, x ∈ [0, L].

It is well-known that the Gaussian wave groups (31) can grow due to the Benjamin-Feir

instability [57] to form extreme waves. The Benjamin-Feir Index (BFI) 2
√

2ε/σ provides

an indicator for the probability of the extreme waves taking place. For large enough BFI,

the nonlinear terms dominate, leading to large amplitude waves [58]. If BFI is too large,

however, the extreme waves happen quite often. To realize rare extreme waves, therefore, a
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FIG. 16. (a) The spatial maximum of |u| as a function of time t. An extereme event occurs at

around t = 475 where maxx |u| ' 0.34. (b, c) The surface elevation h(x, t) (blue color) and and

the modulus of the OTD mode |v1| at times t = 400 (b) and t = 475 (c). The thick black curves

in the plots of h(x, t) mark the envelopes ±|u(x, t)|.

moderate BFI value should be used. Following Mohamad et al. [56], we use the parameter

values ε = 0.05, σ = 0.2 and L = 256π, resulting in BFI= 0.71. This BFI value allows for

the formation of extreme waves at a moderate frequency (not too often and not too rare).

We solve the MNLS (29) equation and its associated OTD equation (19) where 〈·, ·〉 now

denotes the standard L2 inner product on complex valued functions,

〈v, w〉 :=

∫ L

0

v(x)w∗(x)dx. (33)

The initial condition for the OTD modes are sinusoidal and are given by

vi(x, 0) =

√
2

L
sin

(
2πi

L
x

)
.

The computation of the OTD modes requires the linearization of the operator (29) as out-

lined in Appendix A.

For the numerical integration of the MNLS equation (and its associated OTD equa-

tion), we use a second-order exponential time differencing scheme [59, 60] in time and a

pseudo-spectral scheme for evaluating the spatial derivatives with 211 Fourier modes. For
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FIG. 17. (a) Conditional PDF for the maximum modulus of the OTD mode v1 and the solution

of the MNLS equation. The maxima are taken over x ∈ [0, L] and τ ∈ [t + ti, t + tf ] with ti = 25

and tf = 26. (b) The probability of an extreme event PEE computed from the conditional PDF.

the statistical analysis presented in the next section, we compute 200 MNLS trajectories,

each of length 1000 time units, from the initial conditions of the form (31).

B. Extreme waves and the OTD modes

Figure 16 shows a time window over which an extreme wave appears at around t = 475

with a wave height of approximately 0.34 (see panel (a)). Panel (b) shows a snapshot of the

wave, 75 time units earlier at t = 400. It exhibits a twin wave packet at around x = 610.

Whether this twin wave packets lead to an extreme wave depends on the energies and the

phases of the packets. A simple extrapolation will rule out the possibility of an extreme

wave since the wave height has been decaying over the last 50 time units (the red shaded

area in figure 16(a)).

During this decay period, however, the OTD mode v1 shows a persistent localized peak

at the same location as the twin wave packets. This signals a persistent localized instability

that grows to lead to the extreme wave at time t = 475 as shown in figure 16(c).

As in the case of the Kolmogorov flow, we use Bayesian statistics to quantify the relation

between extreme MNLS waves and the localized peaks of the associated OTD modes. Based

on the foregoing observation, we use the maximum height of the first OTD mode v1 as the

indicator α. The quantity to be predicted is the maximum height of the MNLS solution u.
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More precisely,

q(t) = max
x∈[0,L]

|u(x, t)|, α(t) = max
x∈[0,L]

|v1(x, t)|.

The conditional PDF p(q̄|α) is computed as in Section IV E. For a given critical wave height

hc, the probability of the rare event is given as in equation (27) by

PEE(α0) := P
(

max
τ∈[t+ti,t+tf ]

max
x∈[0,L]

|u(x, τ)| ≥ hc max
x∈[0,L]

|v1(x, t)| = α0

)
. (34)

Figure 17 shows the conditional PDF p(q̄|α) and the probability of an extreme wave with

the critical wave height hc = 0.28. This critical wave height is approximately the mean plus

two standard deviation of maxx |u| for all the data computed.

VI. SUMMARY AND CONCLUSIONS

We proposed operational indicators for the prediction of rare extreme events (or bursts)

in high dimensional dynamical systems. The motivation for our indicators is based on the

observations made about slow-fast systems where the bursts occur along orbits that are

transverse and homoclinic to the slow manifold [25–27]. This geometric picture does not

lead to an operational method in complex high-dimensional systems where a clear separation

between the slow and fast variables is unavailable [28].

We showed that for such systems a signature of bursting can be traced in the eigenval-

ues of the symmetric part of the linearized dynamics. More precisely, we use the largest

eigenvalue λ1 of the symmetric part of the linearized operator as our indicator. Comput-

ing these eigenvalues in high dimensional systems is computationally expensive. Thanks to

the recently introduced notion of Optimally Time Dependent (OTD) modes [29], however,

one can reduce the linear operator, in a dynamically consistent fashion, to its most unsta-

ble subspace. The reduced operator is low dimensional and its invariants can be readily

computed.

We devised a low dimensional ODE in Section III which has an unambiguous bursting

mechanism. For this simple model we showed that the eigenvalue λ1 becomes uniformly

positive several time units before the burst. This allows for instantaneous perturbations

within the corresponding subspace to grow. Moreover, the OTD mode aligns with the

direction of the growth (i.e. orthogonal to the x − y plane). These together successfully

predict the upcoming extreme event.
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In the body forced Navier–Stokes equation considered in Section IV, the situation is

more complicated as the symmetric part of the reduced operator has several eigenvalues

that are positive for all times. The largest eigenvalue λ1, however, increases significantly

before a burst in the energy dissipation takes place. Using Bayesian statistic, we showed

that large values of the eigenvalue λ1 do in fact predict upcoming bursts in the energy

dissipation. While the results are presented for prediction time ti = 3, they are robust to

small variations of this time window. If the prediction time is set too large (larger than

ti = 5, here), however, the indicator fails to predict the bursts. The predictability time, of

course, is problem dependent and is expected to be inversely proportional to the dominant

Lyapunov exponent of the system [61].

We also considered extreme waves in a unidirectional model of the nonlinear surface waves

in deep ocean. As opposed to the energy dissipation in Navier–Stokes equations, extreme

waves are localized in space. Therefore, we do not expect the eigenvalue λ1 (as a global

quantity) to bear significance in their creation. We observe instead that the most unstable

OTD mode localizes and grows before an extreme wave appears. The spatial location where

the OTD mode localizes is precisely where the extreme wave occurs later in time. This

observation indicates a promising direction for space-time prediction of the extreme water

waves, complementing the recent work of Cousins and Sapsis [54, 55].

Finally, we point out that the OTD modes are instrumental to the evaluation of our

indicators. This imposes an additional computational cost as the OTD equations need to

be solved simultaneously with the governing equations. Moreover, it necessitates that a

model of the system is available as a set of differential equations. Therefore, modifying the

indicator so that it is applicable to model-independent predictions is highly desirable. Future

work also involves the application of the presented ideas on the filtering and prediction of

stochastic dynamical systems exhibiting rare events.
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A. THE LINEARIZATION OF THE MNLS EQUATION

We denote the linearization (or Gâteaux differential) of the differential operator F defined

in equation (29) by Lu(·) which reads

Lu(v) := lim
ε→0

F (u+ εv)− F (u)

ε

=− 1

2
∂xv −

i

8
∂2
xv +

1

16
∂3
xv

− i

2

(
2|u|2v + u2v∗

)
− 3

2

(
u∗v∂xu+ uv∗∂xu+ |u|2∂xv

)
− 1

4

(
2uv∂xu

∗ + u2∂xv
∗)

+
i

2
uF−1

[
|k| F [uv∗ + vu∗]

]
+

i

2
vF−1

[
|k|F(|u|2)

]
. (35)

The only nontrivial calculation above is the last line, corresponding to the linearization of

the term uΦ(u) in (29), which we detail below. First we note that

(u+ εv)Φ(u+ εv)− uΦ(u) = εu dΦ(u; v) + εvΦ(u) +O(ε2), (36)

where

dΦ(u; v) = lim
ε→0

Φ(u+ εv)− Φ(u)

ε
. (37)

From the definition of Φ (see equation (30)), we have

F [Φ(u+ εv)] = −1

2
|k| F [|u+ εv|2]

= F [Φ(u)]− ε1
2
|k| F [uv∗ + vu∗] +O(ε2), (38)

which yields

dΦ(u; v) = −1

2
F−1

[
|k| F [uv∗ + vu∗]

]
. (39)

This completes the derivation of (35).
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