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Abstract

Aerosol particles experience significant photophoretic forces at low pressure. Previous work assumed the average particle temper-
ature to be very close to the gas temperature. This might not always be the case. If the particle temperature or the thermal radiation
field differs significantly from the gas temperature (optically thin gases), given approximations overestimate the photophoretic force
by an order of magnitude on average with maximum errors up to more than three magnitudes. We therefore developed a new general
approximation which on average only differs by 1 % from the true value.

Keywords: photophoresis; non-equilibrium; rarefied gas; aerosols; free molecular flow; thermal radiation

1. INTRODUCTION

If particles are entrained in a gaseous environment they are
subject to photophoretic forces (Yalamov et al. 1976a,b). Pho-
tophoresis is strongest for particles in a size range compara-
ble to the mean free path of the surrounding gas. It is con-
sidered to act on dust in Earth’s atmosphere (Hidy & Brock
1967; Yalamov et al. 1976a,b; Beresnev et al. 2003). Also, it
might work in protoplanetary disks on particles as large as me-
ter (Krauss & Wurm 2005; Kuepper et al. 2014b). It can also
aid to levitate particles in laboratory settings (van Eymeren &
Wurm 2012).

In all applications the force can be estimated by analytical ap-
proximations which exist in the literature for the free molecule
regime (fm) (Hidy & Brock 1967; Yalamov et al. 1976a; Beres-
nev et al. 1993), the continuum regime (Yalamov et al. 1976b)
and the transition regime (Reed 1977; Mackowski 1989). In the
fm regime, the interaction of gas molecules with a particle can
be treated as individual collisions and we restrict our work to
this case here.

Previous approximations for the free molecule regime as-
sume spherical particles that are suspended in a gas with its tem-
perature only slightly deviating from the particle’s surface tem-
perature. This is not always an appropriate assumption and the
motivation of this work is to introduce an equation with an ex-
tended scope to describe photophoresis also for particle surface
temperatures largely differing from the gas temperature, for in-
stance by a factor of two. This is e.g. the case for laser induced
photophoresis in the laboratory (Daun et al. 2008; Loesche et al.
2014; Kuepper et al. 2014a; Wurm et al. 2010). In some of the
experiments particles are embedded in a gas at room tempera-
ture and are illuminated with a laser of several kW m−2, which
heats the particles to several hundred K above room tempera-
ture. Also cool dust might be embedded in a hot gas environ-
ment in protoplanetary disks with temperature differences of an
order of magnitude (Akimkin et al. 2013). Additionally, in the
optically thin parts of protoplanetary disks the gas temperature

is different from the thermal radiation (0 K). Comparison of the
given approximations with numerical calculations for the free
molecule regime showed that the classic approximations might
deviate from the true value by more than an order of magnitude
(Loesche & Wurm 2012; Loesche 2015; Loesche et al. 2015).
We therefore suggest a more accurate analytic equation which
also includes a significantly extended scope of gas temperatures
and incorporates thermal radiation.

2. PHOTOPHORESIS IN THE FREE MOLECULAR
FLOW

T (ζ)
O

ζ = 0

ζ = π

r0

z

radiative flux I

Figure 1: Visualization of the situation considered. Illumination is directed
along z-axis, thus for a homogeneous particle the surface temperature only de-
pends on ζ (spherical coordinate system (r, ξ, ζ)). The sphere’s radius is r0. Gas
particles impinge at temperature T	g and scatter at T⊕g .

Below, we describe a homogeneous solid particle by a sphere
of radius r0. Non-spherical particles can be quantified in
the same way (Loesche 2015; Loesche et al. 2013) by using
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the radius of a volume-equivalent sphere, yielding an average
force exerted on the particle. Also inhomogeneous particles
can be described by the same means as homogeneous spheres
(Loesche 2015; Loesche et al. 2013).

Being subject to illumination from a fixed direction of inci-
dence (e.g., −ez, see Fig. 1), the surface temperature T (r0, ξ, ζ)
for a homogeneous sphere is only depending on the spherical
coordinate ζ due to symmetry.

The model is subdivided into two parts. It comprises a kinetic
model to describe the interaction of the gas with the particle
surface in the free molecule regime and a heat transfer model to
describe the particle heating due to irradiation, including inter-
action with the gas and thermal radiation. The gas is assumed
to be in thermal equilibrium within a large area around the sus-
pended particle.

2.1. Kinetic model

For the kinetic description the gas molecule density σ(r, v, t)
with normalization

∫
σ(r, v, t) d3r d3v = N (gas molecule

count) is used. The presence of a particle suspended in an effec-
tively infinite gas imposes a boundary condition on σ, formally
written as

σ(r, v, t)
∣∣∣
∂V =

σ	(r, v, t) n · v < 0
σ⊕(r, v, t) n · v > 0 ,

(1)

with n denoting the normal vector to the surface. In the follow-
ing, the marks ‘⊕’ and ‘	’ always restrict a physical variable to
one of the two velocity half-spaces n·v > 0 and n·v < 0, respec-
tively. In other words, the index ‘	’ distinguishes the physical
variables which are related to the undisturbed gas molecules
from those molecules which have interacted with the particle,
marked with the index ‘⊕’. Correspondingly, T⊕g and T	g denote
the temperature of the gas molecules in their respective velocity
half-spaces. The subsequent balance of the momentum transfer
between gas molecules and the suspended solid across its sur-
face reads (Hidy & Brock 1970)

F = −

∫
∂V

dA ·
(
Π⊕ +Π	

)
(2a)

Π	/⊕(r, t) =

∫
	/⊕

d3vσ	/⊕(r, v, t) mg v ⊗ v , (2b)

where Π is the pressure or stress tensor.
We do not consider evaporation (Yalamov et al. (1976b) did

for the continuum regime), fragmentation and other processes,
as we assume to remain below the melting temperature. Fur-
thermore, the gas does not penetrate the particle surface (first
boundary condition)

n ·
[
n⊕(r, t) v⊕(r, t) + n	(r, t) v	(r, t)

]
= 0 , (3)

where the spatial gas density n has been introduced (not to
be confused with the normal vector n). v⊕/	 denotes the
component-wise averaged gas speed in the respective half-
space. Averages are defined by Eq. A.1. Therefore, for

isotropic velocity distributions (a consequence of the thermal
equilibrium of the gas), the net force exerted on a particle is
(see Loesche (2015), section 2.2 for details)

F = −
1
3

∫
∂V

mg n (v	)2 dA

1 +

∣∣∣∣∣∣∣v	nv⊕n

∣∣∣∣∣∣∣ (v⊕)2

(v	)2

 , (4)

and we simply write n for n	 from now on, as it describes the
unscattered gas.

Since the free molecular flow regime is characterized by
large Knudsen Numbers Kn, it can be assumed that there are no
collisions between gas molecules on the characteristic scale of
the suspended body. In this regime, for an isolated, force-free,
thermally equilibrated, effectively infinite gas, the Boltzmann
equation can be solved by the stationary and homogeneous di-
mensionless velocity distribution

σ(v) ∼ e−
mg ṽ2

2kBTg . (5)

In the two velocity half-spaces ⊕ and 	, we therefore choose the
two following Maxwell-Boltzmann-based velocity distributions
with thermal and momentum accommodation (second bound-
ary condition)

σ	(v) = nσ	0 (v) = n
(

mg

2πkBT	g

)3/2

e
−

mgv2

2kBT	g (6a)

σ⊕(v) = αm n⊕
(

mg

2πkBT⊕g

)3/2

e
−

mgv2

2kBT⊕g + (1 − αm) σ	(v⊕0 ) (6b)

T⊕g = T	g + α
(
T − T	g

)
(6c)

v⊕0 = v − 2n (n · v) , (6d)

introducing the respective coefficients α and αm being the ther-
mal and momentum accommodation coefficient. For thermal
equilibrium between gas and surface, both coefficients reside
in the interval [0,1], otherwise this is not necessarily the case
(Goodman 1974). Applying Eq. 2 together with the boundary
conditions given by Eqs. 3 and 6 yields the kinetic equation for
the photophoretic force in the free molecule regime

Fphot = −
1
2

∫
∂V

dAαm p

1 +

√
T⊕g
T	g

 . (7)

This integral covers both ∆T - and ∆α(m) photophoresis, i.e. due
to the variation of the surface temperature or the variation of
the thermal or momentum accommodation coefficient across
the surface.

In this paper we present a powerful approximation for ∆T
photophoretic forces exerted on homogeneous spheres, result-
ing from directed illumination as shown in Fig. 1. Due to ho-
mogeneity, the sphere is assumed to have a rotational symmet-
ric surface temperature, and the integral reduces to (x = cos ζ)

Fphot = −π r2
0 p

1∫
−1

αm

√
T⊕g
T	g

x dx ez , (8)

yielding the longitudinal photophoretic force. Consequently α
and αm are considered constants further on.
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2.2. Surface temperature: Heat transfer problem
For the general case, where T is unknown, it can be obtained

by solving a heat transfer problem. In a spherical system with
rotational symmetry, the solution is basically a series of Legen-
dre polynomials. For convenience, the ansatz for the heat trans-
fer problem is constructed insofar as the surface temperature is
given by

T (r0, ζ) =

∞∑
ν=0

Aν Pν(cos ζ) . (9)

Eventually, the linearization of
√

T⊕g in Eq. 8 to its first order

at the mean temperature T⊕g (see Eq. A.2), and the application
of Legendre Polynomial’s orthogonality relation (see Eq. A.3)
collapses the integral to

Fphot ' −
π

3
ααm

p√
T⊕g T	g

r2
0 A1 ez , (10)

and the force is approximately only a function of A1. The mean
temperature of the scattered gas is (with Eq. 6c)

T⊕g = T	g + α
(
T − T	g

)
. (11)

The mean surface temperature T of the particle is solely deter-
mined by the 0-th expansion coefficient

T =
1

4π

2π∫
0

π∫
0

T (ζ) sin ζ dζ dξ
Eq. 9
= A0 . (12)
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Figure 2: Temperature distribution across the surface of a sphere with r0 =

0.66 mm at different thermal conductivities, along the model setup shown in
Fig. 1. The intensity is I0 = 20 kW m−2 (ε = 1), the radiation temperature is
T rad = 293 K at h = 0 kW m−2 K−1.

We note that in Eq. 10, the intrinsic linearization error of the

square root
√

T⊕g in Eq. 7/Eq. 8 is introduced, which basically
all available approximations for longitudinal fm photophoresis
contain (Hidy & Brock 1967; Yalamov et al. 1976a; Beresnev

et al. 1993; Rohatschek 1995). The deviations from the true

value are more or less significant, depending on where
√

T⊕g
was linearized at (except for Yalamov et al. (1976a), the classi-
cal approximations use T	g due to their condition T ' T	g ; for
details see sec. 2.4). To avoid this error, Tong (1973) suggested
a numerical evaluation of the square root for higher order series
of T⊕.

However, small particles, but also larger ones with a higher
thermal conductivity will experience a more uniform heat-up,
therefore the linearization of the square root suffices well. Con-
versely, if the temperature gradient is too strong, the introduced
error can be significant. We will discuss the solutions of the
heat transfer problem in sec. 2.5 and show that the numbers

ϕ	 =
I r0

k T	g
and ϕrad =

I r0

k Trad
,

but also Trad and T	g , respectively, are important measures for
the quality of the linearization made in Eq. 10. As an example,
in Fig. 2 we show exemplary mantle temperatures for a sphere
of r0 = 0.66 mm, experiencing directed illumination of I0 =

20 kW m−2 (ε = 1) at Trad = 293 K with h = 0 kW m−2 K−1.

For k < 0.1 W m−1 K−1 the linearization of
√

T⊕g at T⊕g will
introduce errors, as the temperature curves lack symmetry.

2.2.1. Ansatz

The governing equation for the heat transfer problem we con-
sider has the form (I = ε I0 is the reduced intensity)

k ∆T = −I q(r, cos ζ) , (13)

where q is the normalized heat source function with∫
V

q(r, ζ) dV = π r2
0 . (14)

For the general solution

T (r, ζ) = T1(r, ζ) + T2(r, ζ) (15a)

the homogeneous and particular ansatz functions, respectively,
are

T1(r, ζ) =

∞∑
ν=0

(Aν − Bν Jν(r0))
(

r
r0

)ν
Pν(cos ζ) (15b)

T2(r, ζ) =

∞∑
ν=0

Bν Jν(r) Pν(cos ζ) . (15c)

Then, by construction, T1(r0, ζ) + T2(r0, ζ) yield the surface
temperature as Eq. 9. The particular solution employs the
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asymmetry factor Jν

Jν(r) =
1
r0

r−ν−1

r∫
0

sν+2qν(s) ds + rν
r0∫

r

sν−1qν(s) ds

 (16a)

qν(r) =
2ν + 1

2

1∫
−1

q(r, x) Pν(x) dx (16b)

Jν ≡ Jν(r0) =

r0∫
0

(
r
r0

)ν+2

qν(r) dr . (16c)

qν(r) are the Legendre expansion coefficients of the source q.
This construction gets clearer upon applying the Laplace oper-
ator on the particular solution T2, which yields the Legendre
series of the inhomogeneity q

−
k
I

∆T2(r, ζ) =

∞∑
ν=0

qν(r) Pν(cos ζ) ≡ q(r, cos ζ) , (17)

for the right coefficients Bν (see sec. 2.2.4). This eventually
reproduces the heat equation (Eq. 13).

2.2.2. Asymmetry factor
Obtaining J1 is generally complicated. Several works

(Yalamov et al. 1976a,b; Dusel et al. 1979; Arnold et al. 1984;
Greene et al. 1985; Mackowski 1989; Xu et al. 1999; Ou &
Keh 2005; Li et al. 2010) determined it, e.g., for Mie scatter-
ing (usage of corresponding normalized source function q). For
perfectly absorbing spherical particles, the entire radiation is
deposited at the surface, which is often used. The correspond-
ing normalized source for light towards the direction −ez reads
(Fig. 1, i.e. pointing downwards)

q(r, ζ) = δ (r − r0) Θ (π/2 − ζ) | cos ζ | , (18)

and J0 and J1 yield (Eq. 16c)

J0 =
1
4

(19a)

J1 =
1
2
. (19b)

For light into the direction ez it is q(r, ζ) =

δ (r − r0) Θ (ζ − π/2) | cos ζ |, and therefore J1 = −1/2.
The factor J1 = 1/2 is commonly used in Wurm et al. (2010);
Rohatschek (1995) and others, as generally the positive z-axis
is assigned to the illuminated half-sphere. Along Eq. 14, the
deposited power is given by 4πr2

0 I J0.

2.2.3. Boundary conditions
To account for thermal radiation, the following boundary

condition was chosen

− k
∂T
∂n

∣∣∣∣∣
∂V

= h
(
T − T	g

)
+ σSBε

(
T 4 − T 4

rad

)
. (20)

To prevent nonlinear mixing of the expansion coefficients Aν

and Bν in Eq. 15 at multiple orders, the term σSBε(T 4 − T 4
rad)

will be linearized at the yet unknown mean temperature T̃

σSBε(T 4 − T 4
rad) = σSBε

(
4T T̃ 3 − T 4

rad − 3T̃ 4
)

+ . . . (21)

T̃ =

 1
4π

2π∫
0

π∫
0

T (ζ)4 sin ζ dζ dξ


1/4

. (22)

The first addend in Eq. 20 accounts for the energy flux at the
surface between particle and gas, which is (for the gas molecule
density distributions in Eq. 6)

n ·


∫
⊕

d3vσ⊕ v
1
2

mg v2 +

∫
	

d3vσ	 v
1
2

mg v2

 = h
(
T − T	g

)
,

(23)
introducing the heat transfer coefficient in this context as (v is
the mean of the gas molecule speed v = ‖v‖ along Eq. A.1)

h = αm α p

√
2kB

πT	g mg
=

1
2
αm α

p
T	g

v . (24)

For diatomic gases the factor 1
2 in h turns to 3

4 (Rohatschek &
Zulehner 1985).

2.2.4. Solution
The expansion coefficients Bν in the general solution Eq. 15

T (r, ζ) =

∞∑
ν=0

(Aν − Bν Jν(r0))
(

r
r0

)ν
Pν(cos ζ)+

∞∑
ν=0

Bν Jν(r) Pν(cos ζ)

can be obtained by inserting Eq. 15c in Eq. 13 as

Bν =
I r0

(2ν + 1)k
. (25)

Conversely, the coefficients Aν are determined by integrating
Eq. 20 with Pν in [-1,1] together with the identity

J′ν(r0) = −
1 + ν

r0
Jν(r0) , (26)

yielding Aν as

Aν =
I Jν

ν k
r0

+ h + 4σSBε T̃ 3
ν ≥ 1 (27a)

A0 =
h T	g + σSBε

(
3T̃ 4 + T 4

rad

)
+ I J0

h + 4σSBε T̃ 3

Eq. 12
= T . (27b)

The unknown temperatures T and T̃ can be related by inte-
grating the boundary condition Eq. 20 around the sphere, and
using Gauss’s theorem

−k
∫
∂V

∇T · dA =

∫
∂V

(
h
(
T − T	g

)
+ σSBε

(
T 4 − T 4

rad

))
dA

= −k
∫
V

∆T dV

Eq. 13
= ε I0

∫
V

q(r, ζ) dV
Eq. 14

= πr2
0 ε I0 . (28)
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Then, the two temperatures T and T̃ (Eqs. 12 and 22) meet the
balance (mean value theorem)

πr2
0 ε I0 = 4πr2

0

(
h
(
T − T	g

)
+ σSBε

(
T̃ 4 − T 4

rad

))
. (29)

For h � 4σSBε T̃ 3 the particle is basically in radiative equi-
librium along the boundary condition Eq. 20, therefore T̃ is
equivalent to the black-body temperature

lim
h→0

T̃
Eq. 29

= Tbb , (30)

given as

Tbb =
4

√
I0

4σSB
+ T 4

rad . (31)

Similarly, with Eq. 19a it can be inferred, that

lim
h→0

T
Eq. 27b

= Tbb . (32)

This coincidence is a direct result of the linearization of the
boundary condition Eq. 20. Generally, for functions f (x), un-

less f ' const, both mean values are not similar | f | � | f |4
1/4

, as
the first and fourth norm are not equal. This can also be under-
stood as for the integration of | f |4 the coefficients of the Leg-
endre polynomial expansion of | f | mix up and multiple coeffi-
cients contribute, not solely A0. Though for small particles —
or large particles that are good conductors —, the 0-th tempera-
ture expansion coefficient will dominate A0 � A1 (T ' const),
and therefore both means are comparable T̃ ≈ T . Large par-
ticles with no high enough k generally will develop a stronger
temperature gradient during direct illumination, just as small
particles do for low thermal conductivities k (Fig. 1), therefore
the ratio r0/k in ϕrad plays a role here. For example, numer-
ical calculations on two spheres of r0 = 1 m and r0 = 1 mm
with k = 0.1 W m−1 K−1 and h = 0 kW m−2 K−1 yielded mean
temperatures of T = 462.3 K and T = 551.0 K, respectively,
which are not the black-body temperature of Tbb = 556.0 K at
I = 20 kW m−2 and Trad = 293.2 K.

Conversely, for the cases where h contributes, the unknown
mean temperatures T and T̃ can be determine by solving
Eq. 27b and 29. Because of contact with the cooler gas it can
be expected that T̃ and T = A0 will be lower than in the case
where h→ 0.

2.3. Result

In Eq. 10, only the coefficient A1 contributes to the pho-
tophoretic force 1. Inserting the previously found A1 (Eq. 27a,
J0 = 1/4, as Eq. 14 holds) yields

Fphot ' −
π

3
ααm

p√
T⊕g T	g

r2
0

I J1
k
r0

+ h + 4σSBε T̃ 3
ez (33a)

1reminding, that the square root in Eq. 7 was linearized at T⊕g

with

T̃ =
1
2


√ √

2h
σSB
√
ψε
− 2ψ −

√
2ψ

 (33b)

T =
h T	g + σSBε

(
3T̃ 4 + T 4

rad

)
+ I/4

h + 4σSBε T̃ 3
(33c)

T⊕g = T	g + α
(
T − T	g

)
(33d)

and the auxiliary variables

κ = σSBε


√

81h4 + 12σSBε
(
4hT	g + ε

(
I0 + 4σSBT 4

rad

))3
+ 9h2


(34a)

ψ =

3√2
σSBε

κ2/3 − 8 3
√

3hT	g − 2 3
√

3ε
(
I0 + 4σSBT 4

rad

)
2 62/3 3

√
κ

. (34b)

Eq. 34a and 34b arise from solving the quartic equation for T̃
(Eq. 33b), which forms when Eq. 27b is inserted into 29. T̃
(Eq. 33b) is very close to the numerical values (solving Eq. 13
with the non-linear boundary condition Eq. 20, also see 2.4; or
solving the balance Eq. 29 with the assumption T = T̃ ). Con-
versely, Eq. 33c to determine T is independent from r0 and k,
and thus it deviates from the real values as k/r0 gets smaller.
But this does only have little consequences for Fphot (Eq. 33a)
though (as the mantle temperature will become non-symmetric
anyway, as already discussed in sec. 2.2), which will be shown
in sec. 2.4.

For Trad = T	g and low intensities I, i.e. lim
I→0

T̃ ≈ Trad, Eq. 33a

turns into Beresnev et al. (1993)’s Eq. 28, which is the free
molecule regime limit for the far more advanced kinetic model
in Beresnev et al. (1993), which intentionally also covers parts
of the transition regime.

For h � 4σSBε T̃ 3, above equations reduce to

Fphot ' −
π

3
ααm

p√
T⊕g T	g

r2
0

I J1
k
r0

+ 4σSBεT 3
bb

ez (35a)

T⊕g = T	g + α
(
Tbb − T	g

)
(35b)

Tbb =
4

√
I0

4σSB
+ T 4

rad . (35c)

This is especially the case for low pressures.

2.4. Comparison to standard approximations
It is of interest to know the behavior of present approxima-

tions for particles in radiative equilibrium with an external radi-
ation field and being notably hotter/colder than the surrounding
gas, i.e. |T/T	g | ≥ 1 or |T/T	g | ≤ 1. Basically three different
standard approximations, which are valid for |T/T	g | ' 1 —
i.e. the particle’s mean surface temperature basically being the
gas temperature — are examined for this new setting to justify
the need for our new approximation. Cases with the particle on
average being much hotter or colder than the surrounding gas
were mentioned earlier.
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Yalamov et al. (1976a); Hidy & Brock (1967); Rohatschek
(1995); Tong (1973) basically use a kinetic model that also em-
ploys Max-Boltzmann velocity distributions — valid for the fm
regime —, therefore the force as a function of the particle sur-
face temperature T can be written as Eq. 7 (but only Yalamov
et al. (1976a) incorporates momentum accommodation, there-
fore αm is not present in the other publications).

Beresnev et al. (1993); Chernyak & Beresnev (1993) use an
advanced kinetic model with momentum accommodation (nor-
mal and tangential), enabling their results not only to be valid
for the free molecule regime but also to cover parts of the tran-
sition regime. Nonetheless, they provide an equation for the
fm-regime limit, which we discuss here.

All approximations are very similar in structure to Eq. 33,
with T̃ → 0 for Yalamov et al. (1976a); Hidy & Brock
(1967); Rohatschek (1995); Tong (1973), and lim

I→0
T̃ → Trad and

Trad = T	g for Beresnev et al. (1993). Except for Yalamov et al.

(1976a), all models use T⊕g → T	g . Tong (1973) does not pro-
vide an approximation for the integral equation 7, but suggests
its numerical evaluation.

Figure 3: Parameter sweep histogram for 63 · 106 parameter combinations.
The parameter sweep intervals are given in Tab. 2. ρ (Eq. 36) is the ratio of the
corresponding approximation of the photophoretic force and the total of the ef-
fectively exact numerical result given by Eq. 7, where the surface temperatures
were numerically obtained with COMSOL. The bin size is 0.005 (0.5%). Color-
coded arrows point towards the respective histogram’s peak. The histogram of
the new approximation (black) is restricted to 0.40 ≤ ρ ≤ 1.07 while the other
approximations overestimate the force up to several orders of magnitude.

For all subsequent considerations it is assumed that h = 0. In
Tab. 1, the quality of the new approximation compared to the
standard approximations is discussed by their ratios with the
total of Eq. 7, which is our underlying reference:

ρ =
approximation
|Fphot|

where Fphot is given by Eq. 7 . (36)

As true value we denote the numerical integration of this inte-
gral based on the solution of the heat transfer problem, where
the heat equation Eq. 13 with the non-linear boundary condition
Eq. 20 was solved. We do this by employing COMSOL for a
parameter sweep of 63 · 106 parameter combinations to obtain

the necessary temperature distributions on the particle surface
(details can be found in Loesche & Wurm (2012); Loesche et al.
(2013); Loesche (2015)). The parameters range in the intervals
given in Tab. 2. αm = 1, as not all examined models incorpo-
rate momentum accommodation. The accompanying histogram
is shown in Fig. 3.

Table 2: Intervals for the parameter sweep for the subsequent comparison
of the standard approximations and the new approximation with the numerical
values given from Eq. 7 ([a, b] denotes an interval between the numbers a and
b). T	g ranges from 50 to 1500 K in steps of 50 K, including the two values 10
K and 273 K. All intervals are equally subdivided (log scale; the additional ‘1
m’ for r0 means, there is a gap between 1 m and 0.11 m concerning this equal
subdivision). Details on the subdivision can be found in Loesche (2015).

parameter parameter sweep intervals

r0 [1.1 × 10−4, 1.1 × 10−1] m, and 1 m
k [10−3, 8] W m−1 K−1

α [0.1, 1]
αm 1
I [0.5, 40] kW m−2

T	g [10, 1500] K
Trad [0, 350] K

Fig. 3 and Tab. 1 show that the approximation given by
Eq. 35 is generally more accurate for longitudinal photophore-
sis for |T/T	g | ≥ 1 or |T/T	g | ≤ 1. Other approximations tend
to overestimate the photophoretic force up to several orders of
magnitude, since their validity is given only for small intensi-
ties, so that the particle’s mean surface temperature approxi-
mately corresponds to the gas temperature T	g . Comparing the
values in Tab. 1 for r0 up to 1 m (printed black) and up to 11
mm only (printed gray) suggests, that the new approximation’s
relative error interval basically remains constant, as the other
approximations’ error interval drastically grows with particle
size r0. We emphasize here, that the varied parameters do not
represent statistical data, and therefore Fig. 3 and Tab. 1 have
no strict mathematical meaning but rather show the behavior
and reliability of all approximations and provide a relative error
interval based on the chosen parameter range in this paper.

The new approximation Eq. 35 accounts for thermal radia-
tion and therefore also supports particle temperatures that sig-
nificantly deviate from the gas temperature. For the investigated
parameters, the maximum underestimation is about 50-60%,
whilst the maximum overestimation is only 7%. The best clas-
sic approximation is given by Yalamov et al. (1976a), where the
maximum overestimation is a factor of 38 000 (423 for r0 only
up to 11 mm) for the same parameters.

2.5. Discussion

In this subsection, we discuss the influence of all parameters
from which the new approximation depends on. We basically
concentrate on the case h � 4σSBε T̃ 3, where h effectively does
not contribute to the heat transfer problem. This is also due to
the evaluation of all approximations discussed in the previous
section. For a proper usage of the new approximation, we pro-
vide a condition for its perfect accuracy.
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Table 1: Statistical properties of ρ for selected approximations for the photophoretic force arising from directed illumination. A parameter sweep of 63 · 106

parameter combinations was performed along the parameter intervals given in Tab. 2. Values printed gray in round brackets are for r0 restricted to the interval
[0.11, 11] mm.

approximations for longitudinal
fm-photophoresis min max mean median STD

Eq. 10 in Hidy & Brock (1967),
12+20 in Rohatschek (1995)

0.38
(0.38)

275 022
(3 037)

50.0
(7.78)

2.33
(1.4)

473.6
(27.43)

Eq. 15 in Yalamov et al. (1976a) 1.00
(1.00)

38 318
(423.0)

45.1
(7.04)

2.25
(1.35)

341.8
(19.33)

Eq. 28 in Beresnev et al. (1993) 0.38
(0.38)

108 088
(1 587)

8.29
(3.19)

1.45
(1.18)

96.52
(10.10)

Eq. 35 0.40
(0.53)

1.07
(1.07)

0.97
(0.99)

1.00
(1.00)

0.10
(0.06)

In our model, the heat transfer problem’s solution depends
on r0, k, I0, ε, Trad and T	g (sec. 2.2.4), the photophoretic force
additionally depends on α and p. To obtain more information
about the solutions, we define the units free variables

λ =
r
r0

(37a)

τ	 =
T
T	g

and τrad =
T

Trad
(37b)

ϕ	 =
ε I0 r0

k T	g
and ϕrad =

ε I0 r0

k Trad
(37c)

ϑrad = σSB
T 4

rad

I0
. (37d)

Rewriting the heat equation Eq. 13 in this units free notation (τ
and ϕ are short for either τ	 or τrad and ϕ	 or ϕrad, respectively)
yields

∆̃τ = −ϕ q̃(λ, cos ζ) . (38)

∆̃ and q̃ can be found in sec. A.5. The boundary condition
Eq. 20 turns into

−
∂τ	
∂n

∣∣∣∣∣
∂V

= ϕ	T	g
h
I

(τ	 − 1) + ϕ	
σSB ε

I

((
τ	T	g

)4
− T 4

rad

)
(39a)

or

−
∂τrad

∂n

∣∣∣∣∣
∂V

= ϕrad
h
I

(
τrad Trad − T	g

)
+ ϕrad ϑrad

(
τ4

rad − 1
)
,

(39b)

respectively.
For a vanishing h (h � 4σSBε T̃ 3) the temperature T	g does

not contribute to the heat transfer problem. Subsequently, in the
τrad system, the solutions for the particle temperature T , given
by Eq. 15 and sec. 2.2.4 only depend on the parameters

T = T (ϕrad, ϑrad)

(Eqs. 37c and 37d). The photophoretic force Eq. 7 (for directed
illumination collapsed to Eq. 33, i.e. Eq. 35) depends on

Fphot = Fphot(ϕrad, ϑrad, α,T	g , p) .

T	
g = 50K, α = 0.1
T	
g = 50K, α = 0.7

1500K, 0.1
1500K, 1

10−4
10−2

100 102 104ϕrad
10−1

101
103

ϑrad

0.6

0.8

1

ρ

Figure 4: Here, ρ(ϕrad, ϑrad, α,T	g ) (Eq. 36) is the ratio of the new approxima-
tion Eq. 35 and the total of the effectively exact numerical result given by Eq. 7,
where the surface temperatures were numerically obtained with COMSOL.
Clearly visibly is a plateau, where the ratio is constantly 1, quasi-independently
of T	g and α. To examine this area, ρ is replotted for α = 1 as contours in Fig.
5.

For a contributing h, the structure is more complex.

For α = 1 and h � 4σSBε T̃ 3 ρ, given by Eq. 36, only de-
pends on ϕrad and ϑrad. For 0 < α < 1 ρ will be independent of
p

ρ = ρ(ϕrad, ϑrad, α,T	g ) ,

as shown in Fig. 4, where for four different pairs of T	g and α the
ratio ρ is plotted over ϕrad and ϑrad. The dependency of T	g and
α is only visible on the right half of the plot; for ϕrad < 1, ρ is
basically constant. Within the parameter range we investigated
the deviance for ϕrad < 1 for different T	g and α is only about
10−6 and therefore negligible. To deliver a means to classify
the accuracy of Eq. 35 for certain parameters that are within
our parameter range, we replotted ρ in Fig. 5 for α = 1. The
value α = 1 was chosen because the green area then takes its
minimum. Areas, where 0.98 ≤ ρ ≤ 1.02 are colored green.
Based on Fig. 5, a good criterion for a relative error of less than
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ρ for α = 1

10−4 10−3 10−2 10−1 100 101 102 103 104 105

ϕrad

10−2

10−1

100

101

102

103

104

ϑ
ra

d

0.4

0.9

0.98
1.02
1.07

Figure 5: Here, ρ(ϕrad, ϑrad, α,T	g ) (Eq. 36) is the ratio of the new approxima-
tion Eq. 35 and the total of the effectively exact numerical result given by Eq. 7,
where the surface temperatures were numerically obtained with COMSOL. Dif-
ferent ratio intervals are color-coded. The small interval 0.98 ≤ ρ ≤ 1.02 is
marked in green, where the ratio — except for the areas close to the borders —
is constantly 1, quasi-independently of T	g and α. In this green area, the relative
error is ≤ 2%.

2% is

ϕrad ≡
ε I0 r0

k Trad
< 1 . (40)

3. CONCLUSION

Using previous formulae (e.g. by Hidy & Brock (1967)) to
calculate the longitudinal photophoretic force on a particle with
its temperature largely differing from the gas temperature (e.g.,
due to high I0) can lead to large errors of several orders of mag-
nitude. As shown in this paper, a new approximation has to
be considered for this case in the free molecular flow regime
(Kn � 1). If the heat transfer coefficient h (given by Eq. 24)
can be neglected (h � 4σSBε T̃ 3), the best description of the
photophoretic force which still allows analytical treatment in
applications is (Eq. 35)

Fphot ' −
π

3
ααm

p√
T⊕g T	g

r2
0

I J1
k
r0

+ 4σSBεT 3
bb

ez

with

T⊕g = T	g + α
(
Tbb − T	g

)
Tbb =

4

√
I0

4σSB
+ T 4

rad .

The relative error of this equation is very low compared to pre-
vious approximations. The average relative error for particles
up to a cm is 1%, for particle sizes up to 1 m it is 3%. We
provided an error map to assess the relative error depending on
the chosen parameters. For heat transfer coefficients that are
comparable or larger than 4σSBε T̃ 3, the calculation of the pho-
tophoretic force follows Eq. 33 using the relations Eq. 34.
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A. SUPPLEMENTARIES

A.1. Average

An average of a physical variable X connected to the gas is
given by the integral

X	/⊕ =

∫
	/⊕

d3vσ	/⊕ X	/⊕ . (A.1)

A.2. Linearization of T⊕g

Linearization of the square root in Eq. 10 to its first order at
T⊕g √

T⊕g =

√
T⊕g +

1

2T⊕g

(
T⊕g − T⊕g

)
+ O

((
T⊕g − T⊕g

)2)
(A.2)

A.3. Legendre polynomials’ orthogonality relation

∫ 1

−1
Pν(x) Pλ(x) dx =

2
1 + 2ν

δνλ (A.3)

A.4. Known surface temperature

For a known surface temperature, the function
√

T⊕g can be
expanded into a Legendre series

√
T⊕g (r0, ζ) =

∞∑
ν=0

Cν Pν(cos ζ) . (A.4)

Then, Eq. 7 yields

Fphot = −
2π
3
αm

p√
T	g

r2
0 C1 ez . (A.5a)

C1
2 can be approximated for α = const. along Eq. 6c by the

linear term

C1 ≈
1
2

(√
T	g + α

(
Tmax − T	g

)
−

√
T	g + α

(
Tmin − T	g

))
.

(A.5b)

Rohatschek (1995) and others also use the easier equation

Fphot = −
π

6
α

p
T	g

r2
0 (Tmax − Tmin) ez . (A.6)

Eq. A.5 and Eq. A.6 will be compared in Fig. A.6 and Tab.
A.3.

2Cν = 2ν+1
2

∫ 1
−1 Pν(x)

√
T⊕g (r0, x) dx
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Eq. A.6 (from Rohatschek (1995))
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Figure A.6: Parameter sweep histogram for 63 · 106 parameter combinations.
The parameter sweep intervals are given in Tab. 2. ρ (Eq. 36) is the ratio of the
corresponding approximation of the photophoretic force and the total of the ef-
fectively exact numerical result given by Eq. 7, where the surface temperatures
were numerically obtained with COMSOL. The bin size is 0.005 (0.5%).

A.5. Units free notation in spherical coordinates

The three units free coordinates (λ, ξ, ζ) are in the set [0, 1]×
[0, 2π] × [0, π]. The transformation is given by Eq. 37. The
variables and operators in the two coordinate systems (λ, ξ, ζ),
denoted by a tilde, and (r, ξ, ζ) relate as below: The Laplace
operator reads

∆ =
1
r2

0

∆̃ , (A.7)

the unit source q is

q =
1
r0

q̃ , (A.8)

the measure dV is
dV = r3

0 d̃V . (A.9)
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Table A.3: Statistical properties of the ratio ρ for selected approximations for the photophoretic force arising from directed illumination. A parameter sweep of
63 · 106 parameter combinations was performed along the parameter intervals given in Tab. 2.

approximations for longitudinal
fm-photophoresis min max mean median STD

Eq. A.6 (from Rohatschek
(1995)) 0.22 7.54 0.99 0.85 0.67

Eq. A.5 0.73 1.05 0.93 0.96 0.07
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