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By using a physically-relevant and theory independent definition of measurement-based equili-
bration, we show quantitatively that equilibration is easier for quantum systems than for classical
systems, in the situation where the initial state of the system is completely known (pure state). This
shows that quantum equilibration is a fundamental, nigh unavoidable, aspect of physical systems,
while classical equilibration relies on experimental ignorance. When the state is not completely
known, a mixed state, this framework also shows quantum equilibration requires weaker conditions.

For over a century, physicists have sought to under-
stand the emergence of apparently irreversible equili-
bration from reversible microscopic dynamics. Results
over the last few years have shown equilibration for gen-
eral quantum systems under very weak assumptions[1–
9]. In classical mechanics, results on equilibration
rely on assumptions such as ergodicity, mixing dynam-
ics, mixed initial states, and coarse-graining of the
measurements[10–13].

Recently, Reimann and Evstigneev[10] have analysed
equilibration in classical and quantum theory by eval-
uating observable expectation values, and comparing
them to a parameter representing experimental precision.
Then, considering mixed initial states, they are able to
compare the conditions necessary for equilibration under
each case, showing that they require a very different set
of conditions.

Our work complements and extends the work in [10],
using a theory independent definition of equilibration to
compare the two scenarios, for both pure and mixed ini-
tial states. Following [3, 4, 6], our definition employs a
generalized distinguishability which incorporates the full
outcome distribution of a measurement, corresponding
to its ability to help us distinguish a time-evolving state
from a time-invariant equilibrium state.

On the classical side, we show that pure systems equi-
librate only when the measurement coarse-graining par-
titions the state-space in a very specific (and very un-
even) way. On the other hand, quantum equilibration
needs only that the measurement be coarse-grained at all,
with no restriction on how it partitions the state-space.
Then, using a parameter to characterize measurements
on both theories, we are able to show that the range of
values which permit classical equilibration is very close
to the range which guarantees equilibration on any the-
ory. Meanwhile, quantum equilibration is possible for a
much wider range of this parameter.

Furthermore, when the initial state of the system is
taken to be mixed, our approach corroborates the previ-
ous results by Reimann and Evstigneev[10].

I. DEFINITIONS

Although we will specifically consider quantum and
classical dynamics, we start our discussion by talk-
ing about equilibration and distinguishability strictly in
terms of measurements and outcome probabilities, which
could be applied to almost any theory. As such, we need
to restate some of our definitions in general terms, with-
out relying on quantum observables or density matrices.
We consider the possible states of a system to be el-

ements in a compact convex space S (herein, a state
space). When we refer to functions on S being linear,
this is with respect to convex mixtures in this space.
We compare different states using only the information

provided by measurements, as defined below.

Definition 1 (Measurement). Given a state space S and
N ∈ N, a measurement with N outcomes is any set of N
linear functions M = {pj | j = 1, . . . , N}, where

pj : S → [0, 1]

ρ 7→ pj(ρ)

satisfy
∑N

j=1 pj(ρ) = 1, ∀ρ ∈ S. Each of these functions

represent the probability of obtaining the jth outcome
when measuring M on ρ.

The maximum information that can be gathered about
a state, using measurements, is the probability of each
particular outcome.

Definition 2 (Distinguishability). Given two possible
states of a system, ρ and σ ∈ S, and a measurement
M with N outcomes. The distinguishability between ρ
and σ according to M is

DM(ρ, σ) =
1

2

N
∑

j=1

|pj(ρ)− pj(σ)|, (1)

where DM : S × S → [0, 1].

The distinguishability is defined this way so that, af-
ter performing the measurement, the distinguishability
quantifies the average probability of successfully “guess-
ing” which state the system was in [3], according to

psuccess =
1

2
+

1

2
DM(σ, ρ). (2)
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When DM(σ, ρ) = 0 the measurement does not pro-
vide information that helps to distinguish σ from ρ. On
the other hand, when DM(σ, ρ) = 1 the states are per-
fectly discriminated by this measurement. This provides
a physical and practical meaning to the distinguishabil-
ity, i.e. if DM(σ, ρ) ≈ 0 then σ and ρ are experimentally
indistinguishable.
In order to talk about equilibration, we also need a

notion of time evolution. We describe it via a function on
S×R≥0, which is linear on S and whose value represents
the state ρ evolved by some time t ≥ 0,

T : S × R≥0 → S
(ρ, t) 7→ Tt(ρ),

where T0(ρ) = ρ. For short, we’ll abbreviate Tt(ρ) as
ρt. Note that in general T does not need to be time-
independent or reversible. However we will be particu-
larly interested in reversible evolutions, for which there
exists a function T−1 (defined in the same way as T )
such that T−1

t (Tt(ρ)) = Tt(T
−1
t (ρ)) = ρ. We’ll use the

assumption of reversilibity when we talk about classical
mechanics, but general time evolution is enough to define
equilibration and even prove our first theorem.

Definition 3 (Equilibration). Given a state ρ, a time-
evolution T , and 0 ≤ ǫ < 1, we say that ρ equilibrates up
to ǫ (or ǫ-equilibrates) under this evolution with respect

to a measurement M when both averages ω = 〈ρt〉 and

〈DM(ρt, ω)〉 exist and satisfy

〈DM(ρt, ω)〉 ≤ ǫ. (3)

Here, 〈·〉 = limT→∞
1
T

∫ T

0 · dt denotes the time average.

This definition applies regardless of the dynamics
which govern the evolution of ρt, i.e. it is theory inde-
pendent, so we must account for the possibility of the
averages not existing. Fortunately, in the particular cases
of interest to us the dynamics guarantee the convergence
and existence of the averages. Since we only consider
compact state spaces here, in quantum mechanics the
time average equals a decoherence in a finite-dimensional
energy basis, and in classical mechanics the averages con-
verge by Birkhoff’s Theorem[11]. Note that in what fol-
lows we will not discuss the timescale for equilibration,
which may be very long [4–6].

When ω = 〈ρt〉 does exist, we call it the equilibrium
state. Since the probabilities are linear functions, the

probabilities on ω can be written as pj(ω) = 〈pj(ρt)〉.
[14]. In addition, we have that 〈ρt〉 = 〈ρt+τ 〉 for all τ ∈ R,
and so the equilibration of ρ also implies the equilibration
of ρt for all t.
Furthermore, note how it is only required that ρ

be close to ω for most times, and not for all large-
enough times. This condition is much weaker and more
physically meaningful, firstly because it doesn’t pre-
clude the possibility of recurrence in the time evolution

(which is possible in Hamiltonian mechanics), and sec-
ondly because it has been shown experimentally that
systems do fluctuate away from equilibrium [15, 16].
This approach is well established in the field of quan-
tum equilibration[1, 3–6, 17–19], and is also being used
to describe classical equilibration [10, 20].
In particular, Werndl and Frigg[20] define that a

macroscopic state (a region of the state space S) is an
α-δ-equilibrium state if the fraction of time spent inside
it is ≥ α for all states in S except for a fraction δ of
them.[21] This definition is more oriented towards the
macroscopic aspect, a top-down approach that defines
an equilibrium macro-state in terms how much time the
micro-states spend inside it. Meanwhile we define equi-
libration in terms of the initial micro-state and the mea-
surement probabilities, a bottom-up approach. Still, the
two are related in their definition of equilibration in terms
of “most times”.
Finally, it is also useful to define

Definition 4 (Pure and mixed states). A state ψ ∈ S is
pure if and only if it cannot be written as a convex sum
of other states in S (i.e. the pure states are the extreme
points of S). We denote as P the set of all pure states
in S. A state is mixed if it is not pure.

We now show that reversible time evolutions must pre-
serve purity—i.e., ψ ∈ P implies ψt ∈ P ∀t. This is be-
cause otherwise one could find a ψ ∈ P such that

Tt(ψ) = qρ+ (1 − q)ρ′ (4)

where ρ, ρ′ ∈ S with ρ 6= ρ′, and 0 < q < 1. Applying
T−1 to both sides of this equation we find

ψ = qT−1
t (ρ) + (1− q)T−1

t (ρ′) (5)

which means that T−1
t (ρ) = ψ and T−1

t (ρ′) = ψ. How-
ever, this would imply ρ = Tt(ψ) = ρ′ which contradicts
the assumption that ρ 6= ρ′.

II. GENERAL EQUILIBRATION

Here, we show that a very uneven measurement coarse-
graining (with respect to the state space explored by the
system) is a sufficient condition for equilibration in any

theory where the average 〈ρt〉 exists. As explained above,
this includes quantum and classical mechanics.

Theorem 1 (Sufficiency). Take any ρ ∈ S, any time

evolution ρt such that ω = 〈ρt〉 and 〈DM(ρt, ω)〉 exist,
and any measurement M. ρt ǫ-equilibrates under M if

max
j
pj(ω) ≥ 1− ǫ

2
. (6)

Proof. First, without loss of generality we label as 1 the
outcome that satisfies eq. (6), then we note that p1(ρt)−
p1(ω) ≤ 1− p1(ω) ≤ ǫ

2 . This leads to

〈|p1(ρt)− p1(ω)|〉 = 〈p1(ρt)− p1(ω)〉+ + 〈p1(ρt)− p1(ω)〉−
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= 2〈p1(ρt)− p1(ω)〉+ ≤ ǫ, (7)

where 〈f(t)〉± = 〈max{±f(t), 0}〉 and we use the fact

that 〈f(t)〉+ = 〈f(t)〉− whenever 〈f(t)〉 = 0.
One also has

N
∑

j=2

pj(ω) = 1− p1(ω) ≤
ǫ

2
, (8)

which, in turn, leads to

〈DM(ρt, ω)〉 =
1

2
〈|p1(ρt)− p1(ω)|〉

+
1

2

N
∑

j=2

〈|pj(ρt)− pj(ω)|〉

≤ ǫ

2
+

1

2

N
∑

j=2

〈pj(ρt) + pj(ω)〉 (9)

=
ǫ

2
+

N
∑

j=2

pj(ω) ≤ ǫ.

This result says that one will always observe equilibra-
tion if the measurement being used is bad enough, i.e.,
if one of the outcomes is predominantly more likely than
all the others most of the time. We will herein refer to
these as highly uneven measurements.
It is important to understand that this applies to any

state, pure or mixed, of any theory that matches the def-
initions above, be it quantum, classical or otherwise. In
other words, if a measurement satisfies this assumption
for a given state and a given time evolution, it is so bad
at distinguishing the time evolving state from the equi-
librium state that one is guaranteed to have equilibration
regardless of any other properties of the theory.
Below we take a similar approach to study what con-

ditions are necessary for equilibration under each theory.

A. Classical Equilibration

Both in classical and quantum mechanics, mixed states
represent a lack of knowledge regarding the parameters
of the system. Thus, we start by studying the case where
the initial state is pure, so any subsequent equilibration
is strictly a consequence of the theory and not of previous
ignorance.
Below, we show a necessary condition for classical equi-

libration of pure states which is very similar to the suffi-
cient condition above. Which means classical pure states
only equilibrate when the measurement is very bad in
a very specific way. In contrast, for quantum mechan-
ics, we provide a counter example showing that the same
condition is not necessary.
In order to define classical dynamics for our purposes,

we only need three of its properties. The first property,

is that time-evolution is reversible. The second defin-
ing characteristic is that for pure states, at any point
in time, the outcome of any measurement is completely
determined. The third is that time-averages exist.

Definition 5 (Classical Mechanics). A given combina-
tion of state space S, N -outcomes measurement M, and
time evolution T , obey classical mechanics only if T is

reversible, the averages ω = 〈ρt〉 and 〈DM(ρt, ω)〉 exist
for any initial state, and ∃ ξ : P → {1, 2, . . .N} such that

pj(ψt) = δj,ξ(ψt), ∀ψ ∈ P , (10)

with j = 1, . . . , N and pj ∈ M.

Consequently, one has pj(〈ψt〉) =
〈

δj,ξ(ψt)

〉

. Of course,
binary measurement probabilities are not all that defines
classical mechanics, there are many properties (specially
on the time evolution) that are not being taken into ac-
count here. However, since the theorem below is a neces-
sity theorem showing how hard equilibration is, adding
further constraints to our definitions cannot make equi-
libration any easier.

1. Classical Equilibration of Pure States

In words, the following theorem then says that a clas-
sical pure state will only equilibrate with respect to M
if the evolving state spends most of its time inside the
support of a single outcome of M.

Theorem 2 (Classical Necessity). A classical pure state
ψ may ǫ-equilibrate with respect to M only if

max
j

〈pj(ψt)〉 = max
j
pj(ω) ≥ 1− ǫ, (11)

where ω = 〈ψt〉.
Proof. First, one has that ∀pj ∈ M

|pj(ψt)− pj(ω)| = (1− pj(ω))δj,ξ(ψt)

+ pj(ω)(1 − δj,ξ(ψt)).

⇒ 〈|pj(ψt)− pj(ω)|〉 = 2pj(ω)[1− pj(ω)]. (12)

where in the second step we have used
〈

δj,ξ(ψt)

〉

=

〈pj(ψt)〉 = pj(ω). This implies

〈DM(ψt, ω)〉 =
N
∑

j=1

pj(ω)[1− pj(ω)]

= 1−
N
∑

j=1

pj(ω)
2. (13)

The ǫ-equilibration condition is then written as

1−
N
∑

j=1

pj(ω)
2 < ǫ
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⇒1− ǫ <

N
∑

j=1

pj(ω)
2 < max

j
pj(ω) (14)

Note how similar the inequality in eq. (11) is to eq. (6).
The Sufficiency theorem 1 shows how uneven a measure-
ment needs to be so that even the most stubborn of sys-
tems must equilibrate under it. The Necessity theorem 2
shows that any classical measurement which allows pure
states to ǫ-equilibrate is at most an ǫ/2 away from being
one of these exceptionally uneven measurements. That
is, pure states in classical mechanics are among the hard-
est of all systems to equilibrate.

2. Classical Equilibration of Mixed States

In the case of Hamiltonian dynamics, the theorem be-
low is a statement that equilibration will be achieved
when (i) there is a chaotic subspace of P , and (ii) the ini-
tial state can be represented as a mixture of states mostly
within this chaotic subspace. This theorem is an exten-
sion of the results in [10], applied to the distinguishability
as defined in eq. (1).

Theorem 3. A classical mixed state ρ will ǫ-equilibrate
with respect to M if there exists a Pc ⊆ P such that:

1. Two different time-parametrized states in Pc are
uncorrelated, when averaging over all time. That
is,

〈pj(ψt)pj(ψ′
t)〉 = pj(〈ψt〉)pj(〈ψ′

t〉), (15)

for any pj ∈ M and almost all pairs (ψ, ψ′) ∈ Pc×
Pc.

2. The state ρ can be described as a mixture of pure
states mostly contained in Pc, i.e.

ρ =

∫

P

µ(ψ)ψ dψ. (16)

where µ(ψ) is a non-negative function satisfying
∫

µ(ψ) dψ = 1 [22], such that

∫

Pc

µ(ψ) dψ ≥ 1− δ, (17)

where δ = 2ǫ2/N ≤ 1
2 .

Note that ψ and ψ′ can be very close. The reason Pc
is called the chaotic subspace is that after a large enough
time, even an infinitesimal difference between these two
states must become large enough make their probabilities
be uncorrelated.
The following proof is similar to calculations by

Reimann and Evstigneev[10], with the difference that we
use the distinguishability instead of measurement expec-
tation values.

Proof of theorem 3. Firstly, we note that, for any ρ
(mixed or pure) and any time evolution,

〈DM(ω, ρt)〉 =
1

2

N
∑

j=1

〈|pj(ρt)− pj(ω)|〉

=
1

2

N
∑

j=1

〈

√

[pj(ρt)− pj(ω)]
2

〉

≤ 1

2

N
∑

j=1

√

〈

[pj(ρt)− pj(ω)]
2
〉

≤ 1

2

√

√

√

√N

N
∑

j=1

〈

[pj(ρt)− pj(ω)]
2
〉

=
1

2

√

√

√

√N
N
∑

j=1

〈pj(ρt)2〉 − pj(ω)2. (18)

Applying this equation to the current scenario, we have

4

N
〈DM(ω, ρt)〉2 =

N
∑

j=1

〈

pj(ρt)
2
〉

− pj(ω)
2

=

N
∑

j=1

IP×P
j

=
N
∑

j=1

(

IPc×Pc

j + IPc×Pp

j

+IPp×Pc

j + IPp×Pp

j

)

,

where ω = 〈ρt〉, Pp = P \ Pc is called the periodic sub-
space and

IRj =

∫∫

R

[

〈pj(ψt)pj(ψ′
t)〉−pj(〈ψt〉)pj(〈ψ′

t〉)
]

µ(ψ)µ(ψ′) dψ dψ′.

(19)
From eq. (15), it is clear that

N
∑

j=1

IPc×Pc

j = 0. (20)

From eq. (17), combined with the identity

N
∑

j=1

[

〈pj(ψt)pj(ψ′
t)〉 − pj(〈ψt〉)pj(〈ψ′

t〉)
]

≤
N
∑

j=1

〈pj(ψt)pj(ψ′
t)〉

≤
N
∑

j=1

〈pj(ψt)〉

≤ 1 (21)

and given that we have assumed δ ≤ 1
2 , we have

N
∑

j=1

IPp×Pp

j ≤ δ2,
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N
∑

j=1

IPp×Pc

j =

N
∑

j=1

I
Pc×Pp

j ≤ δ(1− δ). (22)

Which finally gives

〈DM(ω, ρµt )〉 ≤
√

Nδ

2
≤ ǫ. (23)

B. Quantum Equilibration

Quantum states are represented by density matrices
acting on a Hilbert space. The measurement M is de-
fined in terms of a set of positive operators Oj acting on
the same space, each corresponding to an outcome of the

observable and satisfying
∑N

j=1 Oj = 1. The probabili-

ties are then defined by pj(ρ) = Tr[Ojρ].
In the quantum case, the condition of theorem 1 is

analogous to saying that one of the operators Oj is close
to the identity on almost all of the accessible state space
(i.e. over the energy states which occur in ρ). However,
while this condition is sufficient, it is not at all necessary
and even relatively fine-grained measurements will lead
to equilibration.
As such, the following theorem is not a necessity state-

ment like theorem 2 in the classical case. Instead, we
provide an alternative sufficiency theorem which applies
to measurements not encompassed by theorem 1 (those
for which all pj(ω) are very small).
Remarkably, as has been well investigated[1, 3–6, 18,

23–25], we can obtain the same bounds on quantum equi-
libration for both pure and mixed states. Here we provide
an improved version of a bound known from the litera-
ture.

Theorem 4. The average distinguishability between a
general quantum state ρ ∈ S evolving via a static Hamil-
tonian, and its time average with respect to an N -
outcome measurement M satisfies

〈DM(ρt, ω)〉 ≤
1

2

√

DG

N − 1

deff
. (24)

where DG is the maximum degeneracy among gaps in the
system’s spectrum and d−1

eff =
∑

n Tr[ρΠn]
2 is the effec-

tive dimension, with Πn being the projector onto the n-th
energy eigenspace.

The proof of this theorem is a fairly straightforward
improvement on a previous proof from the literature [4],
so we present it in appendix A. Then, it is easy to apply
this result to the current definition of ǫ-equilibration.

Corollary 1. Under the conditions of theorem 4, a gen-
eral quantum state ρ will ǫ-equilibrate with respect to an
N -outcome measurement M if

N ≤ 4
deff
DG

ǫ2 + 1, (25)

where DG and deff are defined as in theorem 4.

The effective dimension, deff , is a recurring parameter
in the field of quantum equilibration. It roughly quanti-
fies how many energy eigenstates a system occupies with
significant probability and is usually assumed to be very
large.

Considering the effective dimension typically scales ex-
ponentially in the number of particles, it easily outgrows
the number of outcomes of any conceivable physical mea-
surement. In this case the system will equilibrate no
matter how the outcomes partition the Hilbert space.

Here, we see that the quantum conditions of a system
with a small number of degenerate energy gaps and a
state with high effective dimension achieve a similar effect
as the classical condition of chaoticity of the initial state.
In fact, apart from some small constants, the fraction δ
of the classical distribution which lies outside the chaotic
subspace is under the same restriction as DG/deff , which
suggests these two quantities are analogues of each other.

C. Multiple Measurements

Instead of defining equilibration in terms of the distin-
guishability with respect to a single measurement, one
can also take a set of K measurements and consider the
maximum distinguishability amongst all of them at any
point in time. This approach[4] describes the scenario
where one is capable of performing different measure-
ments on the system, and always knows which one would
be best at distinguishing the state at a given time from
the equilibrium state (or has multiple copies of the sys-
tem and performs all measurements).

In the language of this paper, we consider a set of K
measurements M = {Mi | i = 1, . . . ,K} and define the
distinguishability with respect to this set of measure-
ments as

DM(ρt, ω) = max
M∈M

DM(ρt, ω). (26)

Given this change in the definition, it is useful to consider
how each of the above theorems would have to be adapted
to account for multiple measurements.

Theorems 1 and 3 and corollary 1 still hold if we replace
ǫ with ǫ/K, where their respective assumptions must hold
for all M ∈ M. Then we have that

〈DM(ρt, ω)〉 =
〈

max
M∈M

DM(ρt, ω)

〉

≤
∑

M∈M

〈DM(ρt, ω)〉 ≤ K
ǫ

K
. (27)

Theorem 2 still holds if all M ∈ M satisfy eq. (11), but
the equation itself need not be changed.
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III. DISCUSSION

Here, we have used the distinguishability to define an
operational, theory-independent, notion of equilibration
with respect to a given measurement. Although we have
applied this to quantum and classical theory, it could
be applied in other cases such as general probabilistic
theories [26].

We first show a sufficient condition for equilibration in
any theory, which depends on the largest average prob-
ability among the measurement outcomes. We find that
a value of 1 − ǫ

2 for this parameter is a sufficient con-
dition for ǫ-equilibration for any theory that fits our
definitions—which simply means one always observes
equilibration if the measurement being used is uneven
enough.

In order to achieve equilibration of pure states under
classical Hamiltonian dynamics (simply by virtue of how
classical measurements are defined), it is necessary that
this parameter be at least 1 − ǫ, showing that classical
mechanics is very similar to the worst possible case.

In contrast, we have also shown an alternative suffi-
cient condition for quantum equilibration, which shows
that it can happen even when this parameter is very close
to 0. This quantitatively shows that equilibration of pure
states is easier under quantum dynamics, at least where

it pertains to measurement ignorance. Indeed, the quan-
tum case seems closer to the classical mixed state case,
where our results corroborate other recent results[10].
While it is difficult, if not impossible, to experimentally

prepare large systems in pure states, these pure-state re-
sults are very important because they show that equili-
bration of microscopic systems is a fundamental aspect of
physics, not just a consequence of ignorance. In particu-
lar the results imply it is much harder to keep quantum
systems out of equilibrium than one might think, even
for something as small as a nanoscale system. After all,
even if one takes every possible action to reliably prepare
it in a pure state and reliably isolate it from the environ-
ment, the measurement used to examine it still needs to
have a number of outcomes exponential in the number
of particles in the system, otherwise equilibration will be
inevitable (assuming there aren’t very many degenerate
energy gaps).

ACKNOWLEDGMENTS

AJS acknowledges support from the Royal Society and
FQXi through SVCF. ASLM acknowledges support from
the CNPq. TF is grateful for support from the ERC
grants QFTCMPS and SIQS, and by the cluster of ex-
cellence EXC201 Quantum Engineering and Space-Time
Research.

[1] N. Linden, S. Popescu, A. J. Short, and A. Winter. Quan-
tum mechanical evolution towards thermal equilibrium.
Phys. Rev. E, 79:061103, 2009.

[2] P. Reimann. Canonical thermalization. New Journal of

Physics, 12(5):055027, 2010.
[3] A. J. Short. Equilibration of quantum systems and sub-

systems. New Journal of Physics, 13(5):053009, 2011.
[4] A. J. Short and T. C. Farrelly. Quantum equilibration in

finite time. New Journal of Physics, 14(1):013063, 2012.
[5] S. Goldstein, T. Hara, and H. Tasaki. Time scales in

the approach to equilibrium of macroscopic quantum sys-
tems. Phys. Rev. Lett., 111:140401, 2013.

[6] A. S. L. Malabarba, L. P. Garćıa-Pintos, N. Linden, T. C.
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Appendix A: Theorem 4

For clarity, we start by proving a lemma for pure states,
and then use that to prove theorem 4 for general states.
As mentioned in the main text, this result is an improve-
ment over previous bounds in the literature by a factor
of

√
N . The step responsible for this improvement is

eq. (A6).

Lemma 1. Given a finite-dimensional Hilbert space H, a
projector P , and a pure initial state ρ : H → H evolving
under a Hamiltonian with energy levels En, then there

exists an energy basis {|n〉} such that

〈

Tr[P (ρt − ω)]2
〉

≤
∑

n6=j

∑

k 6=l

vnjv
∗
klδGnj ,Gkl

. (A1)

where Gnj = En − Ej, ω = 〈ρt〉, and vnj = ρnjPjn, in

which ρnj = 〈n|ρ|j〉, Pnj = 〈n|P |j〉.

Proof. First note that, since ρ is a pure state, even if some
energy levels are degenerate, there is always an energy
basis we can choose such that ρ only has support on one
energy state inside each energy eigenspace. In this basis,
Gnj = 0 implies that either n = j or ρnj = 0.

Then, let us write ρ(t) =
∑

nj ρnj e
−iGnjt|n〉〈j|, and

note that

ω =
∑

n=j

ρnj|n〉〈j|

ρ(t)− ω =
∑

n6=j

ρnj e
−iGnjt|n〉〈j|. (A2)

Thus, for any projector P we have

〈|Tr[P (ρ(t)− ω)]|2〉

=
〈
∣

∣

∣

∑

n6=j

Pjnρnj e
−iGnjt

∣

∣

∣

2〉

(A3)

=
∑

n6=j

∑

k 6=l

ρnjPjn(ρklPlk)
∗
〈

e−i(Gnj−Gkl)t
〉

,

=
∑

n6=j

∑

k 6=l

ρnjPjn(ρklPlk)
∗δGnj,Gkl

.

Theorem 5. Given a finite-dimensional Hilbert space H,
any initial state ρ : H → H evolving under a Hamiltonian
with energy levels En, and any N -outcome measurement
M, the following equation holds:

〈

DM(ρt, ω)
〉

≤ 1

2

√

DG

N − 1

deff
, (A4)

where DG is the maximum degeneracy of any gap in the
spectrum.

Proof. We start by assuming that ρ is a pure state, and
then generalize to mixed states. This means we can use
lemma 1.
Next, the following steps are easier to follow if we

label each energy gap by the indices α = (n, j) and
β = (k, l), denote summing over α as shorthand for sum-
ming over n 6= j, and we define the Hermitian matrix
Mαβ = δGnj,Gkl

.
Using these definitions it is easy to see that the sums

in lemma 1 form an inner product,
∑

αβ v
∗
αMαβvβ =

|v†Mv|. Therefore, we can use the Cauchy-Schwarz in-
equality to bound this sum by

〈

Tr[P (ρt − ω)]2
〉

≤
∑

αβ

v∗αMαβvβ

≤ ‖M‖
∑

α

|vα|2

= ‖M‖
∑

n6=j

|ρnjPjn|2

≤ ‖M‖
∑

n,j

|ρnjPjn|2

≤ ‖M‖
∑

n,j

|ρjjPjnρnnPnj |

= ‖M‖Tr[PωPω], (A5)

where we also used that ρjjρnn ≥ ρnjρjn by positivity
of the density matrix. Now, note that the left-hand-side
doesn’t change if you subtract from the projector any-
thing proportional to the identity. Therefore, we can
write
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〈

Tr[P (ρt − ω)]
2
〉 1

‖M‖

≤ Tr

[

(P − 1

N
)ω(P − 1

N
)ω

]

≤ Tr[PωPω]− 2Tr

[

1

N
ωPω

]

+Tr

[

1

N
ω
1

N
ω

]

= Tr[PωPω]− 2

N
Tr

[

Pω2
]

+
1

N2
Tr

[

ω2
]

≤ Tr
[

Pω2
]

(

1− 2

N

)

+
1

N2
Tr

[

ω2
]

, (A6)

which leads to

∑

P∈M

〈

Tr[P (ρt − ω)]
2
〉

≤ ‖M‖Tr
[

ω2
]

(

1− 2

N
+

1

N

)

=
‖M‖
deff

N − 1

N
, (A7)

where it was used that Tr
[

ω2
]

= deff
−1.

Since M is a block diagonal matrix, where each block
is composed of only 1s and is at most of size DG, then
the largest eigenvalue of M is at most DG, and we have
‖M‖ ≤ DG. This finally leads to

〈DM(ρt, ω)〉 =
1

2

∑

P∈M

〈Tr[P (ρt − ω)]〉

≤ 1

2

∑

P∈M

√

〈

Tr[P (ρt − ω)]
2
〉

≤ 1

2

√

N
∑

P∈M

〈

Tr[P (ρt − ω)]
2
〉

≤ 1

2

√

(N − 1)
‖M‖
deff

≤ 1

2

√

DG

N − 1

deff
. (A8)

To see that the same will hold for mixed states, take
an ancillary Hilbert space A with the same dimension as
H and use it to purify ρ. That is, define a pure state ρ′

on H ⊗ A such that TrA[ρ
′] = ρ, and define ω′ = 〈ρ′t〉.

Then it is straightforward to see that

〈DM(ρt, ω)〉 =
1

2

∑

P∈M

〈|TrH[P (ρt − ω)]|〉

=
1

2

∑

P∈M

〈|TrH[P TrA[ρ
′
t − ω′]]|〉

=
1

2

∑

P∈M

〈|Tr[P ⊗ 1A(ρ
′
t − ω′)]|〉

= 〈DM(ρ′t, ω
′)〉

≤ 1

2

√

D′
G

N − 1

deff(ρ′)
, (A9)

where D′
G is the maximum degeneracy among energy

gaps in H⊗A.
At last, to reproduce eq. (A8), simply chose a null

Hamiltonian for the A subspace (HA = 0 and H ′ = H ⊗
1A). Of course this choice leads to a highly degenerate
energy spectrum, but, since ρ′ is pure, this doesn’t affect
any of the quantities by the same argument used at the
start of this proof. This has the consequence that D′

G =
DG, and deff(ρ

′) = deff(ρ).


