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Swelling is a volumetric-growth process in which a porous material expands by spontaneous imbibition of
additional pore fluid. Swelling is distinct from other growth processes in that it is inherently poromechanical:
Local expansion of the pore structure requires that additional fluid be drawn from elsewhere in the material, or
into the material from across the boundaries. Here, we study the swelling and subsequent drying of a sphere
of hydrogel. We develop a dynamic model based on large-deformation poromechanics and the theory of ideal
elastomeric gels, and we compare the predictions of this model with a series of experiments performed with
polyacrylamide spheres. We use the model and the experiments to study the complex internal dynamics of
swelling and drying, and to highlight the fundamentally transient nature of these strikingly different processes.
Although we assume spherical symmetry, the model also provides insight into the transient patterns that form
and then vanish during swelling as well as the risk of fracture during drying.

I. INTRODUCTION

Swelling is a fundamental process in biology, engineering,
and the earth sciences: Tissues swell after injury, wooden
structures swell with humidity, and dry soils swell after rain-
fall. Macroscopically, swelling is the volumetric growth of
a porous material due to the spontaneous imbibition of addi-
tional pore fluid. Swelling is distinct from other growth pro-
cesses because of the fundamental role of hydrodynamics: Lo-
cal expansion of the pore structure is coupled to the evolving
fluid distribution, making swelling inherently dynamic and
poromechanical.

Swelling in polymeric gels is a classical topic in soft matter,
primarily from the perspective of chemical physics [1, 2]. The
mechanics of gels have attracted great interest more recently
in the context of hydrogels [3–6]. A hydrogel is a crosslinked
network of hydrophilic polymers saturated with water. Hydro-
gels can experience extremely large and reversible changes in
volume during swelling, which can result in complex changes
in shape and the development of surface patterns [3, 7–10].
Hydrogels have found a wide variety of practical applications;
for example, they are widely used for moisture absorption
and in soft contact lenses [11–13]. In biomedical engineer-
ing, they are used for drug delivery, wound dressing, and as
a scaffold for tissue engineering [12–15]. They have also
shown promise for use as sensors, actuators, and flow con-
trollers [16–18], and as a model system in soft granular mat-
ter [19–21].

In applications involving swelling, such as moisture ab-
sorption, drug delivery, and sensing and actuation, the pri-
mary design considerations are the degree of swelling and the
rate of swelling in response to various environmental stimuli.
The degree of swelling is an equilibrium property of a given
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gel in a given environment, and is now relatively well under-
stood [2, 22, 23]. The rate of swelling, in contrast, is an emer-
gent property of a gel-environment system that also depends
on the gel geometry through the transient kinetics and me-
chanics of swelling. The ability to model and tune the rate of
swelling in response to different stimuli is central to engineer-
ing design; for example, applications in actuation and flow
control rely on changes in size and/or shape during swelling
and are typically designed for a fast response, whereas con-
tact lenses should tend to preserve their size and shape and
should respond slowly in order to buffer the eye from sud-
den variations in ambient conditions. However, the transient
mechanics of swelling have received comparatively little at-
tention and remain poorly understood. For relatively small
volume changes, the dynamics of swelling have been stud-
ied using both simple linear models [24–30] and fully non-
linear models [4, 6, 31, 32], but no study has yet combined
the fully nonlinear and transient mechanics of swelling with
the extreme volume changes that are one of the most notewor-
thy, surprising, and useful characteristics of hydrogels. This
is due in part to the fact that transient phenomena with large
volume changes and strong poromechanical coupling are very
challenging from the perspective of computational mechanics.

Here, we focus on the simplest three-dimensional exam-
ple of extreme swelling: The swelling and subsequent drying
(de-swelling) of a hydrogel sphere (Fig. 1). Despite the ap-
parent simplicity of this problem, no model has yet shown
satisfying agreement with experiments in terms of the dynam-
ics of swelling and drying [33]. We address this problem
with a fully nonlinear model that combines the framework of
large-deformation poromechanics [34] with the theory of ideal
elastomeric gels [4, 22, 23]. By including only the essential
features of swelling, our approach allows for a clear and de-
tailed exploration of the transient poromechanics of swelling
and drying across a wide range of parameters; the resulting
spherically symmetric model is also well-suited to efficient
numerical solution, even for very large changes in volume and
strongly nonlinear constitutive behavior.
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FIG. 1. A polymeric hydrogel is a crosslinked network of polymer chains saturated with water. Swelling occurs due to the spontaneous
imbibition of additional water, stretching the polymer chains; drying or de-swelling is the reverse. Here we show the evolution of the mean
radius of beads with dry radius ad = 0.76 mm and fully swollen radius 6.4ad during (a) swelling and (b) drying with cartoons illustrating the
composition.

For both swelling and drying, we study the full transition
from one equilibrium state to another, comparing the macro-
scopic predictions of the model with a series of experiments.
We then use the model to study the detailed mechanics of
swelling and drying, highlighting the fundamental and strik-
ing differences between these two processes. We also de-
velop a novel model for evaporation-limited drying, and we
study the impact of an evaporation limit on the development
of strong tensile effective stresses during drying. Although
we assume spherical symmetry, the model also provides in-
sight into the transient patterns that form and then vanish dur-
ing swelling (Figs. 1a and 3c), as well as the risk of fracture
during drying.

The most important conclusion of our study is that swelling
and drying are inherently dynamic processes. Both the de-
velopment of patterns during swelling and the risk of fracture
during drying are transient phenomena that must be studied
with a truly dynamic model that accounts for the evolving het-
erogeneous water content.

II. POROMECHANICAL SWELLING MODEL

A gel is a mixture of fluid and solid, where the solid forms
a connected porous skeleton and the fluid occupies the pore
space. In a polymeric hydrogel, the solid is a crosslinked net-
work of polymer chains and the fluid is water. Fully swollen
hydrogels typically have a solid volume fraction of less than
1% (i.e., a volume swelling ratio of several hundred).

A. Ideal elastomeric gels

The swelling of a polymeric gel occurs through the spon-
taneous imbibition of additional fluid, which requires volu-
metric expansion of the polymer network to increase the pore
volume. This is driven by a strong chemical affinity between
the fluid and the polymer chains, such that the increase in fluid
content is associated with a decrease in the free energy of the
mixture. This decrease in free energy due to mixing is op-
posed by an increase in free energy due to elastic stretching of
the polymer network. Swelling reaches equilibrium when the
penalty due to further stretching precisely balances the benefit
due to further mixing. Formally, this motivates the assumption
due to Flory & Rehner [1, 35] that the nominal free-energy
density of the mixture F is the sum of a stretching contribu-
tion and a mixing contribution:

F = Fstretch(λ1, λ2, λ3) + Fmix(J). (1)

This is the Helmholtz free energy of the mixture per unit ref-
erence volume of dry polymer, where the principal stretches
λ1, λ2, and λ3 measure the relative change in linear dimen-
sion along the principal axes of the deformation, and the Ja-
cobian determinant J = λ1λ2λ3 measures the relative change
in bulk volume. We work in terms of principal quantities here
for clarity and simplicity; we provide the general version of
this theory for arbitrary deformations in Appendices A and B.

The nominal elastic free-energy density Fstretch accounts
for the stretching of the polymer chains and the nominal free-
energy density of mixing Fmix accounts for the chemical in-
teractions between the polymer chains and the fluid. The for-
mer depends on the full deformation field whereas the latter is
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assumed to be an isotropic function of the local composition,
as measured uniquely by J (see Appendices C and D). These
two contributions are assumed to be completely independent,
which is justified by the very low density of crosslinks, so that
the dominant chemical interactions are between the individual
monomers and the fluid molecules. These assumptions form
the basis for the theory of ideal elastomeric gels [4, 22, 23].

The mixing contribution Fmix measures the free energy of
a unit volume of dry polymer after mixing with a volume
J−1 of fluid, thereby increasing in bulk volume by a factor of
J . This ignores the elastic penalty of stretching the polymer
chains, and would therefore be the same for a polymer solu-
tion with no crosslinks. Fmix is typically derived from the
Flory-Huggins theory of polymer solutions [1, 36, 37], and
can be written

Fmix(J) =
kBT

Ωf

[
(J−1) ln

(
1− 1

J

)
− 1

α
ln J+χ

(
1− 1

J

)]
,

(2)
where kB is the Boltzmann constant, T is temperature, and
Ωf is the volume of fluid per fluid molecule in the unmixed
state. The first two terms in square brackets reflect the entropy
of mixing, where α is a measure of the volume per polymer
molecule relative to the volume per fluid molecule in the mix-
ture. The third term reflects the enthalpy of mixing, where χ
is the dimensionless interaction parameter.

The elastic contribution Fstretch measures the elastic free
energy of a unit volume of dry polymer that has been arbi-
trarily deformed, ignoring the mixing-related consequences of
imbibing or expelling fluid. Fstretch is typically derived by as-
suming a rubber-like (Gaussian-chain) elastic response in the
polymer network [35], and can be written

Fstretch(λ1, λ2, λ3) =
kBT

2Ωp

[
3∑
i=1

λ2i − 3− 2 lnλ1λ2λ3

]
,

(3)
where Ωp is the volume of polymer per polymer molecule
in the unmixed state. This model represents the entropic
penalty of deforming a crosslinked network of randomly ori-
ented polymer chains [38].

The increase in the total nominal free-energy density of the
mixture must be balanced by the external work done. This can
be written1

dF =

3∑
i=1

(
Jσi
λi

dλi

)
+
µf
Ωf

dJ, (4)

where σi are the principal true (Cauchy) total stresses within
the mixture and µf/Ωf is the chemical potential of the fluid
per unit mixture volume, which measures the amount of work
required to move a unit volume of fluid from the environment
to the mixture. Note that the chemical potential of the poly-
mer does not enter into this balance because the number of

1 Note that, here and elsewhere, we do not adopt the Einstein summation
convention.

polymer chains in the reference volume is fixed by definition.
Combining Eq. (1) with Eq. (4) and requiring that this remain
valid for any arbitrary deformation dλi, we arrive at a consti-
tutive expression relating σi to the deformation of the gel,

σi =
λi
J

∂

∂λi
Fstretch +

d

dJ
Fmix −

µf
Ωf

. (5)

We next use these definitions to develop a model for the gel
within the framework of poromechanics.

B. Large-deformation poromechanics

One classical approach to gel mechanics is based on the
theory of linear poroelasticity [26–28]. The resulting ad-hoc
models are limited to infinitesimal deformations, and typically
neglect the chemical physics of swelling. We generalize this
approach by combining the constitutive model for ideal elas-
tomeric gels (discussed above) with the framework of large-
deformation poromechanics.

The stretching contribution to the total stress is associated
with deformation of the polymer network. In poromechanics,
this is known as the Terzaghi effective stress σ′ [34],

σ′i ≡
λi
J

∂

∂λi
Fstretch =

kBT

Ωp

(
λ2i − 1

J

)
. (6)

This motivates defining the pore pressure p according to

p ≡ µf
Ωf

+ Π → µf
Ωf

= p−Π. (7)

The pore pressure p can then be interpreted as the mechanical
contribution to the chemical potential, as usual for an incom-
pressible mixture, and the osmotic pressure Π as the mixing
contribution,

Π ≡ − d

dJ
Fmix = −kBT

Ωf

[
1

J
+ ln

(
1− 1

J

)
− 1

αJ
+

χ

J2

]
.

(8)
Equation (5) can then be recast in the familiar form of Biot
poroelasticity [39],

σi = σ′i − p. (9)

The decomposition of total stress into effective stress and pore
pressure (Eq. 9), and of chemical potential into pore pressure
and osmotic pressure (Eq. 7), is a key distinction between our
approach and previous theories [4, 31, 32, 40]. This is central
to our interpretation of the mechanics of swelling, allowing us
to separate the roles of fluid and solid, and of mechanics and
chemistry. Conveniently, this model also reduces to standard
poroelasticity when the mixing contribution is negligible [34].

We next outline the main results for spherically symmetric
swelling. For clarity, we work strictly in an Eulerian reference
frame and in terms of true quantities. We provide in Appen-
dices A and B the general 3D form of the equations, as well
as a Lagrangian formulation for comparison.
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For a spherically symmetric deformation, the displacement
field is purely radial, us(x, t) = usêr, and the principal di-
rections are êr, êθ, and êϕ. The deformation gradient tensor
F is then diagonal, with principal stretches

λr =

(
1− ∂us

∂r

)−1
and λθ = λϕ =

(
1− us

r

)−1
(10)

and Jacobian determinant

J = λrλθλϕ = λrλ
2
θ. (11)

If the individual densities of the fluid and solid constituents
are constant and preserved on mixing, then conservation of
volume dictates that J must be related to the local volume
fraction of fluid φf (the fluid fraction or porosity) by

J =
1

1− φf
, (12)

where we have taken the reference state to be relaxed and dry
(J = 1→ φf = 0). Combining Eqs. (10)–(12), we have

φf =
1

r2
∂

∂r

(
r2us − ru2s +

1

3
u3s

)
, (13)

which can be inverted as

us = r −
(
r3 − 3

∫ r

0

r2 φf dr

)1/3

. (14)

Conservation of volume further dictates that

∂φf
∂t

+
1

r2
∂

∂r

(
r2φfvf

)
= 0 and (15a)

∂φs
∂t

+
1

r2
∂

∂r

(
r2φsvs

)
= 0, (15b)

where φs is the local volume fraction of solid, such that
φf + φs = 1, and vf and vs are the radial components of
the fluid and solid velocities, respectively. Summing Eqs. (15)
and integrating, we have that

φfvf + (1− φf )vs = 0, (16)

which is simply a statement that there is no net flux of mate-
rial through any cross-section (i.e., in order for fluid to move
inward, an equal volume of solid must move outward).

The local flux of fluid relative to the polymer network is
driven by gradients in the chemical potential, which accounts
for both mechanical and chemical contributions (p and Π, re-
spectively). This can be written in the form of Darcy’s law
(see Refs. [27, 41] and Appendix E),

φf (vf − vs) = −k(φf )

η

∂

∂r

(
µf
Ωf

)
, (17)

where k(φf ) is the deformation-dependent permeability of the
solid skeleton, which we take to be an isotropic function of the
porosity, and η is the dynamic viscosity of the fluid. We adopt
a common form for the permeability function [33, 42, 43],

k(φf ) = k0
φf

(1− φf )β
, (18)

with characteristic value k0 and parameter β. References [42],
[43], and [33] suggest β = 1.5, 1.85, and 1.75, respectively.
We follow Ref. [42], adopting β = 1.5.

Combining Eqs. (15)–(17), we arrive at a conservation law
for the porosity in terms of the chemical potential,

∂φf
∂t
− 1

r2
∂

∂r

[
r2 (1− φf )

k(φf )

η

∂

∂r

(
µf
Ωf

)]
= 0. (19)

The chemical potential is then related to the deformation of
the solid skeleton by combining Eqs. (7) and (9) with me-
chanical equilibrium, which requires that the divergence of the
total stress must vanish. For spherical symmetry, this leads to

∂

∂r

(
µf
Ωf

)
=
∂σ′r
∂r

+ 2
σ′r − σ′θ

r
− ∂Π

∂r
, (20)

where the radial and azimuthal effective stresses σ′r and σ′θ
(=σ′ϕ) are provided by taking i=r and i=θ, respectively, in
Eq. (6). With suitable initial and boundary conditions, we now
have an integro-differential system of equations in φf , µf , and
us constituting a nonlinear moving-boundary problem.

C. Scaling

We make the model dimensionless by choosing character-
istic time scale τ , length scale ad (the dry size), permeability
scale k0, and stress scale kBT/Ωp. We then have, for exam-
ple,

t̃ =
t

τ
, r̃ =

r

ad
, ã =

a

ad
, ũs =

us
ad
, k̃ =

k

k0
,

σ̃i =
σi

kBT/Ωp
, µ̃f =

µf/Ωf
kBT/Ωp

, Π̃ =
Π

kBT/Ωp
,

(21)

where the characteristic time scale is

τ =
ηa2dΩp
k0kBT

. (22)

The dimensionless model is then fully characterized by just
three parameters, which are the three material properties that
appear in the dimensionless osmotic pressure,

Π̃ = −Ωp
Ωf

[
1

J
+ ln

(
1− 1

J

)
− 1

αJ
+

χ

J2

]
. (23)

The dimensionless model is independent of the size of the
sphere, implying that swelling is a scale-free process [44]. We
continue from this point in dimensionless quantities, which
we denote throughout by an over-tilde.

D. Dry state and boundary conditions

In its fully dry state, the sphere is solid polymer with
φf,d = 0. The dry sphere has radius ad (ãd = 1) and therefore
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FIG. 2. Free swelling: Spatial distributions of (a) porosity φf , (b) radial effective stress σ̃′r , (c) pressure p̃, (d) displacement ũs, (e) azimuthal
effective stress σ̃′θ , and (f) chemical potential µ̃f (all dimensionless) at t̃ = 0 and then several times logarithmically spaced between t̃ = 10−6

and 10−1 (light to dark red). The arrows guide the eye through the time evolution, which is in many cases non-monotonic. These results are
for material properties Ωf/Ωp = 1.28× 10−4, α = 250, and χ = 0.4. The initial state is nearly dry (µ̃?f,0 = −5× 103 and ã0 = 1.067) and
the final state is fully swollen (µ̃?f = 0 and ãeq = 6).

contains a volume Vd = 4
3πa

3
d of dry polymer. We take the

polymer chains to be mechanically relaxed in the dry state, so
that

ũs,d = 0, (24a)
Jd = λr,d = λθ,d = 1, and (24b)
σ̃′r,d = σ̃′θ,d = 0. (24c)

Relative to this reference state, the sphere will swell to equili-
brate its internal chemical potential with that of the surround-
ing environment. The center of the sphere remains stationary,

ũs(0, t̃) = ṽs(0, t̃) = ṽf (0, t̃) = 0, (25)

and the outer boundary of the sphere is a material boundary,

ũs(ã, t̃) = ã(t̃)− 1, (26)

where ã(t) ≥ 1 is the radius of the sphere at time t̃. The outer
boundary is also unconstrained, so the normal component of
the total stress must vanish,

σ̃r(ã, t̃) = 0 → σ̃′r(ã, t̃) = p̃(ã, t̃). (27)

Note that, unlike for a macroscopic porous medium, we can-
not impose constraints on σ′r and p individually because the
solid and the fluid are mixed at the molecular scale. Lastly, the
chemical potential at the outer boundary must always match
the ambient value,

µ̃f (ã, t̃) = µ̃?f → p̃(ã, t̃) = µ̃?f + Π̃(ã, t̃), (28)

where µ̃?f → −∞ gives the fully dry state and µ̃?f = 0 gives
the fully swollen state. Note that Eqs. (27) and (28) together
imply that the pore pressure is discontinuous across r̃ = ã,
meaning that the pressure just inside the gel always differs
from the pressure in the environment.

E. Equilibrium state

When the sphere reaches equilibrium with its environment,
both the fluid and the solid must again be stationary, ṽf =
ṽs = 0, and the chemical potential must be uniform and equal
to the ambient value, µ̃f = µ̃?f . Equation (20) then provides a
nonlinear ordinary differential equation for ũs. For an uncon-
strained sphere (no external stresses), this is satisfied by the
isotropic solution

ũs(r) = [(ãeq − 1)/ãeq] r̃, (29a)

Jeq = λ3r = λ3θ = ã3eq, and (29b)

σ̃′r = σ̃′θ = (ã2eq − 1)/ã3eq. (29c)

The equilibrium radius ãeq is determined by the nonlinear al-
gebraic equation σ̃′r(ãeq) = Π̃(ã3eq) + µ̃?f . The result depends
only on µ̃?f and the three dimensionless material properties:
Ωf/Ωp, α, and χ (Eq. 23).

III. DYNAMICS OF SWELLING

A hydrogel sphere that is initially at equilibrium with ambi-
ent chemical potential µ̃?f,0 will swell when exposed to a new
chemical potential µ̃?f > µ̃?f,0. Swelling will stop when the
sphere reaches equilibrium with its new environment.
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A. Poromechanics of swelling

We consider a sphere that is initially at equilibrium with
air of relative humidity RH ≈ 0.6, for which the sphere is
nearly dry. The chemical potential in this initial state is then
µ̃f (r̃, 0) = µ̃?f,0 = (Ωp/Ωf ) ln(RH). At t̃ = 0+, the sphere is
suddenly immersed in water, for which µ̃?f ≈ 0 � µ̃?f,0. The
final state will be a new equilibrium state at which µ̃f (r̃, t̃)→
µ̃?f . We study the dynamics of this transition numerically us-
ing a finite-volume method with an adaptive grid and explicit
time integration (see Appendix F). Typical results are shown
in Fig. 2.

The displacement ũs is strictly positive, meaning that all
material points move strictly radially outward from their ini-
tial positions throughout the swelling process (Fig. 2b). How-
ever, there is also a positive and increasing gradient in dis-
placement from the center to the outer edge, indicating that
material points near the outer radius move outward earlier and
further than those closer to the center. This is indicative of
strongly nonuniform volumetric expansion in a spherical ge-
ometry. Accordingly, we find that the porosity φf near the
outer boundary increases sharply at early times as the dry gel
on the outside rapidly imbibes water (Fig. 2a). This rapid
swelling of the outer region is inhibited by its attachment to
the comparatively unswollen core, leading to a strongly ten-
sile radial effective stress in the outer region that relaxes as
the swelling process proceeds inward (Fig. 2b).

The pore pressure just inside the gel must exceed the ambi-
ent pressure by the osmotic pressure throughout the swelling
process, and at equilibrium (p̃(ã, t̃) = Π̃(ã, t̃) from Eq. 28).
Fluid flows into the gel from the environment despite this
larger-than-ambient pore pressure because flow is in the di-
rection of decreasing chemical potential µ̃f , and the chemical
potential decreases monotonically toward the center. This gra-
dient becomes gentler as the chemical potential throughout as
the gel increases, equilibrating with the ambient value.

The effective stresses everywhere are strictly positive (ten-
sile) throughout the swelling process since the polymer
chains are being stretched to accommodate additional pore
fluid (Fig. 2b,e). The mechanical support for this stretching
is provided by the large pore pressure (Fig. 2c). The gel be-
haves in this sense like an inflating balloon, with pressure in
the fluid balancing elastic stretching in the solid, the distinc-
tion being that this is a bulk phenomenon within the gel.

Although the azimuthal effective stress σ̃′θ is tensile every-
where, the azimuthal total stress σ̃θ is strongly compressive in
the outer region where the pore pressure far exceeds the ten-
sile effective stress. This reflects the fact that the outer region
is imbibing fluid and trying to grow while being bonded to the
unswollen inner region.

B. Swelling experiments

To study swelling experimentally, we submerge dry poly-
acrylamide hydrogel beads (Educational Innovations) in a
container of water (Volvic or EMD Millipore) and photograph
them at regular time intervals using a digital camera. Via im-

age processing, we then extract the average radius of the bead
and the number of lobes around the circumference, both in the
plane of the image (Fig. 3).

We show the time evolution of the average radius, a/ad,
in Fig. 3a for three different beads. To compare these results
with the model, we need to determine the three material prop-
erties α, χ, and Ωf/Ωp, as well as the dry size ad for each
bead. The material properties are unknown and difficult to
measure directly. For all three beads, we adopt α = 250
and χ = 0.4, similar to values used for similar materials
in previous studies [33]. We further assume RH = 0.6 in
the initial state. We can then calculate the dry sizes of the
beads, which are essentially independent of Ωf/Ωp (see Ap-
pendix G). Finally, we use Ωf/Ωp as a fitting parameter to
match the final equilibrium size of each bead, which leads to
Ωf/Ωp ∼ 1.09 × 10−4 with a variation between beads of
roughly ±7%. Note that variation in material properties has
been noted previously, even within the same batch [44]. The
dimensionless swelling problem is then fully specified.

To plot the model results against dimensional time, we need
to calculate the characteristic time scale τ (Eq. 22). To do
so, we take Ωf = 2.99 × 10−29 m3, η = 10−3 Pa s, kB =
1.38 × 10−23 J K−1, and T = 295 K. The final quantity in
the time scale is the characteristic permeability k0; we choose
the value for which the model best matches the experiment,
k0 = 8.0× 10−20 m2. This value is again similar to that used
in previous work [33, 42]. We use this value for all beads.
The associated characteristic times are τ ∼ 4.5×105 s, with a
variation of about 20% due to the slightly different dry sizes.
Having fitted the final radius and calculated the time scale, the
model provides a good qualitative and quantitative match with
the data. The number of unknown parameters is sufficiently
large that no particular set of values can be said to provide a
unique match, but these values provide a useful comparison.

The inset of Fig. 3a highlights the early-time evolution, in-
dicating a power-law growth of the form (a/ad − 1) ∝ t0.45,
suggesting that swelling is dominated by diffusion-like trans-
port of water into the gel at very early times. The model also
follows a power law at early times, but with an exponent closer
to 0.38. The discrepancy may be due to the surface instability,
which leads to a large change in the surface area of the bead
and may fundamentally change the dynamics of swelling.

Other than the extreme increase in volume, the most strik-
ing aspect of swelling is the development and evolution of the
lobe-like surface pattern, a well-known phenomenon [3, 7, 8].

C. Transient surface instability

Interfacial growth has long been linked to pattern forma-
tion [45–47]. More recently, volumetric growth under fixed,
external constraints has attracted attention due to its likely
role in developmental morphogenesis [48–51]. In swelling,
the fluid content provides an evolving internal constraint that
can lead to the formation of both steady and transient pat-
terns [3, 7–9].

For a bead of initial radius ∼1.5 mm, the swelling process
takes about 5 h (Fig. 3c). During this time, the surface of the
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times, as indicated, where the initial radius is ad ≈ 1.5 mm and the final radius is ∼6.7ad.

bead exhibits a transient pattern that evolves from small-scale
to large-scale features through a coarsening process where
neighboring lobes grow and merge (Fig. 3b). Small-scale sur-
face roughness emerges and then rapidly develops into a rela-
tively uniform tiling of hexagonal lobes (Fig. 3c, 13–52 min).
This pattern transitions to a randomly oriented network of
folds or wrinkles at later times (Fig. 3c, 52–201 min), and
these ultimately merge and fade back into a smooth spherical
surface (Fig. 3c, 380 min). The bead then continues to grow
smoothly until reaching its equilibrium size.

As described in the previous section, swelling is character-
ized by a rapidly growing outer shell that is constrained by a
relatively unswollen inner core (see Appendix I). The shell
is soft relative to the comparatively unswollen core, and the
surface pattern has been attributed to the development of com-
pressive azimuthal stress in the shell due to its attachment to
the core [3]. We have provided quantitative evidence for this
compressive stress (Fig. 2b,e and Appendix H), which is ul-
timately a result of the strongly heterogeneous fluid content
in the bead at early times. The fact that the lobes result from
a mechanical constraint implies that they would disappear if
the constraint were removed; indeed, we find that the lobes
disappear locally when a lobed bead is sliced with a blade.
The fact that the lobes result from heterogeneous water con-
tent further implies that the lobes would gradually vanish if a
partially swollen bead were removed from water, allowing the
water content to equilibrate within the bead; we have verified

this experimentally.
The wavelength of the lobes is roughly proportional to the

thickness of the soft shell, which is the relevant length scale
for the instability [8]. However, this is not as simple as a com-
pressed soft layer bonded to a rigid substrate [49, 51–53]; it
is a single material with a continuous stiffness distribution,
where the thicknesses and stiffnesses of both layers, as well
as the compressive total stress that drives the instability, all
evolve with time. This suggests that the instability cannot be
understood in isolation from the dynamics of swelling.

IV. DYNAMICS OF DRYING

In hydrogels, swelling is reversible. However, the reverse
process—de-swelling or drying—has received little attention.
We now consider the fate of a fully swollen hydrogel bead
that is suddenly removed into air. The bead will subsequently
shrink until it reaches equilibrium with its new environment.

A. Poromechanics of drying

To illustrate the physics of drying, we consider the reversal
of the swelling process shown in Fig. 2 for an identical sphere
(same size and material properties). The sphere is initially
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and 10−3 (light to dark red). These results are for the same material properties used in Fig. 2, but the ambient conditions and the initial and
final states are precisely reversed. The arrows guide the eye through the time evolution, which is strikingly different from swelling (cf. Fig. 2).

fully swollen (ã0 = 6 for µ̃?f,0 = 0) and, at t̃ = 0+, it is
suddenly removed to a dry environment with corresponding
ambient chemical potential µ̃?f � µ̃?f,0, which provides the
incentive for drying. The final state will be a new equilibrium
state in which the sphere is nearly dry (ãeq = 1.07 for µ̃?f =

−5× 103). We solve the problem numerically, as before, and
typical results are shown in Fig. 4.

We find that the transient evolution during drying is strik-
ingly different from swelling, despite the fact that the ambient
conditions and the initial and final states are precisely reversed
from swelling. This is a signature of the nonlinearity of large
deformations—for small deformations, drying is essentially a
mirror image of swelling (see Appendix K).

Drying propagates inward over time as a sharp drying front.
Behind (outward of) this front is a thin outer region in which
the polymer chains are in strong azimuthal tension (Fig. 4e).
Ahead of (inward of) this front is a quiescent core in which
everything except the pressure remains at its initial value un-
til the front arrives. The pressure ahead of the front rises
uniformly and monotonically as the front progresses inward
(Fig. 4c). This reflects the fact that the fluid within the gel is
being squeezed by the tight and contracting outer shell—the
elevated pressure is the mechanical response to this squeez-
ing, providing the outward force that supports the tensile az-
imuthal stress in the shell. Once the drying front arrives at the
center, all quantities decay smoothly toward their final values.

B. Drying experiments

To study drying experimentally, we remove fully swollen
hydrogel beads into air and photograph them at regular time

intervals using a digital camera. Macroscopically, the most
striking aspect of drying is the lack of a surface instability—
the gel remains smooth and spherical throughout the drying
process. This observation is supported by the model, which
shows azimuthal tension rather than compression in the outer
layer of the gel. Other authors have observed patterns during
de-swelling in gels experiencing a sharp chemically or ther-
mally induced phase transition (e.g., [44, 54, 55]). In our sys-
tem, swelling and de-swelling are driven by sudden changes in
the ambient chemical potential, which leads to a smooth evo-
lution of the gel structure, and it is not entirely surprising that
this leads to qualitatively different behavior. We do not con-
sider thermally induced swelling here since our experiments
are approximately isothermal, but it can be readily introduced
by adopting χ = χ(T ) [5].

We plot the time evolution of the average radius for three
beads in Fig. 5a, and we find that this decreases roughly lin-
early with time in all cases. To explain this observation, we
consider the evolution of the drying flux Fd, which is the flux
of water exiting the bead at the surface. Conservation of vol-
ume dictates that this must be given by

Fd ≡ −
1

4πa2
d

dt

(
4

3
πa3
)

= −da

dt
→ F̃d = −dã

dt̃
(30)

We can therefore calculate Fd directly from the experimental
measurements and from the model (Fig. 5b). In the absence
of other constraints, the drying flux evolves naturally with the
rate of internal water transport to the surface of the bead. We
refer to drying under these conditions as “free drying”.

We find that free drying is much faster than swelling.
Swelling is resisted by the elastic stress in the polymer chains,
which must be stretched to expand the pore space; drying,
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in contrast is accelerated by the relaxation of elastic stress in
the polymer chains, which helps to squeeze water out of the
bead. For the beads shown Fig. 5, the model predicts that these
beads would dry completely in a matter of minutes under free-
drying conditions (see Appendix M), but our experiments take
∼15 h. This demonstrates clearly that the experiments are not
in a state of free drying.

The drying flux in the experiments can also be constrained
externally by the rate of water transport away from the sur-
face of the bead since residual water will shield the bead from
the true ambient chemical potential. In our experiments, this
water transport occurs by evaporation. The linear decrease of
the radius with time suggests that the drying flux due to evap-
oration is roughly constant. To account for this constraint in
the model, we assume that ambient conditions lead to a maxi-
mum evaporation rate F ?d . When the natural drying rate Fd(t)
would otherwise exceed F ?d , we assume that excess moisture
accumulates on the outside of the bead or in the air, shield-
ing the bead from the true ambient chemical potential µ?f . We
impose this as a constraint by dynamically adjusting µ?f to en-
sure that Fd(t) ≤ F ?d . Measuring F ?d from our experiments,
we find that this model is indeed able to reproduce the dynam-
ics of evaporation-limited drying (Fig. 5a,b).

We use the model to study evaporation-limited drying in
more detail, presenting results for several values of F ?d in
Fig. 6 (see also, Appendix L). For finite F ?d , drying of a
swollen bead takes place in two stages. At early times, the ra-
dius of the bead decays linearly with time (Fig. 6a). The slope
of this linear regime is controlled by F ?d , as evidenced by the
plateau in the flux at early times (Fig. 6b). We show in the in-
set of Fig. 6b the values of the flux at t = 0 as a function ofF ?d .
At later times, the radius decreases more slowly and eventu-
ally saturates to an equilibrium state (Fig. 6a). The crossover

times for the various values of F ?d are marked on Fig. 6 as
vertical dashed lines. Physically, this transition can be un-
derstood as a crossover between an early regime where dry-
ing is limited by water transport away from the bead, so that
the drying dynamics are controlled by the ambient conditions
through the value of F ?d , to a late regime where drying is lim-
ited by water transport within the bead. As the bead dries, the
porosity field becomes increasingly heterogeneous (Fig. 4c).
In particular, its outermost layer shows a very low porosity
compared to its center. As the porosity decreases, so does the
typical pore size. Thus, it becomes increasingly hard for water
molecules to reach the surface. We find evidence of this in the
agreement between the crossover time scale measured from
Fig. 6b and the time at which the porosity reaches its equilib-
rium value at the surface of the bead, as shown on Fig. 6c.

C. Fracture during drying

Evaporation-limited drying involves a competition between
water transport within the bead and water transport away from
the bead. In free drying and for large F̃ ?d , water initially
escapes the surface of the bead much faster than it can dif-
fuse through the pore structure and the water content becomes
highly heterogeneous. This leads to large internal tensile
stresses with a maximum value close to the surface, and this
maximum stress increases with F̃ ?d . For strongly limited dry-
ing (small F̃ ?d ), the water content within the bead is less het-
erogeneous because the water has more time to redistribute.
At very low values of F̃ ?d , the water content within the bead is
nearly homogeneous and drying can be captured with a quasi-
static model (see Appendix J). We plot the time evolution
of the maximum azimuthal stress within the bead max r{σ̃′θ}
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for various values of F̃ ?d in Fig. 6d. This maximum occurs at
t = 0 for large F̃ ?d , but decreases and then shifts to later times
as F̃ ?d decreases.

We plot the overall maximum azimuthal stress during dry-
ing max r,t{σ̃′θ} as a function of F̃ ?d in Fig. 7. The overall
maximum stress increases with F̃ ?d from a minimum value in
the quasi-static limit (max r,t{σ̃′θ} = 0.385 for F̃ ?d � 102)
to a maximum value in the free-drying limit (max r,t{σ̃′θ} =

29.8 for F̃ ?d > 1.2× 105). The curve has a noticeable discon-
tinuity in its slope near F̃ ?d = 5 × 104, to the right of which
the overall maximum stress occurs at t = 0 and to the left
of which this occurs at later times. For free drying, the ini-
tial evaporation rate is F̃d(0) ≈ 1.2 × 105 (Fig. 6b), and this
then grows to a maximum value of F̃d ≈ 1.5 × 105 before
declining monotonically to zero. For the range 1.2 × 105 <
F̃ ?d < 1.5 × 105, F̃d(0) is then insensitive to F̃ ?d since dry-
ing is not limited by evaporation until F̃d(t) reaches F̃ ?d . As
a result, the overall maximum stress jumps to its free-drying
value near F̃ ?d = 1.2 × 105, which is in the range where the
overall maximum stress occurs at t = 0 and the initial drying
behavior is not limited by evaporation. Drying is completely
free for F̃ ?d > 1.5 × 105. As a consequence, a plateau de-

velops in the overall maximum stress for F̃ ?d > 1.2 × 105,
and this plateau takes the value corresponding to free drying.
The resulting range of stresses spans two orders of magni-
tude and can readily exceed the typical fracture stress of hy-
drogels (Fig. 7). Although our drying experiments are well
below the fracture threshold (cf., Figs. 5 and 7), we have ver-
ified experimentally that accelerated drying can indeed result
in fracture. A detailed experimental investigation of drying-
induced fracture is beyond the scope of the present study, but
will be the subject of future work. Fracturing due to the de-
velopment of heterogeneous water content is also well known
as a pattern-forming process in drying suspensions [56, 57].

V. CONCLUSIONS

Hydrogels are remarkable porous materials that can exhibit
extreme but reversible changes in volume by imbibing or ex-
pelling hundreds of times their own weight in water in re-
sponse to external stimuli. Hydrogels have great potential in
applications ranging from sensing to drug delivery, and are al-
ready widely used in applications such as moisture absorption
and soft contact lenses. A clear understanding of the dynam-
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ics of swelling and drying is essential for engineering design,
from optimising the rate of drug release to avoiding crack-
ing in reusable sensors or actuators, but the vast majority of
previous work on gels has focused on their equilibrium chem-
ical physics, or has been limited to relatively small volume
changes.

Beginning with the theory of ideal elastomeric gels, we
have provided a concrete poromechanical interpretation for
swelling and drying by introducing the classical Terzaghi de-
composition of total stress into effective stress and pore pres-
sure. We have provided a detailed exploration of the internal
mechanics of these processes, as well as a quantitative com-
parison between experiment and theory for the dynamics of
swelling and drying, with the gel increasing or decreasing in
volume by a factor of about 200. In doing so, we have high-
lighted the striking and transient differences between swelling
and drying. An important implication of our results is that
both the compressive total stresses during swelling and the
tensile effective stresses during drying can be minimized by
swelling or drying slowly, as demonstrated by our quantitative
investigation of the role of external constraints on the drying
rate and their implications for fracturing during drying.

This study is an important step toward understanding the
transient mechanics of swelling and drying. In particular, a
clear direction for future work is the exploration of swelling
and drying in 3D, which would allow for other geometries and
for capturing the elastic instability. We highlighted the role
of the evaporation rate on the risk of fracture during drying,
but much is left to explore in terms of the other parameters
of the model. For example, the impact of different solvents
and the presence of other solutes are central to applications in
biomedical engineering. The framework described here will
also be useful for understanding swelling driven by other en-
vironmental stimuli, such as temperature, with relevance to
biological processes and industrial applications.
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Appendix A: Swelling in an Eulerian frame

In an Eulerian frame, it is natural to work with so-called
true quantities, which measure the current stresses, fluxes, etc.
acting on or through the current (deformed) areas or volumes.
For example, the true porosity φf measures the current fluid
volume per unit current total volume. The solid displacement
field is

us = x−X(x, t), (A1)

where x is the Eulerian (spatial) coordinate and X(x, t) is the
reference position of the material that is currently at position
x. We define the deformation gradient tensor F through its
inverse,

F−1 = ∇X = I−∇us, (A2)

where I is the identity tensor. The porosity is related to the
Jacobian determinant J via

J = detF =
1

1− φf
, (A3)

where we assume that the fluid and solid constituents are indi-
vidually incompressible and that the reference state is relaxed
and dry (us = 0 → σ′ = 0 , φf = 0). Continuity requires
that

∂φf
∂t

+ ∇ · (φfvf ) = 0 and (A4a)

∂φs
∂t

+ ∇ · (φsvs) = 0, (A4b)

where vf and vs are the fluid and solid velocities and the true
flux of fluid through the solid skeleton is (see Appendix E)

wf = φf (vf − vs) = −k(φf )

ηΩf
∇µf . (A5)

In the absence of body forces, mechanical equilibrium re-
quires that

∇ · σ = 0, (A6)

where the true total stress σ is related to the true effective
stress σ′ and the pore pressure p via

σ = σ′ − pI. (A7)

Finally, the chemical potential µf is given by

µf
Ωf

= p−Π (A8)

and the general expression for the Gaussian-chain constitutive
law is [22]

Jσ′ =
kBT

Ωp

(
FFT − I

)
. (A9)

Appendix B: Swelling in a Lagrangian frame

In a Lagrangian frame, it is natural to work with so-called
nominal quantities, which measure the current stresses, fluxes,
etc. acting on or through the reference (relaxed) areas or vol-
umes. For example, the nominal porosity Φf measures the
current fluid volume per unit reference total volume, and is
related to the true porosity via Φf = Jφf . We denote the
gradient and divergence operators in the Lagrangian coordi-
nate system by grad(·) and div(·), respectively, to distinguish
them from the corresponding operators in the Eulerian coor-
dinate system. The solid displacement field is

Us = x(X, t)−X, (B1)

where X is the Lagrangian (material) coordinate and x(X, t)
is the current position of the material associated with reference
position X. The deformation gradient tensor is then

F = grad(x) = I + grad(Us). (B2)

The nominal porosity is related to the Jacobian determinant
by

J = detF = 1 + Φf . (B3)

Continuity requires that

∂Φf
∂t

+ div (Wf ) = 0, (B4)

where Wf is the nominal flux of fluid through the solid skele-
ton,

Wf = −JF−1F−T k(φf )

ηΩf
grad(µf ). (B5)

Mechanical equilibrium requires that

div(s) = 0 (B6)

where the nominal total stress s is related to the nominal ef-
fective stress s′ and the pore pressure p via

s = s′ − JF−Tp, (B7)

where

s = JσF−T and s′ = Jσ′F−T. (B8)

The chemical potential is again given by

µf
Ωf

= p−Π. (B9)
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Appendix C: Composition, porosity,
and free energy of mixing

The free energy of mixing Fmix is typically taken to be a
function of the true number density of water molecules nf , or
that of polymer molecules np (number of molecules per unit
volume of mixture). These densities can then be related to
the porosity φf , which measures the volume of fluid per unit
volume of mixture,

φf = Ωfnf = 1− Ωpnp (C1)

where Ωf and Ωp are the volume per molecule of water and
polymer, respectively, in their unmixed states. It is typically
assumed that these volumes are unchanged upon mixing and
deformation. Recalling that φf is related to the Jacobian de-
terminant J via Eq. (A3), we have that

J =
1

1− φf
=

1

1− Ωfnf
=

1

Ωpnp
. (C2)

The local chemical composition is therefore uniquely charac-
terized by φf or J . Note that the nominal number densities
Nf and Np (number of molecules per unit reference volume
of dry polymer) are related to the true number densities via
Nf = Jnf and Np = Jnp.

Appendix D: Flory-Huggins free energy

For a polymer solution, the classical Flory-Huggins free
energy of mixing per unit reference volume can be writ-
ten [36, 37]

Fmix = J
kBT

Ωf

[
φf lnφf +

1

α
φs lnφs + χφfφs

]
, (D1)

where φs ≡ 1− φf is the true solid fraction. The prefactor J
converts the free energy per unit current volume to the free en-
ergy per unit reference volume. The first two terms in square
brackets reflect the entropy of mixing, where α is a measure of
the volume per polymer chain relative to the volume per fluid
molecule in the mixture. The third term in square brackets
reflects the enthalpy of mixing, where χ is the dimensionless
interaction parameter. It is straightforward to rewrite this ex-
pression in terms of J .

Although the two parameters α and χ have meaningful
physical interpretations, these are typically used as fitting pa-
rameters to account for the various approximations embedded
in this theory [e.g., 22, 23, 33].

Appendix E: Transport law

The true flux of fluid through the solid skeleton is often
modelled as a diffusive process driven by gradients in chemi-
cal potential,

wf = φf (vf − vs) = − D(φf )

kBTΩf
∇µf , (E1)

where kB is the Boltzmann constant, T is the absolute tem-
perature, and D(φf ) is the effective diffusion coefficient. The
effective diffusion coefficient is, in general, a function of the
local composition, as measured by φf . From the perspective
of chemical kinetics, this can capture linear diffusion (Fick’s
law) by taking D(φf ) = D0, where D0 is a constant, or type-
II diffusion with a flux proportional to the local volume frac-
tion of fluid by taking D(φf ) = D0φf . From the perspec-
tive of flow through porous media, this can be reinterpreted as
Darcy’s law by taking D(φf ) = (kBT/η)k(φf ), where η is
the dynamic viscosity of the fluid and k(φf ) is the permeabil-
ity of the solid skeleton. Fick’s law and Darcy’s law provide
equivalent descriptions of water transport within the gel [see
41].

The form of the permeability function should incorporate
the geometry of the polymer network, with the most impor-
tant feature being that the permeability should increase very
strongly with increasing fluid content. For polymeric gels, the
frictional drag f between water and polymer is typically taken
to be inversely proportional to the square of the characteristic
mesh size l, or f ∼ l−2. The mesh size is itself related to
the correlation length (distance between crosslinks), and can
be taken to be proportional to (1 − φf )−3/4 [42]. This leads
to f ∼ (1 − φf )3/2, and therefore to a permeability function
k(φf ) ∼ φff−1 ∼ φf (1−φf )−β with β = 3/2. This expres-
sion has subsequently been used in a variety of studies, some
of which take β as an empirical fitting parameter [33, 43].

Here, we simply take β = 3/2 (cf., Eq. 18) and our mod-
elling predictions ultimately agree very well with our exper-
imental results for this value. Of course, the model itself is
valid for any form of the permeability law (Eq. 19). The
precise form is unlikely to change the qualitative features
of swelling and drying, which is ultimately the focus of our
study.

Appendix F: Numerical integration

To formulate a finite-volume scheme, we first divide the
interval r̃ = [0, ã] into N elements of equal size δr̃ = ã/N ,
where element i has its center at r̃i = (i − 1/2)δr̃ and its
left and right edges at r̃i−1/2 = (i − 1)δr̃ and r̃i+1/2 = iδr̃,
respectively. We then calculate

∂

∂t̃
δr̃ =

1

N

dã

dt̃
=
δr̃

ã

dã

dt̃
, (F1a)

and

∂

∂t̃
r̃i = (i− 1/2)

d

dt̃
δr̃ =

r̃i
ã

dã

dt̃
. (F1b)

We then integrate the conservation law over element i,∫ r̃i+1/2

r̃i−1/2

4πr̃2 dr̃

{
∂φf

∂t̃

− 1

r̃2
∂

∂r̃

[
r̃2(1− φf )k̃(φf )

∂µ̃

∂r̃

]}
= 0.

(F2)
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After some algebra, and making use of Eqs. (F1) and the Leib-
nitz integral rule, we arrive at

4

3
π
(
r̃3i+1/2 − r̃

3
i−1/2

)(∂φf,i
∂t̃

+
3φf,i
ã

dã

dt̃

)
− 4π

[
r̃3φf
ã

dã

dt̃
+ r̃2 (1− φf ) k̃(φf )

∂µ̃f
∂r̃

] ∣∣∣∣r̃i+1/2

r̃i−1/2

= 0,

(F3)

where φf,i is the mean porosity in element i. We then require
boundary conditions at r̃ = 0 and r̃ = ã, for which it is useful
to recall that the second term in square brackets is precisely
equal to −r̃2φf ṽf (see Eq. 15a). At r̃ = 0, the entire quantity
in square brackets must vanish. At r̃ = ã, the entire quantity
is identically equal to ã2dã/dt.

At each time step, we calculate us from φf via Eq. (14). We
then calculate λr, λθ, and J from us, then σ′r, σ

′
θ, and Π from

the constitutive laws, and then ∂µ̃f/∂r̃ from Eq. (20). We
finally use this to update the porosity according to Eq. (F3).

Appendix G: Equilibrium size in air

The equilibrium size in air is effectively independent of
Ωf/Ωp because, for µ̃?f less than about −102, the mechanical
contributions to the equilibrium state (p̃ and σ̃′) become neg-
ligible relative to the chemical contributions (µ̃?f and Π̃mix)
since the polymer chains are nearly relaxed (see the main text,
after Eqs. 29). We plot the magnitudes of these contributions
against µ̃?f in Fig. 8 (top). We confirm this in Fig. 8 (middle
and bottom) by plotting the equilibrium size against Ωf/Ωp
for several values of µ̃?f (RH) and comparing these with the
dry size for Ωf/Ωp → 0.

Appendix H: Compressive and tensile stresses during swelling

During swelling, the outer shell is in a strong and
anisotropic state of compression while the inner core is in a
more isotropic state of tension (Fig. 9).

Appendix I: Evidence of a
core-shell structure

The porosity within the sphere becomes heterogeneous dur-
ing swelling, developing a core-shell structure. Direct obser-
vation of the core-shell structure is complicated by the fact
that the sphere is transparent, and the swollen region is al-
most entirely water. Barros, Jr. et al. [8] provided the first
direct observation of this by imaging a swelling sphere using
nuclear magnetic resonance (NMR). Here, we achieve a sim-
ilar result with a shadowgraph technique (Fig. 10). We ob-
tain images by collimating light from a powerful laser source
(1 W, 532 nm) via a ShadowStrobe lens (Dantec Dynamics).
We identify the position of the core-shell interface via an in-
tensity threshold and we plot the evolution of the core-shell
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FIG. 8. The size of a hydrogel sphere in air is effectively inde-
pendent of Ωf/Ωp. Top: Properties of the equilibrium state for
a wide range of ambient conditions (µ̃?f ) with material properties
Ωf/Ωp = 1.28 × 10−4, α = 250, and χ = 0.4. Middle: Actual
equilibrium size in air ãair as a function of Ωf/Ωp for several values
of RH (colors) compared with the value of ãair for the same RH for
Ωf/Ωp → 0 (dashed gray). Bottom: The relative error between the
colored and gray curves from the middle figure.

structure in Fig. 10. At early times, both core and shell grow
as the sphere swells. Later, the core shrinks as water eventu-
ally imbibes into the core of the bead. The interface position
detected through this method is qualitative since the relation-
ship between light intensity and polymer density is unknown
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FIG. 9. Space-time evolution of (top) the mean total stress ¯̃σ =
(σ̃r + σ̃θ)/2 and (bottom) the shear stress τ̃ = |σ̃r − σ̃θ|/2. The
colors show sign(σ̃) log |σ̃|, where blue tones are compressive, red
tones are tensile, and the dashed black line in the top panel indicates
the contour of zero mean total stress.

and likely nonlinear, but our findings are consistent with the
predictions of our model.

In contrast with our observations, the NMR experiments of
Barros, Jr. et al. [8] and Engelsberg and Barros, Jr. [33] sug-
gest a strictly shrinking core. To reconcile this apparent dis-
agreement, we plot in Fig. 11 the predictions of our model for
the location of several isolines of porosity against time. We
find that, for porosities greater than about 0.5, the isolines ini-
tially advance and then retreat. For smaller porosities, the iso-
lines strictly retreat. Assuming that the core revealed by both
shadowgraph and NMR is roughly coincident with a certain
porosity threshold, this then indicates that the apparent evo-
lution of the core will depend on the threshold value associ-
ated with each technique. The qualitative agreement between
the evolution of the core from our shadowgraph experiments
(Fig. 10) and the evolution of porosity isolines from the model
for φf > 0.5 (Fig. 11) supports the kinetic predictions of the
model and further underscores its usefulness for interpreting
experimental results.

FIG. 10. We image the swelling process using a shadowgraph tech-
nique, revealing two distinct regions in the internal structure: A dark,
low-porosity core surrounded by a light, high-porosity shell (inset).
Thresholding this image provides the time evolution of the outer ra-
dius of the core ai and of the sphere a, which together define the
shell. We shade the core and shell regions in orange and blue, re-
spectively.
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FIG. 11. The positions of several isolines of porosity during swelling.
The black line marks the outer radius of the sphere and the inset
highlights the early-time evolution.
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FIG. 12. Evolution of the outer radius ãqs and the effective stress
σ̃′qs during strongly limited drying from the full model (solid blue)
and from the quasi-static model (dashed yellow). Parameters are the
same as Fig. 4, but with F̃ ?d = 1.

Appendix J: Quasi-static model

When the flux of fluid out of the bead during drying is
strongly limited (e.g., by evaporation), drying can be mod-
eled as a quasi-static process in which the sphere is internally
homogeneous. The same is true of flux-limited swelling. To
develop a model for this, we first assume that the drying flux
is controlled by the evaporation limit,

F̃d,qs = −dãqs

dt̃
= F̃ ?d . (J1)

This can be integrated to give

ãqs(t̃) =

{
ã0 − F̃ ?d t̃ for t̃ ≤ t̃eq
ãeq for t̃ > t̃eq,

(J2)

where t̃eq = (ã0 − ãeq)/F̃ ?d and ãeq is the final equilibrium
size for the desired value of µ̃?f . We can then calculate all
other quantities from Eqs. (29) by replacing ãeq with ãqs(t̃).
In particular, the uniform and isotropic effective stresses are
given by

σ̃′qs(t̃) = σ̃′r,qs(t̃) = σ̃′θ,qs(t̃) = [ãqs(t)
2 − 1]/ãqs(t)

3. (J3)
It is then trivial to show that the effective stress has a tensile
maximum of max t{σ̃′qs} = 2/(3

√
3) ≈ 0.3849 at ãqs =

√
3.

We plot ãqs and σ̃′qs against t̃ in Fig. 12.

Appendix K: Time-reversibility of small deformations

For small changes in size, swelling and drying are essen-
tially mirror images of each other because the strong nonlin-
earity of large deformations is absent. We show swelling in
Fig. 13 and drying in Fig. 14.

Appendix L: Evaporation-limited drying

We plot in Fig. 15 the evolution of a sphere during
evaporation-limited drying (cf., Fig. 4). We enforce the limit
F̃d(t) ≤ F̃ ?d by calculating, at every time, a new ambient value
µ̃?f,d(t) for which F̃d(t) = F̃ ?d when µ̃f (ã, t̃) = µ̃?f,d(t). We
then impose µ̃f (ã, t̃) = max{µ̃?f , µ̃?f,d(t)} so that this con-
straint can only slow the drying process. As a result, µ̃?f,d(t)
evolves gradually toward the true ambient value µ̃?f rather than
adopting it immediately, as it would in free drying. This leads
to much lower azimuthal effective stresses and much weaker
gradients in porosity near the outer boundary.

Appendix M: Drying experiments: Free drying

To illustrate that our drying experiments are not in a state
of free drying, we plot in Fig. 16 the time evolution of a/ad
and Fd for the same parameters as Fig. 5, but taking F ?d →∞
(i.e., free drying). Note the very short time scale and the very
large drying fluxes compared to the data.
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FIG. 13. Free swelling for a small change in size, from ã0 = 1.067 to ãeq = 1.078 (µ̃?f,0 = −5× 103 to µ̃?f = −4.3× 103). Same material
properties as Fig. 4.
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FIG. 14. Free drying for a small change in size. Same material properties as Fig. 13, but with initial and final states reversed.
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FIG. 15. Evaporation-limited drying for F̃ ?d = 104. Same material properties and conditions as Fig. 4.
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FIG. 16. Free drying for the same parameters and conditions as Fig. 5, but taking F ?d →∞.


