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Abstract. We show how bond order emerges due to light mediated synthetic

interactions in ultracold atoms in optical lattices in an optical cavity. This is

a consequence of the competition between both short- and long-range interactions

designed by choosing the optical geometry. Light induces effective many-body

interactions that modify the landscape of quantum phases supported by the typical

Bose-Hubbard model. Using exact diagonalization of small system sizes in one

dimension, we present the many-body quantum phases the system can support via the

interplay between the density and bond (or matter-wave coherence) interactions. We

find numerical evidence to support that dimer phases due to bond order are analogous

to valence bond states. Different possibilities of light-induced atomic interactions

are considered that go beyond the typical atomic system with dipolar and other

intrinsic interactions. This will broaden the Hamiltonian toolbox available for quantum

simulation of condensed matter physics via atomic systems.

ar
X

iv
:1

60
4.

02
56

3v
2 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 1

8 
O

ct
 2

01
6



Bond Order via Light-Induced Synthetic Many-body Interactions 2

1. Introduction

Ultracold gases loaded in optical lattices are an ideal tool for studying competing

phases of quantum matter. Engineering the effective potential seen by the atoms using

light beams allows to realize with optical lattices simple models of condensed matter,

particle physics and even biological systems [1]. Moreover, the realization of these

models in experiments would aid in the development of applications towards quantum

information processing (QIP) and the development of novel quantum materials via

quantum simulation [2]. Typically, one can realize effective Hamiltonians which contain

short-range physical processes such as tunneling between neighbor lattice sites and

on-site interactions according to a prescribed lattice potential engineered by classical

light fields, such as the Bose-Hubbard (BH) model. Long range interactions are

experimentally challenging but accessible in principle via polar molecules [3, 4] or

Rydberg atoms [5, 6, 7]. However, the nature of the interaction is fixed by the

characteristics of its constituents. In addition, finite range interactions by other

approaches of light-matter interactions [8, 9, 10, 11], and extended Bose-Hubbard models

via dipolar interactions [12, 13] are also possible.

In contrast to the above, loading an optical lattice inside a cavity allows to engineer

effective synthetic many-body interactions between light induced atomic modes with an

arbitrary spatial profile [14, 15, 16]. These interactions are mediated by the light field

and do not depend on the nature of the atoms considered, making them extremely

tunable and suitable for realizing quantum simulations of effective many-body long-

range Hamiltonians. In principle fermionic, bosonic, molecular systems, etc. can be

studied. This allows to explore the interplay between additional non-conventional

quantum many-body phases, besides from the typical superfluid (SF) and Mott-insulator

(MI). It is now experimentally possible to access the regime where light-matter coupling

is strong enough with cavity decay rates of MHz [18, 17] and kHz [20, 19], in the

range to compete with typical short-range processes (tunneling and on-site interactions).

Moreover, bosonic ultracold atoms loaded in an optical lattice inside an optical cavity

have been recently realized [19, 17], opening a new venue to analyse the interplay

between competing orders of quantum matter by design. The light inside the cavity

can be used to control the formation of many-body phases of matter even in a single

cavity mode by properly choosing the arrangement of the cavity, optical lattice and

light pumped into the system [21, 22, 14, 15]. Additional freedom can be achieved

by multimode cavities or multiple cavities extending the possibilities to condense into

exotic quantum phases even further [24, 23, 25, 16]. Recent advances [26, 27, 28], will

enable the experimental realization of synthetic interactions by design with additional

freedom in the near future. This can be realized as the cavity parameters (decay

rates) and detunnings with respect the cavity modes can be externally modified with

respect to the atomic system. Moreover, the spatial profile of the cavity modes can

be designed depending on the geometry of the coherent light beams pumped into the

high-Q cavity [16].
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DW ≠ 0

B ≠ 0

Figure 1: Typical configurations with bond order OB and density

wave order ODW of the ground state, circles denote sites i. We

discuss the competition between these orders in the main text and their

definition. (Top) For typical OB 6= 0, different ellipsoids correspond

to pairs of nearest neighbor sites with the same matter field phase

(dimers), colors denote different values of 〈b̂†i b̂i+n + h.c.〉 = ci with a

constant ci > 0, n > i. The thick lines in between ellipsoids have

〈b̂†i+1b̂i+n+1 + h.c.〉 = c̃i, with c̃i 6= ci adjacent dimers. If ci+n+1 = −ci
with c̃i = 0 then maximal phase difference is stablished. if c̃i = 0

and ci 6= 0 maximal matterwave amplitude difference occurs. See

main text on the structure of the one-body reduced density matrix.

(Bottom) Different colors correspond to density values at sites i for

ODW 6= 0. For homogenous states, superfluid and Mott insulator there

is no pattern in coherences or densities, c̃i = ci∀n. The ground state

is 4-fold degenerate for OB and 2-fold degenerate for ODW .

In this article we present how different arrangements involving multiple probes

and/or multiple light modes configurations, lead to the competition of atypical quantum

many-body phases via synthetic interactions. In the past, single cavity competition

between typical SF and MI phases [29, 30], density wave orders [31, 32, 14, 15, 16, 33, 34],

and disorder [35] has been addressed. In contrast to other works, here we consider

the interplay with what we call “bond order” and other orders in the system. Bond

order is a form of self-organization [36] of matter-wave coherences or “bonds” due to

cavity backaction to compensate for the phase difference imposed by the pattern of light

pumped into the cavity and scattered by the atoms [14]. In the effective Hamiltonian, as

the number of cavity or pump modes increases different physics are possible due to the

light induced atomic mode structure. Thus, competition of quantum many-body phases

triggers due to the induced atomic mode structure (breaking symmetries, e.g. time

reversal and translational) and the regular BH Hamiltonian processes ( homogenous

tunnelling and on-site interactions). Particularly difficult is the regime where strong

correlations will be present in addition to the well known physics of the BH Hamiltonian.

This occurs when there is a large effective light-matter coupling relative to on-site

interactions. In this limit, standard mean-field theory becomes unreliable as strong
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imbalanced configurations can occur and large on-site fluctuations take place due to the

broken symmetry of the ground state [16]. As the interaction has a global character

with non-trivial structure, and in fact is of infinite range, symmetries are broken even

in 1D. The ground state can acquire states with different competing orders, Fig.1.

Thus, quantum phase transitions different from the usual type in 1D systems, of the

Berezinsky-Kosterlitz-Thouless (BKT) type, can occur. In what follows, we analyse the

system by using exact diagonalization for small number of sites in 1D. Our simulations

are an indicative picture of the expected behaviour in a larger system. Additionally, we

will study the behaviour related with the competition between between bond-order and

other orders present in the system. In particular, we find numerical evidence to support

the analogy between valence bond states (VBS) [37, 38] and dimerised states that

arise in the cavity system due to bond ordering via different mechanisms. Our results

could be used as basis for the quantum simulation of analogous dimer states important

in quantum magnetism [39]. Using classical optical lattices the AKLT Hamiltonian

can be implemented in principle as the large interaction limit of the Bose-Hubbard

Hamiltonian [40]. Non-trivial entanglement properties have been found [41, 42], while

bulk-boundary duality with entangled pair states occurs [43, 44] and spin glasses are

also possible [45]. The states are potentially useful for measurement based quantum

computation [46]. Other ultracold systems where the possibility of bond ordered states

has been explored include dipolar gases with nearest neighbour and truncated finite

range density interactions[47, 48], in the framework of the so-called extended Bose-

Hubbard models [4, 13]. Bond order can also occur via density dependent frustration

of the hopping amplitudes with Raman assisted tunelling [49]. Moreover in condensed

matter systems, bond order was first explored in low dimensions via extended Hubbard

models with two species fermions [50, 51, 52, 53].

In our treatment, we provide an alternative route to explore physics of this kind

using cavity fields that relaxes the constraint on very strong on-site interaction (U),

as cavity coupling can be tailored to simulate effective Hamiltonians with similar

properties. In ultracold atoms in the fermionic version of our system, a closer analogy

to investigate and simulate resonance valence bond (RVB) states important in high-

Tc superconductivity [54], might be possible. Moreover, the competition between

superconductivity and density wave orders is actively studied [55, 56], and light induced

superconductivity is being researched [57, 58, 59]. We analyse the emergence and

competition between superfluid, supersolid, insulating and dimerised quantum many-

body phases of matter by means of the behaviour in their order parameters.

Our findings, will foster the study of competing orders in multicomponent

optomechanical systems [60]. Moreover, the interplay of the quantum phases we study

and their generalization, may appear in hybrid system networks [61, 62, 63, 64]. In

connection to our work, non interacting fermions in cavity systems have been studied

[65, 66, 67] and even chiral states have been found [68]. Towards quantum state

engineering via measurement back-action, competition with other correlated quantum

many-body states [69, 70, 71, 72, 73, 77, 76, 74, 75, 78, 79, 80, 81] and Non-Hermitian
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dynamics [82, 83, 84, 85] can occur. Moreover, feedback control [86, 87, 88, 89, 90, 91, 92]

can also be explored in relation to the dynamical stabilization of quantum many-body

phases. As such, the behaviour of the emergent phases in the cavity system we will show,

might aid towards the design of novel quantum materials with analogous properties.

It follows, that the use of the mechanisms described here could be incorporated in

the future development of real materials and composite devices in hybrid solid state

systems [93], where both light and matter are in the quantum limit and quantum

coherence can be exploited.

The article has the structure that follows. We introduce the general model of

ultracold atoms in high-Q cavity(ies) where the atoms are in the regime of quantum

degeneracy. We continue by stating the effective models we will consider due to synthetic

interactions between light induced atomic spatial modes. Then, we define the different

competing orders that can arise in the system. Next, we present our results via the phase

diagrams of competing phases. Finally, we conclude our manuscript by summarising our

findings.

2. The model

The system consists of atoms trapped in an OL inside a cavity (single/multi mode) or

many cavities with the cavity mode frequency(ies) ωc and decay rate(s) κc [22, 74, 94, 14,

15, 16, 95, 96]. The atomic system is subject to additional light beam(s) pumped into

the system in off-resonant light scattering. The off-resonant light scattering condition

means that Γ � |∆pa|, where Γ is the spontaneous emission rate of the atoms, where

∆pa = ωp − ωa is the detuning between the light mode(s) frequency(ies) ωp and the

atomic resonance frequency ωa. The scattered light from the ultracold atoms in the OL

is selected and coupling is enhanced by the optical cavity(ies), generating a quantum

potential. The light pumped into the system has amplitude(s) Ωp ∈ C (in units of

the Rabi frequency). The pump-cavity detunnings are ∆pc = ωp − ωc. The light

is pumped from the side of the main axis of the high-Q cavity(ies), at an angle not

necessarily at 90◦ which allows for arbitrary control of the overlap of light induced spatial

modes [16]. The cavity modes couple with the atoms via the effective coupling strengths

gp = gcΩp/(2∆pa), with gc the light-matter coupling coefficient of the cavity. The light-

matter Hamiltonian describing the system after the light-field has been adiabatically

eliminated [21, 15] in the good cavity limit (κc � ∆pc) is: Heff = Hb +Had, where Hb

is the regular Bose-Hubbard (BH) Hamiltonian [101, 102],

Hb = −t0
∑
〈i,j〉

(b̂†i b̂j + h.c)− µ
∑
i

n̂i +
U

2

∑
i

n̂i(n̂i − 1), (1)

with t0 the nearest neighbour tunneling amplitude, U the on-site interaction and µ the

chemical potential. The operators b†i (b̂i) create (annihilate) bosonic atoms at site i, the

number operator of atoms per site is given by n̂i = b̂†i b̂i . The on-site interaction and

hopping amplitude terms are short-range local processes. The BH Hamiltonian contains
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the effective parameters forming the classical optical lattice [102]. The emergent effective

light-induced interaction is [15, 16],

Had =
∑
ϕ,ϕ′

∑
c

∑
p,q

(
γ̃D,Dϕ,ϕ′ (c, p, q)N̂ϕN̂ϕ′+γ̃

B,B
ϕ,ϕ′ (c, p, q)ŜϕŜϕ′+γ̃

D,B
ϕ,ϕ′ (c, p, q)[N̂ϕŜϕ′+Ŝϕ′N̂ϕ]

)
,

(2)

where

γ̃η,νϕ,ϕ′(c, p, q) =
|g̃pc|2

2

(
(Jpcη,ϕ)∗Jqcν,ϕ′

∆qc + iκc
+ c.c.

)
, (3)

with g̃pc = gcΩp/(2∆pa) where {η, ν} ∈ {D,B}. The sum over “p” ans “q” go over the

number of pumps and “c” goes over the cavity modes (for a multi-mode cavity/several

cavities). The couplings Jpcη,ϕ ∈ C, correspond to the possible values of Jpcij (Wannier

overlap integrals) [16, 15, 14, 74, 96, 95, 94] for each mode of the cavity system through

the inter-site amplitudes, labeled B, or through the site density, labeled D. These can

either be for a single mode cavity with one pump and one cavity or a multi-mode cavity,

and even multiple cavities and multiple pumps. These coupling constants are given by,

Jpcij =

∫
w(x− xi)u

∗
p(x)uc(x)w(x− xj)d

nx, (4)

where “i” and ”j” can be the same site for density coupling or be nearest neighbours for

bond coupling (inter-site densities), where uc,p(x) are the cavity(ies) and pump(s) mode

functions, typically travelling or standing waves. The w(x) are the Wannier functions

given by the classical optical lattice in the lowest band. The light induced “density” N̂ϕ

and “bond” Ŝϕ mode operators are such that:

N̂ϕ =
∑
i∈ϕ

n̂i, and Ŝϕ =
∑
〈i,j〉∈ϕ

(b̂†i b̂j + b̂†j b̂i ), (5)

The sums go over illuminated sites Ns and nearest neighbour pairs 〈i, j〉 that belong

to the light-induced atomic spatial mode ϕ. As it has been shown [16] the coupling

constants can be designed with great freedom by choosing the angle of incident light with

respect to the classical optical lattice plane and the cavity axis. The spatial structure of

light is useful as a natural basis to define these atomic modes, as the coupling coefficients

Jpcij can periodically repeat in space [14, 15, 16, 74, 75, 96, 94]. The atoms that belong to

a particular light-induced atomic mode scatter light with the same phase. Thus, one can

use the distribution of values of Jpcij , to define the light induced spatial atomic modes.

As the pump and cavity modes are external to the internal structure of the system

(the BH model), they provide a large set of independently tuneable parameters. This

allows to tailor the effective light-induced atomic mode interaction with an arbitrary

spatial profile. By addressing the density via the couplings JpcD,ϕ one can generate multi-

component density orders. Density wave orders correspond to different groups of atoms

for each light induced atomic mode. In the case of JpcB,ϕ one can generate dimer, trimers,

tetramers, etc. which will form as a consequence of the pattern induced to the matter-

wave coherences or “bonds”. These two kinds of orders will compete in addition with
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the superfluid order in the system and the Mott insulating phase of the BH model

as we will see. The current effective model disregards additional density dependent

Wannier functions modified dynamically by light, which are difficult to calculate self-

consistently. However the proper redefinition and self-consistent determination of these

functions won’t alter the essential structure of the effective Hamiltonian. This will

only renormalise the effective coupling strengths and parameters of the Bose Hubbard

model. Thus our results are applicable in a frame of reference with this renormalized

parameters. In addition, coupling between cavity modes has not been included, as these

processes have much smaller amplitudes compared to the pump modes.

3. Effective Hamiltonians

In contrast to previous works, here we focus in the large effective light matter interaction

where quantum fluctuations cannot be accounted for in mean-field theory regarding bond

order. Moreover, we will consider the interplay between density coupling and bond

order in the strong-coupling limit. To do this we will analyse the following Hamiltonian

corresponding to a single cavity and a single pump, where the incident light illuminating

from the side has been designed to scatter through the bonds and densities as a staggered

field (at 90◦ with respect to the cavity axis [14, 16, 94]) with components effectively tuned

by the couplings of the bond JB and densities JD,

Heff = Hb +
geff

Ns

[
J2
BB̂

2
− + J2

DD̂
2
− + JBJD(B̂−D̂− + D̂−B̂−)

]
, (6)

the effective interaction strength is geff/Ns ∼ γ̃ = ∆c|g̃|2/(∆2
c + κ2

c), which depends on

amplitude of the light pumped into the system and the light detunnings, Eq.(3). The

bond B̂− and density operators D̂− are:

B̂− =
Ns−1∑
i=0

(−1)i(b̂†i b̂i+1 + h.c.) and D̂− =
Ns−1∑
i=0

(−1)in̂i (7)

For ultracold atoms in an optical cavity in the adiabatic limit, cavity decay rates are

of the order of MHz. The effective interaction strength, geff , can be typically be made

of the same order of magnitude or larger than on-site interactions, |geff | & U ∼ t0 ∼
ER ∼ kHz [17], with ER the recoil energy. Note that the ratio t0/U can be tuned

via the classical optical lattice depth and/or Feshbach resonances[102]. Essentially the

sign of the light induced interaction can be chosen via the cavity-pump detunning ∆c

and the amplitude by the pump strength Ωp[14, 15, 16]. In addition, without loss of

generality, {JB, JD} ∈ [0, 1]. Depending on the lattice depth of the classical optical

lattice, e.g. the Bose-Hubbard Wannier functions and the choice of illumination, the

magnitude of the JB,D coupling constants can be tuned using real Wannier functions [94].

Beyond a gaussian ansatz this gives JB 6= 0 depending on the lattice depth of the

classical optical lattice. Typically for a lattice depth of 5ER (where the single band

approximation is valid) then JB ≈ 0.05| sin[(Σφ − ∆φ)/2] cos[(Σφ + ∆φ)/2]| while

JD ≈ 0.8| cos[(Σφ − ∆φ)/2] cos[(Σφ + ∆φ)/2]| with ∆φ = φ1 − φ0 and Σφ = φ1 + φ0.
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Figure 2: Effective light induced mode interactions Vϕ. (a) Bessel type potential,

the mode coupling constants have been chosen for the first R = 4 minima and

maxima. (b) Morse type potential. (c) The correspondence rule between lattice

points i and the light-induced modes ϕm, with m = 1, 2, 3, 4 for the mode

coupling coefficients in (a) and (b).

∆φ (Σφ) is the difference (sum) of phases between two crossed standing waves (with

phases φ0,1) pumped from the side at 90◦ with respect to the classical optical lattice

potential. The beams are arranged such that k0x = 0 and kx,1 = π/a, with a the lattice

spacing (typically a = λ/2 for a standing wave in the classical optical lattice). Therefore,

the ratio between the value of the two contributions can be adjusted arbitrarily, e.g for

JB/JD = 0.25 we have ∆φ ≈ 0.844π with Σφ = 0 for simplicity. Thus, any ratio between

the coefficients JD and JB is possible and can be modified in addition by changing the

classical optical lattice depth, maximal bond coupling is achieved by ∆φ = π/2 while

maximal density coupling is achieved by ∆φ = 0 with Σφ = 0. By increasing the depth

of the classical optical lattice the coefficient JB becomes smaller and it is basically

negligible for a lattice depth of 15 ER.

Moreover, we consider the previously unexplored scenario where via multiple

cavities or multiple pumps one can perform the quantum simulation of the following

light induced atomic mode interactions [16]:

• Bessel type potential, Vϕm = j0(π(xm − 1)), see Fig.2(a).

• Morse type potential, Vϕm =
[(

1− e−(m−2)
)2 − 1

]
/2, see Fig.2(b).

The function j0 is the zero order spherical Bessel function of the first kind and ϕm with

m ∈ [1, R] with R light-induced spatial atomic modes. xm − 1 are the locations of the

maxima and minima of j0(y) with y ∈ [0, 3]. The maximum amplitude of the interactions

has been chosen such that, max(Vϕm) ∼ 1, for simplicity. Morse type potentials are a

typical phenomenological tool to model effective molecular systems. The Bessel type
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potential we consider, shows an example of the flexibility of the construction with respect

to the degree of control that can be achieved via the synthetic light-induced atomic mode

interactions. The relationship with the pump and cavity coupling via inverse discrete

Fourier transforms can be found in general in [16]. Certainly other types of potentials

can be tailored with great flexibility depending on the quantum many-body system we

would like to simulate. For many cavity modes (multiple cavities/ multimode cavity)

we have,

Heff = Hb +
geff

Ns

∑
ϕ,ϕ′

V|ϕ−ϕ′|N̂ϕN̂ϕ′ , (8)

where the interaction depends on the mode distance |ϕ−ϕ′|. This kind of effective many-

body interaction is physically motivated to account for finite range effective interacting

potentials. For many pumps in a single mode cavity, we have,

Heff = Hb +
geff

Ns

∑
ϕ,ϕ′

VϕVϕ′N̂ϕN̂ϕ′ (9)

where the interaction depends on the position between light-induced atomic modes.

This is potentially useful for the simulation of biological systems and other hybrid

networks [61, 62, 63, 64]. Here in contrast to the many cavity mode case, the interaction

is position dependent and corresponds to the interaction between different branches,

channels or nodes in the network. Without loss of generality, we will consider the case

of R = 4 light-induced atomic modes, such that ϕm with m ∈ [1, 4] for simplicity. The

correspondence rules between light induced modes ϕm and lattice sites i is shown in

Fig.2(c) for 1D lattice with Ns = 8. In principle, the number of pump modes can be

arbitrarily increased by shining the light at different angles with respect to the cavity

axis in combination with beam splitters. We call our interactions synthetic, as they

are artificially designed by the choice of the spatial profile of the light pumped into the

system and the cavity modes [16]. The properties of the light pumped into the system

and the cavity parameters are external to the intrinsic properties of the atoms (t0 and

U) and easily tuned in the range of the atomic processes of the order of the recoil energy.

4. Order Parameters

Bond order occurs whenever dimerized structures appear in the ground state of

the Hamiltonian. These bosonic dimerised structures, akin to valence bond states

(VBS) [37], appear in the particular case where the structure of light-matter coupling

alternates sign in the inter-site amplitudes or bond between two neighbouring sites [14].

Concretely, the ground state of the system is such that in order to maximise light

scattering the inter-site coherences self-organise to minimise the energy. This can be

extracted from the ground state configuration via a function of the operator B̂−. In exact

diagonalisation, if 〈B̂−〉 = 0, it inherently implies a degenerate quantum superposition

(Schrödinger “cat-state”), if 〈B̂2
−〉 6= 0. Thus, a useful order parameter regarding bond-
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order can be defined as,

O2
B =

〈B̂2
−〉

N2
s

, (10)

akin to a staggered magnetisation, a bond order structure factor [49]. In the case when

OB 6= 0 there is imbalance between mater wave coherences in the ground state. This

is a manifestation of a broken time reversal symmetry in the ground state. This is

not necessarily coexisting with broken translational invariance, e. g. a ground state

with density wave order. It is worth noting that this order parameter will signal bond-

order whenever we are not in a MI [94]. Deep in the MI with exact diagonalization,

we have: O2
B|MI = 2(ρ + 1)ρ/Ns with ρ ∈ Z+, which in large Ns limit vanishes. For a

density wave insulator with maximal imbalance we have: O2
B|DW = 2ρ/Ns. In order

to tell the difference between a MI and a bond ordered state we will use the fact

that the on-site fluctuations ∆(ni)
2 = 〈n̂2

i 〉 − ρ2 are zero in the MI. Thus, we have

bond order when ∆(ni) 6= and OB 6= 0. When bond order emerges matter-wave

coherence patterns can be from a slight imbalance between matter-wave coherences,

e.g. 〈b̂†nb̂n+1 + H.c.〉 6= 〈b̂†n+1b̂n+2 + H.c.〉. Maximal phase difference in the coherences is

stablished when: 〈b̂†nb̂n+1 + H.c.〉 = −〈b̂†n+1b̂n+2 + H.c.〉. Maximal matterwave coherence

amplitude difference is stablished when 〈b̂†nb̂n+1 + H.c.〉 6= 0 and 〈b̂†n+1b̂n+2 + H.c.〉 = 0.

The typical matter-wave (MW) coherence patterns found with bond order in the one-

body reduced density matrix of sites (i, j) are:

• Partial MW amplitude imbalance:

ρ0 c̃ c c̃ c c̃ c c̃

c̃ ρ1 c̃ c c̃ c c̃ c

c c̃ ρ2 c̃ c c̃ c c̃

c̃ c c̃ ρ3 c̃ c c̃ c

c c̃ c c̃ ρ4 c̃ c c̃

c̃ c c̃ c c̃ ρ5 c̃ c

c c̃ c c̃ c c̃ ρ6 c̃

c̃ c c̃ c c̃ c c̃ ρ7



• Maximal MW amplitude imbalance:

ρ0 0 c 0 c 0 c 0

0 ρ1 0 c 0 c 0 c

c 0 ρ2 0 c 0 c 0

0 c 0 ρ3 0 c 0 c

c 0 c 0 ρ4 0 c 0

0 c 0 c 0 ρ5 0 c

c 0 c 0 c 0 ρ6 0

0 c 0 c 0 c 0 ρ7


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• Maximal MW phase difference imbalance:

ρ0 0 −c̃ 0 c 0 −c̃ 0

0 ρ1 0 −c̃ 0 c 0 −c̃
−c̃ 0 ρ2 0 −c̃ 0 c 0

0 −c̃ 0 ρ3 0 −c̃ 0 c

c 0 −c̃ 0 ρ4 0 −c̃ 0

0 c 0 −c̃ 0 ρ5 0 −c̃
−c̃ 0 c 0 −c̃ 0 ρ6 0

0 −c̃ 0 c 0 −c̃ 0 ρ7


for c̃ and c positive real constants, where each entry in the matrix corresponds to 〈b̂†i b̂j〉
for {i, j} ∈ 0, . . . , Ns − 1. Thus, distant matter-wave amplitudes are correlated. In a

perfect SF (U = 0, e.g. geff = 0), c = c̃ = ρi = ρ. Deep in the MI (t0 = 0, e.g.

geff = 0) ρi = ρ ∈ Z+, c = c̃ = 0. A pictorial representation is given in Fig.1. On the

other hand the matrix representing, the product of nearest neighbour coherences can be

constructed, a typical structure for bond-ordered states with maximal phase difference

between MW is the following:

α −β λ̃ −λ λ̃ −λ λ̃ −λ
−β α −β λ̃ −λ λ̃ −λ λ̃

λ̃ −β α −β λ̃ −λ λ̃ −λ
−λ λ̃ −β α −β λ̃ −λ λ̃

λ̃ −λ λ̃ −β α −β λ̃ −λ
−λ λ̃ −λ λ̃ −β α −β λ̃

λ̃ −λ λ̃ −λ λ̃ −β α −β
−λ λ̃ −λ λ̃ −λ λ̃ −β α


where α,β,λ, λ̃ are positive real constants. Here each entry corresponds to the product

of elements 〈ŝnŝm〉 with ŝm = (b̂†mb̂m+1 + H.c.). The alternating character of the sign of

its elements is characteristic of bond ordered states, e.g. for SF and SS all elements are

positive. Note that O2
B = (1/N2

s )
∑

n,m(−1)n+m〈ŝnŝm〉 (where we have used periodic

boundary conditions, e.g. b̂Ns = b̂0). In the large Ns limit we have for a bond ordered

state: O2
B|BO ≈ λ where λ ≈ −λ̃ > 0. In terms of the above matrix elements, deep in

the MI or DW insulators we have λ = λ̃ = β ≈ 0, thus O2
B|MI/DW = α/Ns for Ns � 1.

Moreover, the above order will compete and coexist with density wave order,

typically given by the structure factor [97],

O2
DW =

1

N2
s

∑
i,j

(−1)|i−j|〈n̂in̂j〉 ≡
〈D̂2
−〉

N2
s

. (11)

DW order breaks translation invariance in the ground state and signals a Z2 symmetry

between odd and even sites (Schrödinger “cat state” in the density configurations).
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Deep in a density wave insulator the bond order parameter is: O2
B|DW = 2ρ/Ns while

O2
DW = ρ2 is maximal.

We use the condensate fraction as an estimator of the SF fraction in the system,

fSF ∼ fc =
1

2Ns

Ns−1∑
i=0

〈b̂†i b̂i+1 + h.c.〉. (12)

Alternatively one could use the difference in energy with respect to a phase twist [100].

For an ideal SF, fSF = ρ.

At commensurate fillings, in addition to a MI the system can present hidden string

order, the string order parameter is given by,

OS = lim
|i−j|→∞

〈δn̂ieiθ
∑

i≤k<j δn̂kδn̂j〉 (13)

with δn̂k = n̂k − ρ and ρ the average density per-site (the filling factor). In order to

distinguish the MI and string ordered states, it is necessary to define the parity order

parameter,

OP = lim
|i−j|→∞

〈eiθ
∑

i≤k<j δn̂k〉 (14)

In combination with the other order parameters, the string and parity order parameters

allow to distinguish the emergence of a Haldane insulator (HI) [38, 98, 97]. While

ODW = 0, OP = 0, and fSF = 0, if OS > 0, with a gapped spectrum, the system is a

HI. If the spectrum is gapless (fSF 6= 0) or gapped (insulator, fSF = 0) and OS > 0,

OP = 0, then we have a type of VBS, a dimerised phase. For filling ρ = 1, θ = π,

otherwise θ needs to be determined with the help of additional methods [99].

If the system is in the SF state with coexisting bond order OB 6= 0, it is in the

superfluid dimer phase (SFD). The system has matter wave coherence patterns but

is homogenous in the density. The typical difference between the order in the ground

state for either OB =
√
|O2

B| or ODW =
√
|O2

DW | is shown in Fig.1. Note that whenever

ODW > OB the system will be in a DW phase either an insulator if the SF component

is zero or a supersolid phase (SS) if fSF 6= 0 . If ODW < OB and with SF component

different from zero the system will be in a supersolid dimer phase (SSD). In the SSD, the

system has density variation and matter wave coherence pattern with finite superfluid

fraction. Whenever the system is in the SS, SSD or SFD phases, the spectrum is gapless

as there is a finite SF component in the system. In addition, it can occur that the system

is in a bond insulator (BI) phase, where ODW = 0 and OB > 0 and the SF component

is zero at incommensurate fillings. Here the system, has phase pattern but there is no

SF fraction or DW order and it is not a MI. In BI, dimerised structures form the ground

state and it is homogenous in space. It can also happen that, we have a coexistence

insulating phase where, 0 < ODW ≤ OB, while the superfluid fraction is completely

suppressed, this is a BI+DW insulating phase. This phase is a dimer insulator akin

to VBS with density imbalance between components. For commensurate filling ρ = 1

the BI+DW phase presents OS 6= 0 and OP = 0. Thus bond ordered phases can be
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QP OB ODW OP OS ∆(n̂i) fSF
SF 0 0 0 0 6= 0 6= 0

SS 0 6= 0 0 6= 0 6= 0 6= 0

SSD 6= 0 6= 0 0 6= 0 6= 0 6= 0

SFD 6= 0 0 0 6= 0 6= 0 6= 0

MI 0 0 6= 0 0 0 0

DW 0 6= 0 0 6= 0 6= 0 0

BI 6= 0 0 0 6= 0 6= 0 0

BI+DW 6= 0 6= 0 0 6= 0 6= 0 0

Table 1: Relation between order parameters and quantum many-body phases (QP).

The criteria to distinguish in our finite size simulations has been relaxed to define DW,

SS with ODW > OB and SFD with OB � ODW . The discussion on several finite size

effects is in the main text.

gapped (BI) and gapless (SFD, SSD). SSD and SFD phases are bear similarities of RVB

states[54], being bosonic gapless ground states with dimerised structures. On the other

hand, BI states are similar to VBS, being gapped.

As finite size effects are considerable for small number of sites in the order

parameters, to circumvent this problem, we have used the fact that in the large t0/U

limit the system will tend to be a perfect SF. Thus, all other order parameters besides

fSF should approach zero. Therefore, the finite size spurious contribution in other order

parameters is eliminated by renormalising with respect to the perfect SF value (fSF in

the limit t0/U � 0). We subtract the SF fraction profile multiplied by the large t0/U

limit off-set due to finite size. Besides from this, some intermediate phases found will be

harder to observe as the number of sites increases, concretely: SFD, SSD and SS which

appear as the system moves from insulating states when t0/U = 0 to the ideal SF in

the limit t0/U � 1.

In table 1, we summarise the quantum many-body phases of the system and the

relation with the order parameters defined.

In what follows, we will constrain our discussion on the half-filled ρ = 1/2, and

integer filling ρ = 1 cases, while considering simulations for Ns = 8 and renormalized

order parameters as previously explained.

5. Results

5.1. Bond order vs Density wave order

In this section we will analyse the results from simulations performed using the effective

Hamiltonian (6).

At integer filling ρ = 1, the simplest case to understand is when there is only density

coupling (JD 6= 0 and JB = 0), as the density wave instability forms for negative geff .
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Figure 3: Order parameters at integer filling ρ = 1 for JB,ϕ = ±JB and

JD,ϕ = ±JD as a function of the tunneling t0/U and geff in units of U . Panels

(a-c): fSF SF fraction (yellow), OB bond order parameter (green), ODW density

wave order parameter (blue). Panels (d-e): OP parity order parameter (blue)

and |OS | string order parameter (orange). Parameters in (a), (d), (g), and (j)

show the system with JD 6= 0 and JB = 0. The SF-MI transition gets shifted

with respect to its geffJ
2
D = 0 value. Below geffJ

2
D < −U , DW, SS and SF

phases are supported by the system. Parameters in (b), (e), (h), and (k) show

JB 6= 0 and JD = 0. For large on-site interactions (t0/U small) the system

supports DW for geffJ
2
B > 0 and BI+DW for geffJ

2
B < 0. Parameters in (c),

(f), (i), (l) show JD 6= 0 and JB 6= 0 with JB/JD = 0.25, DW order and Bond

order compete. DW insulator is supported for geffJ
2
D > 0. Panels (g) to (l):

OB (green), ODW (blue), fSF (yellow) and on-site fluctuations ∆(n̂i) (red).

Panels (g),(h), and (i) correspond to geffJ
2
D,B/U = −4. Panels (j),(k), and (l)

correspond to geffJ
2
D,B/U = +4. Parameters in all panels are: Ns = 8 with

ρ = 1.

The system in addition to SF and MI states is able to support the emergence of DW

insulator and SS phases, see Fig.3 (a) and (d). The SF and MI exist for geffJ
2
D > −U

while the transition point shifts to higher values of t0/U as geffJ
2
D > 0 and smaller
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Figure 4: Panel (a) shows the system with JD 6= 0 and JB = 0, bond order is not

supported only DW (insulator and SS), MI and SF. Panel (b) shows JB 6= 0 and JD = 0,

DW and BI insulators are supported. SFD phase exists as intermediate phase between

DW and SF for geffJ
2
B > 0. Panel (c) shows JB 6= 0 and JD 6= 0 with JB/JD = 0.25,

the intermediate SS in (a) turns into SSD and SS. The SSD has partial matter wave

coherence imbalance between dimers. In (b) and (c) BI has maximal phase difference

between dimers. The intermediate SS (a), SFD (b), and SSD/SS (c) phases shrink as the

number of lattice sites Ns increases, SF takes over. Note that for geff = 0, the system

only has MI and SF, the thin black region is not visible in (b) and (c). Parameters in all

panels are the same as in Fig. 3.

.

values for geffJ
2
D < 0, compared to the system without cavity light. This occurs as

on-site fluctuations are enhanced because light scatters minimally being a quantum

optical lattice effect, not recoverable by simple mean-field analysis as corrections must

be included [14] .Once geffJ
2
D < −U , the system has a discontinuous transition to the

DW insulator state. While increasing the effective tunneling, the system goes from

DW through SS to SF smoothly. This can be seen in the behaviour of fSF and ODW ,

Fig.3(g). The insulating character of the MI is confirmed by the absence of string order

parameter OS = 0 away from the DW order phases, while having OP 6= 0, Fig.3(d),

while the onsite fluctuations are also minimal Fig.3(j).

When only dimer coupling occurs (JD = 0, JB 6= 0), the system for strong on-site

interactions t0/U � 1 supports DW for geffJ
2
B � 0 and for geffJ

2
B < 0 BI+DW states.

For geffJ
2
B > 0, the system evolves from DW to SF via an intermediate SFD phase as

tunneling increases. As geffJ
2
B � 0 the system goes from the BI+DW state the SF phase

as t0/U increases rather sharply, Fig.3(h). Complementarily, Fig.3(e), OS is different

from zero as SFD and BI+DW phases emerge. We have that OB > ODW 6= 0 and

fSF = 0, thus a BI+DW, a coexisting bond Insulating with density wave insulating

phase. This state is different from a SSD state as there is no SF component (the state

is gapped), and it is neither a MI, neither a HI. Summarising, the transitions from

the insulating phases towards the SF state are sharp for geffJ
2
B > 0 and continuous for

geffJ
2
B < 0. The OP smoothly decreases to zero as DW is approached for geff > 0, while

there is sharp change as geff < 0 in the BI+DW phase, where OP = 0. We consider this

as numerical evidence to support that the BI+DW phase is analogous to a gapped VBS
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Figure 5: Order parameters at half filling ρ = 1/2 for JB,ϕ = ±JB and JD,ϕ =

±JD as a function of the tunneling t0/U . fSF superfluid fraction (yellow), OB
bond order parameter (green), ODW density wave order parameter (blue), on-

site fluctuations ∆(n̂i) (red). For t0/U � 1, broken symmetry insulating states

states emerge. Competition between DW and Bond ordered phases gives rise to

stabilisation or suppression of DW order depending on the pump-cavity detunning

via geff . Parameters are: Ns = 8 with ρ = 1/2, (a) and (c): geffJ
2
D/U = −4, (b)

geffJ
2
B/U = −4; (d) and (f): geffJ

2
D/U = +4, (e) geffJ

2
B/U = +4; (a) and (d) JB = 0,

JD 6= 0; (b) and (e) JB 6= 0, JD = 0; (c) and (f) JB 6= 0, JD 6= 0 with JB/JD = 0.25.

state.

The analogy between dimer states in the cavity system and VBS states can be

traced back to the relationship between spin operators and bosonic operators via the

Schwinger mapping [103]. Thus, the bond operators with alternating sign coupling in

the bosonic system induce an analogous staggered field interaction. However, typically

in spin systems interactions are of local character. In contrast to this, our interactions

are global but not trivial, as they are structured. This produces a similar mechanism

for the formation of an anti-ferromagnetic like state. However, as we are considering

soft-core bosons the analogy is not complete to spins. The dimers in the system are

similar to the typical spin singlets of the original VBS [38]. The typical hardcore

bosonic representation of the Bose Hubbard Hamiltonian (limit U →∞) via Matsubara-

Matsuda mapping [104] (b̂†i → S+
i , b̂i → S−i and n̂i → Szi + 1/2) is:

Hb|HC ≈ −
t0
2

∑
i

(S+
i S
−
i+1 + S−i S

+
i+1)− µ

∑
i

Ŝzi (15)

which is an anisotropic Heisenberg model [103] while

Had|HC ≈
geff

Ns

(∑
i

[
JB
2

(−1)i(S+
i S
−
i+1 + S−i S

+
i+1) + JD(−1)iŜzi

])2

(16)

Now making the above contributions isotropic, only keeping the JB terms (JD = 0)
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and at fixed particle number we have:

Heff |HCS ≈ −
t0
2

∑
i

(Si · Si+1) +
geffJ

2
B

4Ns

[∑
i

(−1)i(Si · Si+1)

]2

(17)

where S = (Sx, Sy, Sz). On the other hand the AKTL Hamiltonian [37] is:

HAKLT = α
∑
i

(Si · Si+1)− αβ
∑
i

(Si · Si+1)2 (18)

Therefore, one can see (17) is a global relative to (18) from which our Hamiltonian is an

anisotropic relative without the hard core constraint formally. As such, some similarities

might be expected between their ground states.

When density coupling and bond coupling act simultaneously (JB 6= 0 and JD 6= 0,

with JB/JD = 0.25), the situation interpolates in between the above two limits. However

the additional bond-density coupling terms have strong effect even for small JB. Bond

ordering can take over the system behaviour instead of DW order, see Fig.3(c), (f), (i)

and (l). Interestingly, for large on-site interactions (small t0/U) and geffJ
2
D < 0, we find

that a state with both DW and bond order occurs while being insulating, the DW does

not destroy bond order. When we increase the effective tunneling for geffJ
2
D � 0, the

system smoothly transitions from the BI+DW state to the SF via a mixture of SSD and

SS phases. In contrast, when geff > 0 and t0/U = 0 the system is a DW insulating state.

The system transitions smoothly form this state one increases t0/U to the SF state via an

intermediate SFD phase. In general, bond order takes over and competes with DW order

as the ratio JB/JD increases for strong on-site interactions while smoothly transitioning

to the SF state as t0/U increases via SSD and SS (geffJ
2
D < 0) and superfluid dimer

phases SFD (geffJ
2
D > 0). In the current parameter range explored there is no indication

of a HI phase for ρ = 1. The phase diagram of the above cases is shown in Fig.4.

It follows to consider the emergent phases at the half filled case (ρ = 1/2). In the

system without cavity light, we only have SF phase as there is no gap in the excitation

spectra due to incommensuration for the homogenous system. However, even when

JB = 0 and JD 6= 0, the induced symmetry breaking by light will foster the formation

of insulators with broken translational and time reversal symmetry. As function of the

effective light matter strength for t0/U � 1 the system has a sharp transition from

a DW insulator (geffJ
2
D < 0) to a BI (geffJ

2
D > 0). In the limit of geffJ

2
D � 0, the

system smoothly goes from a DW insulator to the SS phase, Fig.5(a). In the opposite

limit (geff � 0), the system for strong on-site interactions is a BI. As t0/U increases,

the system smoothly reaches the SF state via an intermediate SFD phase, Fig.5(d).

Surprisingly, even with only density coupling, bond ordered phases arise in the large U

limit. This can be traced back to the fact that the one-body reduced density matrix has

the structure where maximal amplitude MW coherence occurs in this case. This is a

consequence of minimising the DW order and the fact that there is incommensuration.

Bond coupling (JB 6= 0 and JD = 0) at ρ = 1/2 has the effect of stabilising DW

ordered phases (DW and SS) when geffJ
2
B > 0. In contrast, the system supports BI+DW
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Figure 6: Panel (a) shows the system with JD 6= 0 and JB = 0, BI, SFD, DW, SS and

SF are supported. Bond ordered states (BI) and SFD occur with partial matterwave

coherence imbalance. Panel (b) shows JB 6= 0 and JD = 0 BI with coexisting DW is

supported. The BI+DW has maximal matterwave phase difference in dimers. Panel (c)

shows JB 6= 0 and JD 6= 0 with JB/JD = 0.25, the BI+DW insulator has maximal

matter-wave coherence imbalance but no phase difference. The SFD in all panels has

partial matter wave coherence imbalance between dimers. The intermediate SFD phase

shrinks as the number of lattice sites Ns increases. SS states in (a) and (c) have small

density imbalance. Parameters in all panels are the same as in Fig. 5.

.

phases for geffJ
2
B < 0 and strong on-site interactions. Even at incommensurate fillings,

and addressing through the bonds, the effect of cavity light is a suppression effect upon

the SF component. This leads to have a sharp transition from the BI+DW phase to the

SF state for geffJ
2
B � 0, Fig.5(b). For geffJ

2
B � 0, the transition from the DW insulator

to the SF state is smoothly connected via SS and later a SFD phase, Fig.5(e).

Similar to the case with only bond coupling, bond ordered phases take over in the

case of simultaneous addressing (JB/JD = 0.25). However, density coupling stabilises

DW order, while BI+DW phases disappear for geffJ
2
D � 0.The DW insulator takes over.

The large t0/U limit phase for geff < 0 is a SS and not a homogenous SF, Fig.5(c).The

opposite effect occurs in the limit of geffJ
2
D � 0, where instead DW ordered phases

are strongly suppressed. The state of the system changes from BI+DW to SF via an

intermediate SFD phase, Fig.5(f). The phase diagram of the cases considered at half-

filling is shown in Fig.6.

It is expected that SS phases will shrink as the number of sites increases for Fig.6 (a)

and (c). In general effects in the phase diagram when geffJ
2
D,B > 0 are a manifestation of

the quantum optical lattice potential induced by light to the atoms, as light is scattered

minimally [14]. The insulating phases (DW, MI) and intermediate phases that appear

geffJ
2
D,B > 0 are driven by quantum fluctuations.

5.2. Bond order and Synthetic Potentials

In this section we will study the results from simulations of effective Hamiltonians (8)

and (9). In the case where synthetic interactions via density coupling are considered,

the situation is qualitatively the same for filling ρ = 1 and either for many pumps (8)
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Figure 7: (a) Order parameters at integer filling ρ = 1 for synthetic

Bessel interaction with many cavity modes, as a function of the

tunneling t0/U and geff/U . fSF superfluid fraction (yellow), OB bond

order parameter (green), ODW density wave order parameter (blue).

(b) Phase diagram, the green region corresponds to SS. These are

qualitatively similar for multiple cavity modes, multiple pumps and

the single cavity single pump case but with a shifted critical geff for

the emergence of DW order. Parameters are: Ns = 8 with ρ = 1 and

R = 4 light-induced modes.

or many cavities (9) and either Bessel or Morse like potentials. There are slight changes

in critical points but overall the phase diagram can be summarised qualitatively in the

phase diagram for Bessel-like interactions with many cavities, Fig.7. For light-induced

many-body effective interaction strengths such that geff > gc, with gc ≈ −2.25U the

system is in the MI for small t0/U . The critical effective tunneling t0/U of the SF-

MI transition shifts to lower values with respect to the system without cavity light for

geff < 0, while for geff > 0 the MI is stabilised to larger critical t0/U . The situation

is very similar to the density coupling case in diffraction minima (JB = 0, JD 6= 0),

with a relevant shift in gc from gc ≈ −U to gc ≈ −2.25U . This can be attributed to

the additional mode dependency of the synthetic interaction with R = 4 modes. The

additional density modes suppress further the on-site fluctuations stabilising in a larger

region of phase space the MI state. For geff < gc, the density wave instability sets in

and competes with dimer order close to gc, OB ≈ ODW . As the interaction strength

is further decreased, the system condenses into a DW insulator for t0/U � 1, where

ODW > OB. When geff � 0 the system transitions smoothly to the SF phase via an

intermediate SS phase. Bond order is relevant just near the transition to DW ordered

states. The intermediate SS phase is suppressed faster as the number of sites increases

with respect to the case of Hamiltonian (6).

In contrast to unit filling, the half filled case (ρ = 1/2), offers intriguing behaviour.

In the case of light-induced synthetic interactions via cavity modes, we have that the

Bessel potential and the Morse potential have different insulating phases for geff � 0

and t0/U � 1, Fig.8(a) and (b). The Bessel potential supports a DW insulator that

smoothly transitions via a SS to a SF state. This is similar to the behaviour seen in
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Figure 8: Phase diagrams at half filling ρ = 1/2 for synthetic

interactions via cavity modes. . Panel (a) corresponds to a Bessel

like potential. Panel (b) corresponds to a Morse like potential. For

geff > 0 the phases supported by either potential are qualitatively the

same, favouring bond ordered phases for small t0/U . For geff < 0 and

t0/U � 1, DW is the ground state by the Bessel potential (a), while

bond order is stabilised in the Morse potential (b) leading to a BI+DW.

For both potentials DW appears for geff � 0. Intermediate SS phases

(blue) are shown in both plots. Parameters are: Ns = 8 with ρ = 1/2.

the diffraction minima coupling Fig. 6 (a). However, here the system reaches the SF

state and is not SS for large t0/U . In contrast, the Morse potential supports a BI+DW

phase, even though that here there are only density-density interactions. Different from

the above, the situation for geff � 0 is qualitatively similar in both potentials, Fig.8(a)

and (b). Here the system for t0/U = 0 is in a BI and a continuous transition occurs via

a very narrow intermediate SFD (not shown) eventually reaching the SF for t0/U � 0.

When light-induced interactions are constructed via pump modes Fig.9, a

qualitative similarity between phase diagrams for both potentials occurs with respect to

Fig.8. In general, we find suppression of bond order with respect to the cavity mode case,

the transition to the SF occurs at lower critical t0/U . In contrast to the cavity mode

case, the pump case is easier to implement experimentally requiring many pump beams

compared to a multi-mode cavity or many cavities and the behaviour is qualitatively

similar.

The difference in behaviour between the potentials can be traced to the staggered

like nature of the Bessel like potential and the smoother pattern given by the Morse

like potential. This combines with the position dependent interaction nature of the

many pump/cavity configuration, leading to the effects seen. In the case of Bessel like

potential, even though simulating a finite range, the effect in the system is dominated

by the staggered field like nature of its form, alternating coupling between density

modes. Thus, the results are similar to density coupling from the single cavity case

in the diffraction minima, a staggered density global interaction. In contrast to this,
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Figure 9: Order parameters at half filling ρ = 1/2 for synthetic

interactions via pump modes as a function of the tunneling t0/U .

Panels (a) and (c) correspond to a Bessel like potential. Panels (b) and

(d) correspond to Morse like potential. fSF is the superfluid fraction

(yellow), OB the bond order parameter (green), ODW the density

wave order parameter (blue) and on-site fluctuations ∆(n̂i) (red). For

geff < 0 the phases supported by either potential are qualitatively the

same, suppressing bond ordered phases for all t0/U . For geff > 0, bond

ordered phases are stabilized for small t0/U . Parameters are: Ns = 8

with ρ = 1/2, (a-b): geff/U = −4 and (c-d): geff/U = +4.

the effect of the Morse like potentials is manifest by stabilising bond ordered phases.

Importantly, in the Morse cases Fig.8(b) and 9(b) one can have BI+DW insulators with

density-density interactions. The BI phases for geff > 0 in all the different cases in

this section are driven by the quantum fluctuations induced by quantum optical lattice

potential, see the previous section.

6. Conclusions

In this paper we have shown the interplay between bond ordered states (bond insulators,

supersolid dimers and superfluid dimers), density wave ordered states (supersolid and

density wave insulators), superfluid and Mott insulators due to strong cavity induced

interactions in 1D, via exact diagonalization. We have shown numerical evidence to

support the identification of bond ordered states with valence bond states, via the

calculation of string and parity order parameters in states with bond addressing. We

have investigated the suppression and stabilisation of density wave ordered phases and

their competition with bond ordered phases due to different choices of synthetic light-

induced many-body matter interactions. We have found that using multiple cavity

modes and multiple pump modes, one can modify the behaviour of the supported

quantum many-body phases in the system. We have found that one can induce bond

ordering even by density addressing. In general, the interplay of the BH model with

the cavity induced interaction can change the nature of the quantum phase transitions
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that appear in the system. These can be either discontinuous or continuous depending

on the design of the spatial profile of the interactions, modifying the typical scenario

of the SF-MI transition (BKT type in 1D). We have shown the typical quantum many-

body phases the system can support and how do these compete as relevant experimental

parameters are changed and different geometries of light are chosen: tunneling, on-site

interaction and the effective light induced interaction strength. The interplay between

different order parameters demonstrates the connection between the designed light

induced interactions and the supported quantum many body-phases in the system. This

provides a rich landscape of phases to explore experimentally with intriguing properties.

Our results support the possibility to use synthetic many-body matter interactions for

the quantum simulation of analogous strongly correlated states related to quantum

magnetism from condensed matter. Our findings also suggest, the possibility to use

them in the study of the fermionic variant of our system to perform quantum simulations

of other interesting states such as, RVB states, which are relevant in mechanisms related

to the on set of Hi-temperature superconductivity in real materials.

Beyond ultracold atoms in cavities, our results can extended to other arrays of

naturally occurring, synthetic, hybrid systems or solid state devices with quantum

degrees of freedom with strong light-matter coupling in low dimensions. The results

in principle can be applied to systems of fermions, spins, molecules (including biological

ones) [105], atoms in multiple cavities [106], ions [107] and semiconductor [108] or

superconducting qubits [109]. The setup we study might aid in the design of novel

quantum materials, where the concepts that we describe can be exploited for the design

of properties of real materials and composite devices in solid state systems with strong

light-matter coupling. This opens a new chapter on what can be achieved by quantum

simulation via atomic systems.
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