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We introduce two generalizations of core percolation in graphs to hypergraphs, related to the
minimum hyperedge cover problem and the minimum vertex cover problem on hypergraphs, respec-
tively. We offer analytical solutions of these two core percolations for random hypergraphs with
arbitrary vertex degree and hyperedge cardinality distributions. We find that for several real-world
hypergraphs their two cores tend to be much smaller than those of their randomized counterparts,
suggesting that covering problems in those real-world hypergraphs can actually be solved in poly-
nomial time.

As a natural generalization of a graph, a hypergraph
consists of vertices and hyperedges [1]. A hyperedge can
simultaneously connect any number of vertices, which fa-
cilitates a more faithful representation of many real-world
networks [2, 3]. For example, given a set of proteins
and a set of protein complexes, the corresponding hy-
pergraph naturally captures the information on proteins
that interact within a protein complex [4]. For a bio-
chemical reaction system, the hypergraph representation
indicates which biomolecules participate in a particular
reaction [4, 5]. In computer science, the factorization of
complicated global functions of many variables can often
be represented by a factor graph, wich can be mapped
to a hypergraph [3–8]. In social science, a collaboration
network can also be represented by a hypergraph, where
vertices represent individuals and hyperedges connect in-
dividuals who were involved in a specific collaboration,
e.g., a scientific paper, a patent, a consulting task, or an
art performance [7, 8].

As in graphs, the degree of a vertex in a hypergraph
is the number of hyperedges that connect to it. The
number of vertices connected by a hyperedge is called
the cardinality of that hyperedge. If all hyperedges have
the same cardinality K, the hypergraph is said to be
uniform or K-uniform. Note that a graph is just a 2-
uniform hypergraph.

The core of a graph — defined as the remainder of
the greedy leaf removal (GLR) procedure where leaves
(vertices of degree one) and their neighbors are removed
iteratively from the graph — has been related to the
conductor-insulator transition [9], structural controlla-
bility [10], and many combinatorial optimization prob-
lems [11]. Indeed, the core size is related to a fundamen-
tal combinatorial problem — the minimum vertex cover
(MVC) problem, which aims to find the smallest set of
vertices in a graph so that every edge is incident to at
least one vertex in the set [12]. If the core is absent,
then the MVC problem is solvable in polynomial. Oth-
erwise, if the core exists and is extensive in size, then the

MVC problem is generally NP-hard [12, 13]. As the dual
of the MVC problem, the minimum edge cover problem
aims to find the smallest set of edges so that for every
vertex in the graph there is at least one edge incident
to it. Both covering problems can be defined similarly
on hypergraphs. The minimum edge cover problem on
graphs can be computed in polynomial time [14]. Yet,
this is not true for hypergraphs, where both the mini-
mum hyperedge cover (MHC) and the MVC problems are
generally NP-hard [15]. Note that the MVC and MHC
on hypergraphs are related to many real-world prob-
lems, e.g., finding the optimal drug combination in phar-
macology [16], searching files in a storage systems [17],
etc. Typically these problems can be solved using ap-
proximate algorithms, e.g., highest-degree-first [16, 18]
and simulated annealing [16]. Here we show that those
approximate algorithms are not always necessary. To
achieve that, we extend the concept of the core in graph
to the hypergraph case, and define two cores associated
with the MVC and MHC problem, respectively.

Let us consider the MHC problem of the hypergraph
H0 in Fig. 1(a), which has three hyperedges {h1, h2, h3}
and four vertices {v1, v2, v3, v4}. The hyperedge h3 con-
tains all the vertices in h1, as well as vertex v4, thus h1
is not necessary for the MHC and can be removed, lead-
ing to the hypergraph H1 shown in Fig. 1(b1). In H1

the vertex v2 is contained by hyperedge h2 that contains
also vertex v1. Hence if v1 is covered, v2 is also covered.
We can therefore remove v2 from H1. By iteratively re-
moving vertices and hyperedgse using these rules, we get
the hypergraph shown in Fig. 1(b3), for which solving
the MHC problem is trivial. The MVC problem is dual
to the MHC problem, hence we can obtain a dual set of
rules. In the hypergraph H0, the hyperedge h3 contains
all the vertices in h1, as well as vertex v4, thus if h1 is
covered h3 is also covered. We can therefore remove h3
and obtain the hypergraph H2 in Fig. 1(c1), for which
we find that vertex v1 is redundant and can be removed
(since v2 covers the same hyperedge as v1 and also covers
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FIG. 1. Generalized greedy leaf removal helps us solve the
minimum hyperedge cover (MHC) and the minimum vertex
cover (MVC) problems on hypergraphs. Vertices are repre-
sented by dots and hyperedges by circles. The green vertices
and hyperedges in (b3) and (c3) are the solution to the MHC
or MVC problem, respectively.

hyperedge h1). By iteratively removing vertices and hy-
peredgse using these rules, we get the hypergraph shown
in Fig. 1(c3), for which the MVC problem is trivial.

The example shown in Fig. 1 prompts us to define three
sets of hyperedges (or vertices): (1) S is a solution of
the MHC (MVC) problem; (2) S̃ contains hyperedges
(vertices) that can be determined to be part of S using
our approach; and (3) the core hcore (vcore) contains the
hyperedges (vertices) that cannot be determined if they
belong to S or not using our approach. If the degree
(cardinality) of a vertex (hyperedge) is zero, then it can
not be covered. For the remaining vertices (hyperedges)
we can find the vertices (hyperedges) that belong to each
category based on the following rules. (Rule-1): Consider
hyperedges h1 and h2 that contain the set of vertices V1
and V2. If V1 and V2 are not empty sets, and V1 ⊆ V2,
we remove h1 (or h2) to solve the MHC (or MVC) prob-
lem, respectively. (Rule-2): Consider vertices v1 and v2
that are contained by the set of hyperedges H1 and H2.
If H1 and H2 are are not empty sets, and H1 ⊆ H2,
we remove v2 (or v1) to solve the MHC (or MVC) prob-
lem, respectively. We repeat this process until no more
vertices or hyperedges can be removed. In the final hy-
pergraph, hyperedges (vertices) with cardinalty (degree)
one belong to S̃ (Fig. 1(b3) and (c3)); hyperedges (ver-
tices) with cardinalty (degree) larger than one belong to
hcore (vcore).

We emphasize that these two rules can be considered
as the generalized GLR procedure on hypergraphs, which
reduces to the standard GLR procedure on graphs. Note
that even if the resulting hcore (vcore) is very small but
non-zero, the generalized GLR procedure is better than
approximation algorithms in solving the MHC (MVC)
problem, because it explicitly tells us which hyperedges
(vertices) belong to the solution S, which do not, and
which cannot be determined.

Since the hypergraph core hcore is closely related to
the MHC problem, we study the corresponding core per-
colation problem on random hypergraphs. To achieve
that, we generalize the mean-field approach proposed for

the graph case [19]. We define two types of removable
vertices: a vertex is (i) α-removable if it is or can be-
come a vertex of degree one; (ii) β-removable if its de-
gree is larger than one and belongs to at least one leaf
hyperedge. Dually, we define two types of removable hy-
peredges: a hyperedge is (i) δ-removable if it is or can
become an leaf hyperedge; (ii) ε-removable if it has car-
dinality r and is removed because it is connected to (r−1)
β-removable vertices. Consider a large uncorrelated ran-
dom hypergraph H with arbitrary vertex degree and hy-
peredge cardinality distributions. We can determine the
category of a vertex v in H by the categories of its neigh-
boring hyperedges in the modified hypergraph H\v with
vertex v and all its hyperedges removed from H, using
the following rules: (i) α-removable vertex: all neighbor-
ing hyperedges are ε-removable; (ii) β-removable vertex:
at least one neighboring hyperedge is δ-removable. Sim-
ilarly, we can determine the category of a hyperedge e
in H by the categories of its neighboring vertices in the
modified hypergraph H \ e with hyperedge e and all its
vertices removed from H, using the following rules: (iii)
δ-removable hyperedge: at least one neighboring vertex
is α-removable; (iv) ε-removable hyperedge: at least one
neighboring vertex is β-removable. Let α (or β) denote
the probability that a random neighboring vertex of a
random hyperedge e in a hypergraph H is α-removable
(or β-removable) in H \ e. Let δ (or ε) denote the prob-
ability that a random neighbor of a random vertex v
in a hypergraph H is α-removable (or β-removable) in
H \ v. Then rules (i)-(iv) enable us to derive a set of
self-consistent equations:

α =
∞∑

k=1

Qn(k)εk−1, (1)

1− β =
∞∑

k=1

Qn(k)(1− δ)k−1, (2)

1− δ =

∞∑

r=1

Qh(r)(1− α)r−1, (3)

ε =

∞∑

r=1

Qh(r)βr−1. (4)

Here Qn(k) (Qh(r)) is the excess degree (cardinality) dis-
tribution. The fraction of vertices in hcore, denoted as svh,
is given by

svh =

∞∑

k=2

Pn(k)

k∑

l=2

(
k

l

)
(1− δ − ε)lεk−l (5)

where Pn(k) (Ph(r)) is the degree (cardinality) distribu-
tion. (See SI Sec.IV.B for the formula of the fraction
of hypedeges in hcore, denoted as shh.) For hypergraphs
with Poisson vertex degree distribution and different hy-
peredge cardinality distributions, we find that the hcore
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FIG. 2. (Color online) The relative size of the core size hy-
pergraphs with Poisson vertex degree distributions, (a,b) svh.
(c,d) svv. In (a) and (c) we consider d-uniform hypergraphs,
meaning that all hyperdege have the same cardinality d. In
(b) and (d) we consider that the cardinality of the hyperdeges
follows a Poisson distribution with average cardinality d.

emerges as a continuous phase transition (see Fig. 2(a)
and (b)),

svh ∝ (c− c∗)ζ1 , (6)

with critical exponent ζ1 = 1 (see SI Sec.IV.E for details).
The relation between the critical mean degree c∗ (perco-
lation threshold) and the hyperedge mean cardinality d
is represented in Fig. 3.

Similarly, the vcore percolation (associated with the
MVC problem) can also be analytically studied for ran-
dom hypergraphs. In this case, the equations on α and β
are the same as the hcore percolation case, but for hyper-
edges we derive the following self-consistent equations:

δ =
∞∑

r=1

Qh(r)αr−1, (7)

1− ε =
∞∑

r=1

Qh(r)(1− β)r−1. (8)

The vcore consists of those vertices connected to at least
two non-removable hyperedges. Hence, the fraction of
vertices in vcore is given by

svv =
∞∑

k=2

Pn(k)
k∑

l=2

(
k

l

)
(1− δ − ε)lεk−l. (9)

See SI Sec.IV.B for the formula of the fraction of
hypedeges in vcore, s

h
h. For hypergraphs with Poisson
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FIG. 3. Phase diagram of the hcore and vcore percolations on
hypergraphs with Poisson vertex degree distributions. Black
dots and black line represenst the phase boundary of d-
uniform hypergraphs and hypergraphs with Poisson hyper-
edge cardinality distribution, respectively. (a) hcore. Note
that, for d-uniform hypergraph (d > 1) with Poisson vertex
degree distribution, the critical mean degree (i.e., c∗ of the
vcore percolation) can be simply related to d as c∗ = e

d−1
,

where e = 2.71828 · · · (see Fig. 3(a) black dots and SI
Sec.IV.C for details). This result was previously found in [20].
(b) vcore.

vertex degree distribution and different hyperedge cardi-
nality distributions, we find that the vcore emerges as a
continuous phase transition (see Fig. 2(c,d)):

svv ∼ (c− c∗)ζ2 , (10)

with critical exponent ζ2 = 1 (see SI Sec.IV.D for details).
Fig. 2 (d) shows that for a Poisson-Poisson hypergraph
the size of svv starts to decrease at large values of c. By
increasing the number of hyperedges connected to a ver-
tex, but keeping the cardinailty distribution constant, the
probability of a vertex being connected to a hyperedge
with cardinality one increases, and any vertex connected
to a hyperedge with cardinality one is automatically re-
moved. This effect is not relevant if the probability that
a vertex is connected to a hyperedge with cardinality one
is very small, 1− exp(−c e−d)� 1. For large values of c
and d, this effect is only relevant if c ∼ ed.

Phase diagrams of the hcore and vcore percolations on
hypergraphs with Poisson vertex degree distributions are
shown in Fig. 3. Note that the phase diagram of vcore

percolation is equal to that of hcore percolation if we in-
terchanged the mean cardinality d with the mean degree
c. This is true because the vcore of a hypergraph is the
hcore of the dual hypergraph.

We also apply the generalized GLR procedure to com-
pute the hcore and vcore for several real-world hyper-
graphs: (1) APS consists of articles published in all
the Americal Physical Society journals from 1893 to
2010 [21], where individual authors and their joint ar-
ticles are considered as vertices and hyperedges, respec-
tively. (2) DGT consists of drugs (hyperedges) and their
target genes (vertices) as listed in the DrugBank [22]. (3)
GMN consists of reactions (hyperedges) and the involved
metabolites (vertices) in the genome-scale metabolic net-
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MHC MVC MHC MVC

FIG. 4. (a) Fraction of hyperedges shh (or vertices svv) as-
sociated with the MHC (MVC) problem for three real-world
hypergraphs: APS, DGT and GMN; and their respective ran-
domized counterparts. This set represents those hyperedges
(vertices) that cannot be covered optimally using our general-
ized GLR procedure. (b) Fraction of vertices nv

h (hyperedges
nh
v) necessary to cover all the hyperedges (vertices) for the

three hypergraphs.

work of E. coli obtained from the BiGG database [23].
We find that for GMN, hcore contains 3.4% of hypereges;
while vcore contains less than 0.2% of vertices. For the
other two hypergraphs (APS and DGT), both hcore and
vcore contains less than 0.2% of hyperedges or vertices
(Fig. 4a). We also compare the size of each core with that
of two randomized counterparts of the real-world hyper-
graphs. For the first randomization scheme (random1),
we preserve both the vertex degree and hyperedge cardi-
nality distributions of the real hypergraph. For the sec-
ond randomization scheme (random2), we consider a ran-
dom Poisson-Poisson hypergraph with the same average
degree and average cardinality as the real hypergraph.
Note that for random1, the size of the core is always zero
(blue points in Fig. 4a); while for random2, the size of the
core is between 30% and 100%, much bigger than that of
the real hypergraph. These results suggest that the de-
gree and cardinality distributions are main factors that
explains the small cores of these real-world hypergraphs.
Because hcore and vcore of those real-world hypergraphs
are really small, the MHC and MVC problems are effec-
tively solvable. Indeed, as shown in Fig. 4(b), the upper
and lower bound of the fraction of vertices (hyperedges)
nvh (nvv) that are necessary to cover all the vertices (hy-
peredges) are very close to each other.

It turns out that our method can also be used to solve
another classical NP-hard combinatorial problem: find-
ing the minimum dominating set (MDS) for graphs. The
MDS of a graph is the smallest set of vertices that needs
to be occupied so that all unoccupied vertices are adja-
cent to at least one occupied vertex [24]. Our basic idea is
as follows. We consider a hypergraph that has the same
set of vertices as the original graph, and one hyperedge i
contains all vertices adjacent to a vertex vi (including vi
itself). Solving the MHC problem on this hypergraph is
then equivalent to solve the MDS problem of the original
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FIG. 5. Relative size of the core associated with the MDS
problem for eleven real-world networks, using the GLR pro-
cedure introduced in [25] (square) and using our generalized
GLR approach (circles).

graph. Our method offers a much more general approach
than the greedy algorithm introduced in [25]. Indeed, the
two leaf-removal rules introduced in [25] can be consid-
ered as special cases of our generalized GLR rules (see SI
Sec.IV.A for details). In Fig. 5, we show the size of the
cores associated with the dominating set for the eleven
real-world networks analyzed in [25]. For most of those
networks, our method shows a considerable improvement
over the previous method. For some of the networks, our
method actually finds no core left.

In physics it is common that a more abstract or general
approach actually makes certain complicated problems
easier to solve. This is often not true in social systems,
biological systems, or complex systems in general. Our
results suggest that generalizing graph to hypergraphs is
one of the few cases where a small generalization makes a
very hard problem easier to solve. Indeed, we show that
our generalized GLR procedure and the corresponding
hypergraph cores can help us solve various NP-hard cov-
ering problems in a systematic and universal way. If we
aim to find a simple solution for complex problems, this
is really an exciting result, indicating that hypergraphs
might be the right way to represent complex networked
systems. Our results open a new set of tools to analyze
complex networked systems. It also raises a very impor-
tant question: why do hypergraph cores of real systems
tend to be small or absent? We anticipate our work will
trigger more research activities in addressing this intrigu-
ing question.

This work was partially supported by the Fundação
para a Ciência e a Tecnologia (Portugal) through
grant No. SFRH/BD/79723/2011 and through projects
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ORGANIZATION

In Sec.I we introduce the concept of a hypergraph and different types of cores and perco-

lation processes in graphs. In Sec.II we explore the giant connected component and in Sec.III

a generelized version of K-core percolation for hypergraphs. Although not fundamental to

the main paper, it provides standard tools to study percolation transitions in hypergraphs.

In Sec.IV he show detailed calculation underlying the results in the main text. In Sec.V we

compare the results of our analytical calculation with the results of numerical simulations.
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I. INTRODUCTION

Despite the ubiquity of hypergraphs in different fields, fundamental structural properties

of hypergraphs have not been fully understood. Most of the previous works focus on uniform

hypergraphs [1–3], ignoring the fact that hyperedges could have a wide range of cardinali-

ties. In this work, we systematically study the percolation transitions on hypergraphs with

arbitrary vertex degree and hyperedge cardinality distributions. We are particularly inter-

ested in the emergence of a giant component, the K-core, and the core in hypergraphs (see

Fig. S1). Those special subgraphs have been extensively studied in the graph case and play

very important roles in many network properties [4, 5]. A giant component of a graph is a

connected component that contains a finite fraction of the entire graph’s vertices, which is

relevant to structural robustness and resilience of networks [6, 7]. The K-core of a graph is

obtained by recursively removing vertices with degree less than K, as well as edges incident

to them. The K-core has been used to identify influential spreaders in complex networks

[8]. The core of a graph is the remainder of the greedy leaf removal (GLR) procedure: leaves

(vertices of degree one) and their neighbors are removed iteratively from the graph. The

emergence of the core in a graph has been related to the conductor-insulator transition [9],

structural controllability [10], and many combinatorial optimization problems [11].

We can naturally extend the definition of giant component to the hypergraph case. Yet, to

obtain the K-core in a hypergraph, we have to specify how to remove hyperedges containing

vertices of degree less than K. To achieve that, we introduce the (K,S)-core defined as the

largest fraction of the hypergraph where each hyperedge contains at least S vertices and

each vertex belongs to at least K hyperedges in the subset. The (K,S)-core is obtained by

recursively removing vertices with degree less than K and hyperedges with cardinality less

than S.
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Original hypergraph(a) Giant connected component(b)

(2, Smax)-Core(c) (2, 2)-Core(d)

FIG. S1. (Color online) Example of the different percolations studied in the work. (a) shows the

original hypergraph. (b), (c) and (d) shows the (2, Smax)-core, (2, 2)-core, where Smax ≡ max(r, 2)

.
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II. GIANT COMPONENT

A giant connected component of a hypergraph is a connected component that contains

a constant fraction of the entire vertices. In the mean-field picture, we can derive a set

of self-consistent equations to calculate the relative size of the GCC, using the generating

function formalism [12]. Let µ represent the probability that a randomly selected vertex

from a randomly chosen hyperedge is not connected via other hyperedges with the GCC.

Dually, let ψ represent the probability that a randomly chosen hyperedge connecting to a

randomly chosen vertex is not connected via other vertices with the GCC. Then we have

µ =
∞∑

k=1

Qn(k)ψk−1 (S1)

ψ =
∞∑

r=1

Qh(r)µr−1. (S2)

Here Qn(k) ≡ kPn(k)/c is the excess degree distribution of vertices, i.e., the degree distribu-

tion for the vertices in a randomly chosen hyperedge. Pn(k) is the vertex degree distribution,

and c = c1 is the mean degree of the vertices. In general we define cm ≡
∑∞

k=0 k
mPn(k).

Qh(r) ≡ rPh(r)/d is the excess cardinality distribution of hyperedges, i.e., the cardinality

distribution for the hyperedges connected to a randomly chosen vertex. Ph(r) is the hy-

peredge cardinality distribution, and d = d1 is the mean cardinality of the hyperdges. In

general we define dm ≡
∑∞

r=0 r
mPh(r).

The relative size of the GCC is then given by

sg = 1−
∞∑

k=0

Pn(k)ψk. (S3)

Fig. S2 shows the analytical result of sg as a function of the mean degree c for hypergraphs

with Poisson vertex degree distribution and different hyperedge cardinality distributions.

Clearly the giant component in hypergraphs emerges as a continuous phase transition with

scaling behavior

sg ∼ (c− c∗)η (S4)

for c− c∗ → 0+, where c∗ is the critical value of mean degree (i.e., the percolation threshold)

and η is the critical exponent associated with the critical singularity.

The condition for the percolation transition can be determined by rewriting Eqs. S1 as

Fg = 0, (S5)
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where we define

Fg ≡
∞∑

k=1

Qn(k)ψk−1 − µ. (S6)

At the critical point when µ∗ = 1 and

∂Fg

∂µ

∣∣∣∣
µ=µ∗=1

= 0, (S7)

we obtain
d2 − d
d

c2 − c
c

> 1. (S8)

where c∗ and c∗2 are the hyperdegree first and second moment, respectively, at the critical

point.

Note that a similar relation has been found for uniform hypergraphs [13]. In the graph

case (d = 2 for all edges) we recover the classical result c2−c
c

> 1 [6, 14].

The critical exponent η can be calculated by consider a point around the critical point,

such as, µ = 1 − ζ with ζ = 0+ and c = c∗ + χ with χ = 0+. We can define the function

from Eq. S6 as a function of µ and c (i.e. Fg(µ, c)). By expanding Fg(µ, c) around the

point (µ, c) = (1, c∗) and combining it with the result from Eq. S7 at the critical point, we

can rewrite Eq. S6 as

∂Fg(µ, c)

∂c

∣∣∣∣
(1,c∗)

χ+
∂2Fg(µ, c)

∂2µ

∣∣∣∣
(1,c∗)

ζ2 +
∂2Fg(µ, c)

∂2c

∣∣∣∣
(1,c∗)

χ2 (S9)

−2
∂2Fg(µ, c)

∂µ∂c

∣∣∣∣
(1,c∗)

χζ + (· · ·) = 0.

For µ = 1,

Fg(1, c) = 1− c/c = 0, (S10)

it follows that
∂nFg(µ, c)

∂nc

∣∣∣∣
(1,c∗)

= 0 (S11)

for any positive integer n. Let us assume that there are no diverging moments for the

hyperedge cardinality distribution. We can truncate our expansion of Fg at order 2 for ζ

and χ. This implies that

ζ ∼ χ. (S12)

Let us expand sg as a function of ζ,

sg = sg(µ)|µ=µ∗ −
∂sg(µ)

∂µ

∣∣∣∣
µ=µ∗

ζ +
∂2sg(µ)

∂2µ

∣∣∣∣
µ=µ∗

ζ2 + (· · ·). (S13)
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For µ∗ = 1, sg(µ
∗) = 0. We obtain

sg ∼ χ, (S14)

This correspond to he same exponent η = 1 as in the graph case [6, 15].

0 1 2 3 4 5

c

0.0

0.2

0.4

0.6

0.8

1.0

S
g

(a)

d=2
d=3
d=4

0 1 2 3 4 5

c

0.0

0.2

0.4

0.6

0.8

1.0

S
g

(b)

FIG. S2. (Color online) The relative size of the GCC sg as a function of the mean degree c for

hypergraphs with Poisson vertex degree distribution. (a) d-uniform hypergraphs with d = 2, 3, 4;

(b) hypergraphs with Poisson hyperedge cardinality distribution and mean cardinality d = 2, 3, 4.
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III. (K,S)-CORE ON HYPERGRAPHS

The (K,S)-core of a hypergraph is obtained by recursively removing vertices with degree

less than K and hyperedge with cardinality less than S. A hyperedge with cardinality r is

removable if at least r−S + 1 vertices connected to it are also removable and a vertex with

degree k is removable if at least k−K+1 hyperedges connected to it are also removable. One

can remove a vertex or a hyperedge from the hypergraph, and see what is the probability of

a neighboring hyperedge or vertex, respectively, being removable. This allows us to derive

a set of self-consistent equations:

α =
∞∑

k=1

Qn(k)
k−1∑

l=k+1−S


 k − 1

l


 δl(1− δ)k−1−l, (S15)

δ =
∞∑

r=1

Qh(r)
r−1∑

l=r+1−K


 r − 1

l


αl(1− α)r−1−l. (S16)

Here α and δ are, respectively, the probability that a vertex or a hyperedge is removable.

From now on we will focus on the case of K = 2. Then Eq. (S15) reduces to

α =
∞∑

k=1

Qn(k)δk−1. (S17)

A. K = 2 and S = Smax

The (K,S)-core defined with K = 2 and S = Smax ≡ max(r, 2), (where Smax = 2 if

r < 2 and and Smax = r if r ≥ 2 and r is the intial cardinality of an hyperedge before any

removal process) is obtained by recursively removing all vertices with degree one as well

as the hyperedges containing them, and all hyperedges with cardinality smaller than two.

Hyperedges with cardinality one or zero do not connect any nodes, thus have no meaning

in what cores are concerned. In this case the threshold S depends on the cardinally of the

hyperedges. Furthermore, if one of the vertices of any hyperedge is removed the hyperedge

is also removed. (Note that the (2, Smax)-core has been defined in literature [2] simply as

2-core, and discontinuous 2-core percolation is found in d-uniform hypergraphs with d > 2.)

In this case, Eq. (S16) reduces to

1− δ =
∞∑

r=2

Qh(r)(1− α)r−1. (S18)
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The relative size of the (2, Smax)-core is given by the probability that a randomly chosen

vertex is connected to at least two non-removable hyperedges:

s2c =
∞∑

k=2

Ph(k)
k∑

l=2


 k

l


 (1− δ)lδk−l. (S19)

Fig. S3 shows the analytical result of s2c as a function of the mean degree c for hypergraphs

with Poisson vertex degree distribution and different hyperedge cardinality distributions.

We find that, depending on the mean hyperedge cardinality d, the (2, Smax)-core emerges as

either a continuous or a hybrid phase transition, with scaling behavior

s2c − s∗2c ∼ (c− c∗)ζ (S20)

for c − c∗ → 0+, where c∗ is the percolation threshold and ζ is the critical exponent. s∗2c

is the (2, Smax)-core relative size right at the critical point: s∗2c = 0 for continuous phase

transition and non-zero for hybrid phase transitions. The percolation threshold c∗ can be

calculated by defining

F2c ≡
∞∑

k=1

Qn(k)δk−1 − α = 0. (S21)

If we consider S = max(r, 2), δ, defined in Eq. S18, and we combine Eqs. S21, S25 and S18,

we obtain

1 =
∞∑

k=1

∞∑

r=2

Q∗n(k)Qh(r)(k − 1)(r − 1)δ∗k−2(1− α∗)r−2, (S22)

where Q∗n(k) is the connectivity distribution with the critical mean hyperdegree c∗. δ∗ and

α∗ are the values of δ and α at the critical point, respectively. The phase transition is

continuous if for δ∗ = α∗ = 1,
∂2F2c

∂2α

∣∣∣∣
α=1

> 0, (S23)

that reduces to,

2Qn(3)(c∗2 − c∗)−Qn(2)2(c∗3 − 3c∗2 + 2c∗) < 0. (S24)

where c∗3 and c∗2 is third and second moment of the degree distribution at the critical point,

respectively. The phase transition is only continuous if at the critical point

∂F2c

∂α

∣∣∣∣
(α,c1)=(α∗,c∗)

= 0. (S25)

From this condition we obtain that the critical point for a continuous phase transition is

given by,

Qh(2)
c∗2 − c∗
c∗

= 1. (S26)
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FIG. S3. (Color online) The relative size of (2, S)-core s2c as a function of the mean degree c for

hypergraphs with Poisson degree distribution, for S = max(r − 1, 2) (a) and (b), and S = 2, (b)

and (d). (a) and (c) d-uniform hypergraphs . (b) and (d) hypergraphs with Poisson hyperedge

cardinality distribution.

Let us assume a Poisson distribution of hyperdegrees, in this case c∗2 − c∗ = c∗2 and c∗3 −
3c∗2 + 2c∗ = c∗2. Combine these relations with Eqs. S24 and S26, Eq. S26 reduces to

2Qh(3) < Qh(2). (S27)
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If the hyperedge cardinality follows a Poisson distribution, there is a continuous phase tran-

sition when d1 < 1, witch corresponds to

d1 < d̄, (S28)

where d̄ ≡ 1. Let us consider points around the critical point, such as α = α∗ − ζ with

ζ = 0+ and c = c∗ + χ with χ = 0+. We can define the function from Eq. S21 as a function

of α and χ (i.e. F2c(α, c)). By expanding Fg(α, χ) around the point (α, c) = (α∗, c∗) and

combining it with result from Eq S25 at the critical point, we can rewrite Eq. S6 as

∂F2c(α, c)

∂c

∣∣∣∣
(α∗,c∗)

χ+
∂2F2c(α, c)

∂2α

∣∣∣∣
(α∗,c∗)

ζ2+
∂2F2c(α, c1)

∂2c

∣∣∣∣
(α∗,c∗)

χ2−2
∂2F2c(α, c)

∂α∂c

∣∣∣∣
(α∗,c∗)

χζ+(···) = 0.

(S29)

For the continuous phase transition, α∗ = 1, this implies

∂nF2c(µ, c1)

∂nc

∣∣∣∣
(1,c∗)

= 0 (S30)

for any positive integer n. Thus,

ζ ∼ χ. (S31)

Let us expand s2c as a function of ζ,

s2c = s2c(µ)|α=α∗ −
∂s2c(α)

∂α

∣∣∣∣
α=α∗

ζ +
∂2s2c(α)

∂2α

∣∣∣∣
α=α∗

ζ2 + (· · ·), (S32)

For α∗ = 1, s2c(α
∗) = 0 and

∂s2c(α)

∂α

∣∣∣∣
α=α∗=1

= 0. (S33)

We obtain

s2c ∼ ζ2 ⇒ s2c ∼ χ2, (S34)

for s∗2c = 0 and η = 2. For the discontinuous phase transition, α∗ 6= 1, we have

∂F2c(α, c)

∂c

∣∣∣∣
(1,c∗)

6= 0, (S35)

s2c(α) 6= 0 and
∂s2c(α)

∂α

∣∣∣∣
α=α∗

6= 0. (S36)

It implies

ζ ∼ χ1/2, (S37)
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and

s2c − s∗2c ∼ χ1/2, (S38)

that is equivalent to Eq. S20 for η = 1/2. A discontinuous phase transition with a critical

exponent smaller than one is considered as hybrid phase transition.

At the critical mean cardinality, d = d̄, α∗ = 1, but

∂2F2c

∂2α

∣∣∣∣
α=1

= 0. (S39)

In this case we have to take into account terms of order 3 in the expansion of Eq. S29. We

obtain,

ζ ∼ χ1/2, (S40)

and,

s2c ∼ χ, (S41)

We can summarize that for d-uniform hypergraphs the (2, Smax)-core percolation is (i)

continuous with critical exponent ζ = 2 if d = 2; and (ii) hybrid with critical exponent

ζ = 1/2 if d > 2 (which is consistent with a previous work [2]). For hypergraphs where both

the vertex degeree and hyperedge cardnality distributions are Poissonian, the (2,max(r, 2))-

core percolation is (i) continuous with critical exponent ζ = 2 if d < d̄ = 1; (ii) continous

with critical exponent ζ = 1 if d = d̄; and (iii) hybrid with critical exponent ζ = 1/2 if

d > d̄. The same set of critical exponents was found for the heterogeneous-K-core [16].

B. K = 2 and S = 2

In this section we study the (2, 2)-core. A similar definition of removable hyperedges was

used in [3], where the core obtained from the GLR procedure is used to study the vertex

cover problem in uniform hypergraphs.

In this case, Eq. (S16) reduces to

δ =
∞∑

r=1

Qh(r)αr−1. (S42)

The relative size of the (2, 2)-core can be calculated by considering the probability that

a randomly chosen vertex is connected to at least two non-removable hyperedges and the
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FIG. S4. Phase diagram of (2,max(r, 2))-core percolation on hypergraphs with Poisson vertex

degree distributions. Black circles and black line represents the phase boundary of d-uniform

hypergraphs and hypergraphs with Poisson hyperedge cardinality distribution, respectively.

probability that a degree-one vertex is connected to a hyperedge with less than (r−2) other

degree-one vertices. This results in

s2c =
∞∑

k=2

Pn(k)
k∑

l=2

(
k

l

)
(1− δ)lδk−l. (S43)

Eqs. (S19) and (S42) have the same critical point as Eqs. (S17) and (S16). Therefore, for

(2, 2)-core we recover the result found in the graph case that both the (2, 2)-core and the

GCC emerge at the same critical point [6]. We can compute the critical point by combining

Eq. S21, S42 and S30 at α = δ = 1, obtaining

d2 − d1
d1

c∗2 − c∗
c∗

= 1, (S44)
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In this case the phase transition is always continuous (see solid lines in Fig. S3 c and d) and

for the studied hyperedge cardinality and vertex degree distributions we have η = 2.

As before, we assume that the moments of the vertex degree and hyperedge cardinality

distributions do not diverge. Let us consider points around the critical point, such as,

α = 1 − ζ with ζ = 0+ and c = c∗ + χ with χ = 0+. We can define the function from

Eqs. S21 as a function of α and χ( i.e. F2c(α, c)). By expanding Fg(α, χ) around the point

(α, c) = (1, c∗), and combining it with result from Eq. S25 at the critical point, we can

rewrite Eq. S6 as

∂2F2c(α, c)

∂2α

∣∣∣∣
(1,c∗)

ζ2 − 2
∂2F2c(α, c)

∂α∂c

∣∣∣∣
(1,c∗)

χζ + (· · ·) = 0. (S45)

Note that for this case the Eq. S30 is still valid. We obtain

ζ ∼ χ. (S46)

By combining this equations with the fact that s2c(α
∗) = 0 and the result from Eq. S33, we

obtain

s2c ∼ χ2. (S47)
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IV. CORE PERCOLATION ON HYPERGRAPHS

In Sec. IV A we show the relation between the hyperedge covering problems and the

dominating set problem Sec. IV A We also show how our algorithm is a generalization of the

greedy leaf removals procedure [17] used to solve the dominant set problem in polynomial

time, and that the core obtain trough our methodology is always smaller than produced by

the greedy leaf removal. In Sec. IV B to Sec. IV E we show the detailed derivations for the

equations in the main text.

A. Relation between hyperedge and vertex covering problems and the minimum

dominating set problem

The minimum dominating set (MDS) is the smallest set of vertices, D of a graph G, so

that every vertex in G is adjacent to at least one vertex in D. The MDS can be mapped

to a minimum hyperedge cover in a hypergraph composed by the same vertices as in G and

for each vertex v1 there is an hyperedge, h1, that contains v1 and all neighbors of v1 (see

Figure S5). Therefore if we find the set of hyperedges [vi, ..., vj], that covers all vertices in

this hypergraph, the dominanting set of graph G is given by [vi, ..., vj]. Our method is a

generalization of the method proposed in [17]. Note that our method doesn’t focus onleaves,

i.e., vertices with degree one. As shown in Figure S5, even given the fact that there is no

one-degree vertices, our method can still solve the MDS exactly in polynomial time.

We emphasize that the greedy leaf removals rules described in [17] are special cases of our

method. Let us consider the first rule: if vertex vi is an unobserved leaf vertex (which has

only a single neighbor, say vj), then occupying vj but leaving vi empty must be an optimal

strategy. And let us now consider the hypergraph with the same nodes as the original graph,

and hyperedges hi that represent the vertices observed by node vi. For a leaf vi the set of

vertices that are covered by hyperedge hi is a subset or equal set to the ones covered by

hyperedge hj, i.e. Vi ⊆ Vj, then hi can be removed. After this, the hyperedges that cover

vi are a subset of or equal to the set of hyperedges that cover hj (Hi ⊆ Hj), and a subset

or equal set of hyperedges that cover the other neighbors of vj, in the original network, vk

(Hi ⊆ Hk). Then vertices vj and vk are removed. Note that all observed nodes are removed

from the network, in our method, since they do not need to be observed anymore, but we
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FIG. S5. A graph and the associated hypergraph. Hyperedge hi represents vertices observed by

vertice vi. Solving the hypergraph’s minimum hyperedge cover set is equivalent to solve the graph’s

dominating set. The red vertex represents the solution of the minimum dominating set problem in

graph (a), the red edge the solution of the minimum hyperedge cover set problem.

still keep the hyperedges associated with them because they can still be used to cover other

vertices. After this process the cardinality of hyperedge hj is one, meaning that hj is part of

a minimum hyperedge cover set. In terms of dominating set it means that occupying node

j is an optimal strategy. Let us now consider the second rule : if vertex vi is an unobserved

leaf vertex (which has only a single neighbor, say vj), then occupying vj but leaving vi empty

must be an optimal strategy, and if vi is an empty but observed vertex and at most one of its

adjacent vertices is unobserved, then it must be an optimal strategy not to occupy vi. We

emphasize that in our hyperedge all observed vertices vk are automatically removed from

the network. If all except at most one neighbor of vertex i is unobserved,vj, then hi can

also be removed because all vertices covered by hyperedge vi are also covered by vertex, vj

(Hi ⊆ Hj). In terms of dominating set it means that not occupying vertice vi is an optimal

strategy.

Table I shows the size of the cores associated with the dominating set, for the eleven

networks analyzed in [17]. For most networks our method shows a considerable improvement,

. For some of them, our method actually find no core left.
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Networks N M sglr sd

RoadEU 1177 1417 0.260 0.167

PPI 2361 6646 0.007 0.000

Grid 4941 6594 0.122 0.056

IntNet1 6474 12572 0.001 0.000

Author 23133 93439 0.391 0.000

Citation 34546 420877 0.326 0.310

P2P 62586 147892 0.001 0.000

Friend 196591 950327 0.031 0.001

Email 265214 364481 0.002 0.000

Webpage 875713 4322051 0.185 0.004

RoadTX 1379917 1921660 0.406 0.342

TABLE I. Normalized size of the cores associated with the minimum dominanting set problem for

eleven real-world networka, using the greedy leaf removal procedure from[17], sglr, and using our

approach sd. N and M are, respectively, the total number of nodes and links in the network.

B. Number of hyperedges contained in the core

In the main text we characterize the size of the core as the number of vertices contained

in the core, we can also compute the number of hyperedges in each core, s′v and s′h. We can

use the fact that the vcore of a hypergraph is hcore of the dual hypergraph. Thus, we can get

Eqs. (1) (2) (7) and (8) in the main text by the following transformation

α→ δ (S48)

δ → β (S49)

β → ε (S50)

ε→ α (S51)

on Eqs. (1) to (4) from the main text. Because the vertices of an hypergraph are hyperedges

in the dual one, we obtain that s′h is given by

shh =
∞∑

k=2

Ph(r)
k∑

l=2

(
k

l

)
(1− β − α)lαk−l, (S52)
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where α, β ,δ and γ are obtained by solving Eqs. (1),(2) (7) and (8) in the main text. Using

the same argument we can conclude that s′h is given by

shv =
∞∑

k=2

Ph(r)
k∑

l=2

(
k

l

)
(1− α− β)lβk−l, (S53)

where α, β ,δ and γ are obtained by solving Eqs. (1),(2) (7) and (8) in the main text.

C. vcore for uniform hypergraphs - critical point

There is a simple relation between vcore critical point and the mean cardinality d1 for

uniform hypergraphs with d1 > 1. Let us start by rewriting Eq. 1 in the main text as

Fc1(α, c) = 0 (S54)

where we define

Fc1(α, c) ≡
∞∑

k=1

Qn(k)εk−1 − α. (S55)

For uniform-Poisson hypergraph Eqs (1), (2) and (7) and (8) in the main text can be reduced

to

x = e−c(d1−1)y (S56)

y = e−c(d1−1)x, (S57)

where we define x ≡ αr−1 and y ≡ (1 − β)r−1. The function defined in Eq. S55 can be

written as a function of x and c,

Fc1(x, c) ≡ exp
(
−c (d1 − 1) e−c (d1−1) x)− x. (S58)

The critical point is given by α∗ = (c∗ (d1 − 1))1/(1−d1) and c∗ = e/(d1 − 1).

D. vcore - critical exponent

Eqs. 1 and 2, 7 and 8 in the main text can be written as

α = A(1− z) (S59)

z = B(h) (S60)

h = A(1− δ) (S61)

δ = B(α) (S62)
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where we define z ≡ 1−ε, h ≡ 1−β, A(1−z) ≡∑∞k=1Qn(k)(1−z)k−1 and B(h) ≡∑+∞
r=2Qr(r)h

r−1 .

Fv(α, c) can be written as

Fv(α, c) = H(H(α, c), c)− α, (S63)

where we define

H(α, c) ≡ A(1−B(α), c1). (S64)

This function has the same form for the graph case, (see Eq. S60 from [18]). The only

difference is the way we define the function H(α, c). Nevertheless it obeys the same relation,

and therefore has the same critical exponent ζ1 = 1, i.e:

∂H(α, c)

∂α

∣∣∣∣
(α,c)=(α∗,c∗)

= −1, (S65)

∂Fh(α, c)

∂c

∣∣∣∣
(α,c)=(α∗,c∗)

= 0, (S66)

∂2Fh(α, c)

∂2α

∣∣∣∣
(α,c)=(α∗,c∗)

= 0. (S67)

From an expansion of Fh as a function of (c− c∗), for c− c∗ = 0+, it follows that

α− α∗ ∼ (c− c∗)1/2, (S68)

β − β∗ ∼ (c− c∗)1/2, (S69)

1− β − α ∼ (c− c∗)1/2, (S70)

and

svv ∼ (c− c∗), (S71)

witch is equivalent to Eq. (6) in the main text, for ζ1 = 1.

E. hcore - critical exponent

Eqs. (1) to (4) in the main text can be written as

α = A(ε) (S72)

ε = B(1− u) (S73)

u = A(v) (S74)

v = B(1− α) (S75)
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where we define u ≡ 1−β and v ≡ 1−δ. The function Fc2(α, c) ≡ A(ε, c)−α can be written

as

Fh(α, c) = G(G(α, c), c)− α, (S76)

where we define

G(α, c) ≡ A(B(1− u), c1). (S77)

This function has the same form as Eqs. S64. The only difference is how we define the

function G(α, c). Nevertheless it obeys the same relations as Eqs. S65 to S70, thus,

svh ∼ (c− c∗)ζ2 , (S78)

with ζ2 = ζ1 = 1.
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V. SIMULATIONS

We compare our analytical calculations with random hypergraphs generated in the fol-

lowing ways.

1. Poisson-Uniform hypergraphs

We first generate random hypergraphs where all hyperedges have the same cardinality

d and the vertex hyperdegrees follow a Possion distribution with average value c1. We can

generate this hypergraphs by creating N nodes and L hyperedges of cardinality d. We then

fill the hyperedges with random selected vertices from our list of nodes. In the end

c = dL/N. (S79)

2. Poisson-Poisson hypergraphs

In the Poisson-Poisson hypergraphs we generate random hypergraphs where and both the

vertex degrees and hyperedge cardinalities follow a Possion distribution with average c (or

d), respectively. We can generate this hypergraphs by creating N vertices and L hyperedges.

We then select random vertices and add it to a random selected hyperedge until the average

hyperdegree of the network is

c = d× L/N. (S80)

A. Results

Figures S6 to S10 show that numerical simulations agree well with the analytical calcu-

lations. In the simulations we used hypergraphs of size 104 vertices.
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(a) (b)

FIG. S6. The relative size of the giant connected component, sg, for hypergraphs with Poisson ver-

tex degree distributions and mean degree c. Black solid lines: theoretical results. Dots: numerical

results from hypergraphs with 104 vertices. (a) d-uniform hypergraphs where all hyperdege have

the same cardinality d. (b) the hyperedge cardinality follows a Poisson distribution with average

cardinality d.
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FIG. S7. (a) The relative size of the (2, S)-core with S = max (r − 1, 2) for hypergraphs with

Poisson vertex degree distributions and mean degree c. Black solid lines: theoretical results.

Dots: numerical results from hypergraphs with 104 vertices. (a) d-uniform hypergraphs where all

hyperdege have the same cardinality d. (b) the hyperedge cardinality follows a Poisson distribution

with average cardinality d.
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FIG. S8. The relative size of the (2, S)-core with S = 2 for hypergraphs with Poisson vertex degree

distributions and mean degree c. Black solid lines: theoretical results. Dots: numerical results

from hypergraphs with 104 vertices. (a) d-uniform hypergraphs where all hyperdege have the same

cardinality d. (b) the hyperedge cardinality follows a Poisson distribution with average cardinality

d.
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(a) (b)

FIG. S9. hcore obtained from simulations. The relative size of the h-core for hypergraphs

with Poisson vertex degree distributions and mean degree c. Black solid lines: theoretical results.

Dots: numerical results from hypergraphs with 105 vertices. (a) d-uniform hypergraphs where all

hyperdege have the same cardinality d. (b) the hyperedge cardinality follows a Poisson distribution

with average cardinality d.
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FIG. S10. vcore obtained from simulations. The relative size of the v-core for hypergraphs

with Poisson vertex degree distributions and mean degree c. Black solid lines: theoretical results.

Dots: numerical results from hypergraphs with 105 vertices. (a) d-uniform hypergraphs where all

hyperdege have the same cardinality d. (b) the hyperedge cardinality follows a Poisson distribution

with average cardinality d. The large fluctuation for d = 2 and 3 are due to the relatively large

number of hypereges with cardinalty 1, and the chance that if a edge is connected to a hypereges

with cardinalty 1 is automatically removed.
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