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Abstract: We theoretically investigate quantum interference of two
single photons at a lossy asymmetric beam splitter, the most general
passive 2×2 optical circuit. The losses in the circuit result in a non-unitary
scattering matrix with a non-trivial set of constraints on the elements of the
scattering matrix. Our analysis using the noise operator formalism shows
that the loss allows tunability of quantum interference to an extent not
possible with a lossless beam splitter. Our theoretical studies support the
experimental demonstrations of programmable quantum interference in
highly multimodal systems such as opaque scattering media and multimode
fibers.
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1. Introduction

Multiphoton quantum correlations are crucial for quantum information processing and quan-
tum communication protocols in linear optical networks [1, 2]. Beam splitters form a funda-
mental component in the implementation of these linear optical networks [3]. They have been
realized in a variety of systems including integrated optics, atomic systems, scattering media,
multimode fibers, superconducting circuits and plasmonic metamaterials [4–11]. In plasmonic
systems, beam splitters have been used to generate coherent perfect absorption in the single-
photon regime [12,13] and on-chip two-plasmon interference [10,11]. Inherent losses in optical
systems are unavoidable and can arise from dispersive ohmic losses or from imperfect control
and collection of light in dielectric scattering media. The effect of losses in beam splitters has
attracted a lot of theoretical attention due to the fundamental implications of unavoidable dis-
persion in dielectric media [14–17]. However, all these studies have dealt with either symmetric
(equal reflection-transmission amplitudes for both input arms) or balanced (equal reflection and
transmission amplitudes in each arm) beam splitters. In this article, we analyze the most general
two-port beam splitter which can be lossy, asymmetric and unbalanced, and find the non-trivial
constraints on the matrix elements. We derive general expressions for the probabilities to mea-
sure zero, one or two photons in the two outputs when a single photon is injected in each of
the two inputs. Further, we comment on the possible measurements of quantum interference
through coincidence detection in a Hong-Ou-Mandel-like setup [18].

A general two-port beam splitter or a linear optical network consists of two input ports a1,a2
and two output ports b1,b2 as schematized in Fig. 1(a). The linearity of the beam splitter gives
rise to a linear relation between the electric fields, E(bi) = ∑i, j si jE(a j). The complex numbers
si j are the elements of a scattering matrix S and correspond to the transmission and reflection
coefficients with s11 = t exp iφ11, s22 = τ exp iφ22, s12 = ρ exp iφ12, and s21 = r exp iφ21, where
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Fig. 1. (a) depicts the schematic of a general 2×2 beam splitter with input ports a1 and a2
and output ports b1 and b2. The transmission-reflection amplitudes for light in input ports
a1 and a2 are t-r and τ-ρ respectively. (b) illustrates the output power at ports b1 (orange
curve) and b2 (blue curve) as phase θ is varied between 0 and 2π at input port a1. The
phase difference between the peak amplitudes is α = φ1 +φ2.

t,τ,r,ρ are positive real numbers. The phases φi j are not all independent and can be reduced to
φ1 and φ2 which correspond to the phase differences between transmission and reflection at a
given input port. This gives the scattering matrix

S =

[
t ρeiφ2

reiφ1 τ

]
. (1)

Without further constraints on the matrix elements, the scattering matrix S need not be unitary.
Special cases include the balanced beam splitter where τ = ρ; t = r and the symmetric beam
splitter where τ = t;ρ exp(iφ2) = r exp(iφ1).

The six parameters in the scattering matrix are required to describe the behavior of the output
intensities. Fig. 1(b) illustrates the intensities |E|2 at b1 and b2 as the phase of the input coherent
field at a1 is varied (with phase at a2 fixed). For a general beam splitter, the amplitudes, intensity
offsets and phase offsets at the two output ports can be completely free. Of particular interest is
the value of the phase difference α , which, as we discuss in the subsequent sections, determines
the visibility of quantum interference between two single photons.

2. Energy constraints

The beam-splitter scattering matrix in Eq. (1) is defined without any constraints on the param-
eters. However, the physical constraint that the output energy must be less than or equal to the
input energy imposes restrictions on the parameters as derived below. Let us consider the sce-
nario where coherent states of light with fields E1 and E2 are incident at input ports a1 and a2
respectively. Energy conservation at a lossy beam splitter imposes the restriction that the total
output powers in the arms should be less than or equal to the input,

|tE1 +ρeiφ2E2|2 + |rE1eiφ1 + τE2|2 ≤ |E1|2 + |E2|2. (2)

The two input coherent state fields can be related through a complex number c = |c|e−iδ as
E2 = cE1, which gives

tρ cos(φ2−δ )+ τr cos(φ1 +δ )≤ (1− t2− r2)+ |c|2(1− τ2−ρ2)

2|c|
. (3)



As the inequality holds for all values of |c|, it should also hold in the limiting case where
the right hand side of Eq. (3) is minimized. This occurs for |c|2 = (1− t2− r2)/(1− τ2−ρ2).
Upon substitution, the inequality becomes

tρ cos(φ2−δ )+ τr cos(φ1 +δ )≤
√
(1− t2− r2)(1− τ2−ρ2). (4)

The above inequality can be algebraically manipulated using trigonometric identities into the
following form√

t2ρ2 + τ2r2 +2τρrt cos(φ1 +φ2)sin(δ +θoff)≤
√
(1− t2− r2)(1− τ2−ρ2), (5)

where θoff = arctan[(tρ cosφ2 + τr cosφ1)/(tρ sinφ2− τr sinφ1)]. As the inequality holds for
all values of δ , it should hold in the limiting case of the maximum value of the left hand side
which occurs when δ +θoff = π/2. Substituting α = φ1 +φ2 results in the following inequality
in terms of the reflection and transmission amplitudes√

t2ρ2 + τ2r2 +2τρrt cosα ≤
√

(1− t2− r2)(1− τ2−ρ2). (6)

For the lossless beam splitter, the equality results in α = π . For a symmetric balanced beam
splitter, i.e. t = r = τ = ρ and φ1 = φ2, Eq. (1) reduces to the well-known beam splitter matrix
[19]

Ssym-bal = t
[

1 i
i 1

]
(7)
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Fig. 2. The figure depicts the allowed tunable width ∆α around π . The anti-diagonal line
(r2+t2 = 1) separating the allowed from the forbidden region corresponds to lossless beam
splitter. The red dashed line is the curve t + r = 1. Any lossy circuit that satisfies t + r ≤ 1
allows complete tunability of α ∈ [0,2π].

The inequality in equation (6) corresponds to the most general constraint on the parameters
of a passive lossy asymmetric beam splitter. For the sake of clarity, we will discuss the case of
a lossy symmetric beam splitter with τ = t and ρ = r. In this scenario, the inequality has three
parameters ∣∣∣cos

α

2

∣∣∣≤ 1− t2− r2

2tr
. (8)



This inequality results in an allowed range of α between [π − ∆α

2 ,π + ∆α

2 ]. Fig. 2 depicts the
tuning width ∆α as a function of reflectance r2 and transmittance t2. The lossless beam splitters
lie on the diagonal line that separates the forbidden and allowed regions. Evidently, lossless
beam splitters have ∆α = 0, i.e. the phase difference α between the output arms is fixed and
equals π . With increasing losses in the beam splitter, ∆α increases and achieves a maximum
value of 2π , i.e. complete tunability of α . The beam splitters that exactly satisfy t + r = 1
(red dotted line) correspond to those lossy beam splitters that allow completely programmable
operation with maximum transmission or reflection. In the following section, we discuss the
effect of this tunability on the quantum interference between two single photons incident at the
input ports of the general beam splitter.

3. Quantum interference of two single photons

The quantum-mechanical input-output relation of the lossy asymmetric beam splitter can be
written using the scattering matrix in Eq. (1). From this point, we explicitly take into account the
frequency dependence that is required to calculate the Hong-Ou-Mandel interference between
single photons incident at the input ports.[

b̂1(ω)

b̂2(ω)

]
=

[
t(ω) ρ(ω)eiφ2

r(ω)eiφ1 τ(ω)

][
â1(ω)
â2(ω)

]
+

[
F̂1(ω)
F̂2(ω)

]
. (9)

The operators âi(ω) and b̂i(ω) are creation-annihilation operators of photons at the input and
output ports, respectively. The canonical commutation relations of these operators are satisfied
even in the presence of loss.

[âi(ω), â j(ω
′)] = 0; ∀i, j ∈ {1,2}, (10)

[âi(ω), â†
j(ω
′)] = δi jδ (ω−ω

′); ∀i, j ∈ {1,2}, (11)

[b̂i(ω), b̂ j(ω
′)] = 0; ∀i, j ∈ {1,2}, (12)

[b̂i(ω), b̂†
j(ω
′)] = δi jδ (ω−ω

′); ∀i, j ∈ {1,2}. (13)

The introduction of noise operators F̂i(ω) in Eq. (9), which represent quantum fluctuations, are
necessary in the presence of loss as reported earlier [14,20,21]. We assume that the underlying
noise process is Gaussian and uncorrelated across frequencies.

The commutation relations of the noise operators can be calculated as the noise sources are
independent of the input light, i.e.

[âi(ω), F̂j(ω
′)] = [âi(ω), F̂†

j (ω
′)] = 0; ∀i, j ∈ {1,2}, (14)

which results in

[F̂i(ω), F̂j(ω
′)] = [F̂†

i (ω), F̂†
j (ω

′)] = 0; ∀i, j ∈ {1,2}, (15)

[F̂1(ω), F̂†
1 (ω

′)] = δ (ω−ω
′)[1− t2(ω)−ρ

2(ω)], (16)

[F̂2(ω), F̂†
2 (ω

′)] = δ (ω−ω
′)[1− τ

2(ω)− r2(ω)], (17)

[F̂1(ω), F̂†
2 (ω

′)] =−δ (ω−ω
′)[t(ω)r(ω)e−iφ1 +ρ(ω)τ(ω)eiφ2 ], (18)

[F̂2(ω), F̂†
1 (ω

′)] =−δ (ω−ω
′)[t(ω)r(ω)eiφ1 +ρ(ω)τ(ω)e−iφ2 ]. (19)

To calculate the effect of the quantum interference, let us suppose that a single photon with
frequency ω1 is incident at input a1 and another single photon with frequency ω2 is incident at



input a2. The two photons together have a bi-photon amplitude ψ(ω1,ω2) which results in the
following input state,

|Ψ〉= |11,12〉=
∫

∞

0
dω1

∫
∞

0
dω2ψ(ω1,ω2)â

†
1(ω1)â

†
2(ω2)|0〉. (20)

The bi-photon amplitude ψ(ω1,ω2) is normalized as
∫

∞

0 dω1
∫

∞

0 dω2|ψ(ω1,ω2)|2 = 1, ensuring
that the state vector |Ψ〉 is normalized.

In a lossy beam splitter, there are in total six possible outcomes with either two, one or
zero photons at each output port. The probabilities of these outcomes can be represented as
expectation values of the number operators for the output ports, defined as

N̂i(ω) =
∫

∞

0
dω b̂†

i (ω)b̂i(ω) i ∈ {1,2}. (21)

Assuming that detectors have perfect efficiency, the probabilities can be calculated using the
Kelley-Kleiner counting formulae [22] and can be grouped into 3 sets:

• No photon lost

P(21,02) =
1
2
〈N̂1(N̂1−1)〉, (22)

P(01,22) =
1
2
〈N̂2(N̂2−1)〉, (23)

P(11,12) = 〈N̂1N̂2〉 (24)

• One photon lost

P(11,02) = 〈N̂1〉−〈N̂1(N̂1−1)〉−〈N̂1N̂2〉, (25)

P(01,12) = 〈N̂2〉−〈N̂2(N̂2−1)〉−〈N̂1N̂2〉 (26)

• Both photons lost

P(01,02) = 1−〈N̂1〉−〈N̂2〉+ 〈N̂1N̂2〉+
1
2
〈N̂1(N̂1−1)〉+ 1

2
〈N̂2(N̂2−1)〉 (27)

Of particular interest is the coincidence probability P(11,12) which decreases to zero at a loss-
less, symmetric balanced beam splitter, which is known as the Hong-Ou-Mandel effect [18].

Under the assumption that coefficients t,r,τ,ρ are frequency independent, the expectation
values of the number operators are

〈N̂1〉= t2 +ρ
2, (28)

〈N̂2〉= τ
2 + r2, (29)

〈N̂1(N̂1−1)〉= 2t2
ρ

2[1+ Ioverlap(δ t)], (30)

〈N̂1(N̂1−1)〉= 2τ
2r2[1+ Ioverlap(δ t)], (31)

〈N̂1N̂2〉= t2
τ

2 + r2
ρ

2 +2τρtrIoverlap(δ t)cosα, (32)

where Ioverlap(δ t) is the spectral overlap integral of the two single photons at the input ports of
the beam splitter, given as

Ioverlap(δ t) =
∫

∞

0
dω1

∫
∞

0
dω2ψ(ω1,ω2)ψ

∗(ω2,ω1)exp[−i(ω1−ω2)δ t]. (33)
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Fig. 3. (a) The variation of the maximal coincidence rate maxα P(11,12) in a general beam
splitter is shown as a function of reflectance and transmittance. The solid curves in (a) and
(b) correspond to cross-sections along different imbalance values t2/r2. The dashed curve
in (a) and (b) is the coincidence probability in a lossless beam splitter. The dotted curve in
(a) and (b) depicts the coincidence probability of beam splitters with t + r = 1.

Usually, in experimental measurements of quantum interference, the time delay is varied to
retrieve the Hong-Ou-Mandel dip in the coincidence rates.

For the case of a symmetric beam splitter as discussed in Fig. 2, the probabilities of different
outcomes are

P(11,12) = t4 + r4 +2t2r2Ioverlap(δ t)cosα, (34)

P(21,02) = P(01,22) = t2r2[1+ Ioverlap(δ t)], (35)

P(11,02) = P(01,12) = t2 + r2− t4− r4−2t2r2{1+ Ioverlap(δ t)[1+ cosα]}, (36)

P(01,02) = 1−2(t2 + r2)+ t4 + r4 +2t2r2{1+ Ioverlap(δ t)[1+ cosα]}. (37)

The coincidence probability P(11,12) varies sinusoidally with α . For a lossless and balanced
beamsplitter, α = π and the coincidence probability is zero, corresponding to the well-known
Hong-Ou-Mandel bunching of photons. However in a lossy beam splitter, the coincidence prob-
ability between perfectly indistinguishable photons varies with α from (t2− r2)2 to (t2 + r2)2,
assuming ∆α = 2π . Further, it is interesting to note that the probability of photon bunching at
the first output port, P(21,02) or the second output port, P(01,22) is independent of α .

Fig. 3(a) depicts the maximal coincidence rate maxα P(11,12) which occurs at α = π −
∆α

2 ,δ t = 0 as a function of transmittance t2 and reflectance r2. The cross-sections along the
solid lines in Fig. 3(a) are shown in Fig. 3(b) in corresponding colors. The cross-sections cor-
respond to different imbalance ratios t2/r2. A common feature among all the curves is a point
of inflexion along the dotted curve and termination on the dashed curve. In the limiting cases
of t2/r2→ ∞ or t2/r2→ 0, the two points coincide. The dashed curve corresponds to the co-
incidence probability in a lossless beam splitter, which varies as (1− 2t2)2. The dotted line
corresponds to the coincidence rate at largest value of t2 that allows full programmability, i.e.
∆α = 2π .

4. Hong-Ou-Mandel like interference

In an experiment, the quantum interference can be measured by performing a Hong-Ou-
Mandel-like experiment, where the distinguishability of the photons is varied by adding a time



delay δ t. Let us suppose that the two photons are generated using collinear type-II spontaneous
parametric down conversion in a periodically poled potassium titanyl phosphate (PPKTP) un-
der pulsed pumping (the center frequency and fourier-transformed pulse width of the pump are
ωp and τp respectively). The resulting bi-photon amplitude of the idler (ωi) and signal (ωs)
photons is [23]

ψ(ωi,ωs) = sinc

(
kp− ki− ks− 2π

Λ

π

L
2

)
exp
{
−
[
(ωs +ωi−ωp)

τp

2

]2
}
, (38)

where Λ and L are the poling period and length of crystal, respectively. From the above bi-
photon amplitude, the overlap integral Ioverlap(δ t) can be calculated, which gives the coinci-
dence probability P(11,12). Fig. 4 elucidates the expected Hong-Ou-Mandel-like curve at var-
ious values of α for a symmetric balanced beam splitter with t = r = ρ = τ = 1/2. The delay
time is normalized to the coherence time ∆τc of the single photons generated by the source. For
α = π , a Hong-Ou-Mandel like dip (red curve) is evident which slowly evolves into a peak as α

approaches 0 or 2π , indicating increased antibunching of photons. The sinusoidal variation of
the coincidence probability P(11,12) for perfectly indistinguishable photons, i.e. δ t = 0, with
the phase α indicates the programmability of quantum interference at these beam splitters.
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Fig. 4. The figure depicts the coincidence probability P(11,12) as a function of delay time
(δ t) at various values of α in a lossy symmetric balanced beamspliter with t = τ = r =
ρ = 0.5. The coincidence probability P(11,12) varies like a cosine with α for perfectly
indistinguishable photons δ t = 0. The conventional Hong-Ou-Mandel dip (red curve) is
seen at α = π which becomes a peak at α = 0 or 2π . The triangular shape of the Hong-Ou-
Mandel dip or peak is a consequence of the photon pair generation process.

5. Discussion and conclusions

Through the above theoretical analysis of a general two-port circuit, we demonstrated that
losses introduced in a beam splitter allow the tunability of α and hence of the quantum interfer-
ence. We can quantify the programmability of quantum interference by defining the parameter
∆P(11,12) which is the programmable range of coincidence probability, defined as

∆P(11,12)≡
maxα P(11,12)−minα P(11,12)

P(11,12;distinguisable)
, (39)

where, the numerator is the difference between maximum and minimum coincidence probabili-
ties (see Fig. 4) with indistinguishable photons (δ t = 0) and the denominator is the coincidence



rate with distinguishable photons (δ t →±∞). Fig. 5 depicts ∆P(11,12) as a function of trans-
mittance and reflectance with few representative contours shown in red. The lossless beam
splitters, which lie on the diagonal separating the allowed and the forbidden regions, show no
programmability. Maximal programmability of ∆P(11,12) = 2, is allowed by lossy balanced
beam splitters for perfectly indistinguishable photons. The black dashed line in the figure cor-
responds to t+r = 1. While ∆α = 2π in the region t+r < 1, the programmability is not uniform.
This arises from the imbalance t2/r2 6= 1 in unbalanced beam splitters.

Our theoretical calculations explain the recent experimental demonstrations of pro-
grammable quantum interference in opaque scattering media and multimode fibers [6, 7]. In
these experiments, two-port circuits were constructed using wavefront shaping that selects two
modes from an underlying large number of modes [24, 25]. Light that is not directed into the
two selected modes due to imperfect control or noise can be modeled as loss. Typical transmis-
sion of ∼10% in opaque scattering media ensures the full programmability when a balanced
two-port circuit is constructed [26, 27].
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Fig. 5. Programmability of the coincidence rate ∆P(11,12) is depicted here together with
few representative contours at values indicated beside them. The black dashed curve rep-
resents t + r = 1. The lossless beam splitters have ∆P(11,12) = 0, while the balanced lossy
beam splitters satisfying t + r < 1 have maximal programmability with ∆P(11,12) = 2.

In summary, we theoretically analyzed the most general passive linear two-port circuit from
only energy considerations. We establish the programmability of quantum interference between
two single photons in the context of recent experimental demonstrations.
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