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Abstract

To quantify the fundamental evolution of time-varying networks, and detect abnormal behavior, one needs
a notion of temporal difference that captures significant organizational changes between two successive
instants. In this work, we propose a family of distances that can be tuned to quantify structural changes
occurring on a graph at different scales: from the local scale formed by the neighbors of each vertex, to the
largest scale that quantifies the connections between clusters, or communities. Our approach results in the
definition of a true distance, and not merely a notion of similarity. We propose fast (linear in the number of
edges) randomized algorithms that can quickly compute an approximation to the graph metric. The third
contribution involves a fast algorithm to increase the robustness of a network by optimally decreasing the
Kirchhoff index. Finally, we conduct several experiments on synthetic graphs and real networks, and we
demonstrate that we can detect configurational changes that are directly related to the hidden variables
governing the evolution of dynamic networks.
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1. Introduction

Many complex systems are well represented as graphs or networks, with the agents represented as vertices
and edges symbolizing relationships or similarities between them. In many instances, the relationships
between vertices evolve as a function of time: edges may appear and disappear, the weights along the
edges may change. The study of such dynamic graphs often involves the identification of patterns that
couple changes in the network topology with the latent dynamical processes that drive the evolution of the
connectivity of the network [2, 24, 30, 31, 42].

To quantify the temporal and structural evolution of time-varying networks, and detect abnormal behav-
ior, one needs a notion of temporal difference that captures significant configurational changes between two
successive instants. The design of similarity measures for the pairwise comparison of graphs [45] is therefore
of fundamental importance.

Because we are interested in detecting changes between two successive instants, we focus on the problem
of measuring the distance between two graphs on the same vertex set, with known vertex correspondence
(see Fig. 1). We note that determining whether two graphs are isomorphic under a permutation of the
vertex labels is a combinatorially hard problem (e.g., [35], and references therein, but see the recent results
[3]). Several notion of similarities (e.g., [8, 36, 29], and references therein) have been proposed. Unlike a true
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metric, a similarity merely provides a notion of resemblance. Most approaches rely on the construction of
a feature vector that provides a signature of the graph characteristics; the respective feature vectors of the
two graphs are then compared using some norm, or distance. A similarity function is typically not injective
(two graphs can be perfectly similar without being the same), and rarely satisfies the triangular inequality.

Instead of comparing two feature vectors, several researchers (e.g., [1, 9, 11, 4, 19, 43, 52] and references
therein) have proposed to use a kernel function. This approach offers the same advantage as the computation
of a similarity:

(t+1)
G

(t)
G

Figure 1: Dynamic graph G(t) at time t (left) and t+ 1 (right)

the isomorphism problem need not be solved. Unfortunately, the kernels do not define proper metrics, and
we are left with a weaker notion of similarity.

Several distances between two graphs with the same size have been proposed (e.g., [7, 11], and references
therein). As detailed in section 3.2, we argue that existing distances either fail to capture a notion of
structural similarity, or lead to algorithms that have a high computational complexity.

1.1. Contribution and Organization of the Paper

The contributions of this work are threefold. First, we propose a family of distances that can be tuned
to quantify configurational changes that occur on a graph at different scales: from the local scale formed by
the local neighbors of each vertex, to the largest scale that quantifies the connections between clusters, or
communities. Our approach results in the definition of a true distance, and not merely a notion of similarity.
The second contribution encompasses fast computational algorithms to evaluate the metrics developed in
the first part. We developed fast (linear in the number of edges) randomized algorithms that can quickly
compute an approximation to the graph metric. The third contribution involves fast algorithms to increase
the robustness of a network by optimally decreasing the Kirchhoff index. Finally, we conduct several
experiments on synthetic and real dynamic networks, and we demonstrate that the resistance perturbation
distance can detect the significant changes in the hidden latent variables that control the network dynamics.

The remainder of this paper is organized as follows. In the next section we introduce the main mathe-
matical concepts and corresponding nomenclature. In section 3 we formally define the problem and review
the existing literature. In section 4 we propose a novel framework for constructing graph distances; we focus
the rest of the paper on the resistance perturbation distance, which is defined in section 5. In section 6,
we study simple perturbations of several prototypical graphs for which the resistance perturbation distance
can be computed analytically. Fast randomized algorithms are described in section 7. The optimization of
the robustness of a network, based on optimally decreasing the Kirchhoff index, is described in section 8.
In section 9, we use the resistance perturbation metric to detect significant changes in synthetic and real
dynamic networks. We conclude in Section 10 with a discussion on future work. Some technical details and
proofs are left aside in the Appendix. A list of the main notations used in the paper is provided in section
11.

2. Preliminaries and Notation

We introduce in this section the main concepts and associated nomenclature.
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We denote by ei the ith vector of the canonical basis in Rn. The space of matrices of size n×m with entries
in R is denoted by Mn×m; to alleviate notations we write Mn to denote Mn×n.

We denote by G = (V,E,w) an undirected weighted graph with a vertex set V = {1, . . . , n}, an edge set E,
and a symmetric weight function w that quantifies the similarity between any two vertices i and j. In this
work, we use the terms graph and network exchangeably.

The weighted adjacency matrix, A ∈Mn, is given by

Aij = Aji =

{
we if the edge e = [i, j] ∈ E,
0 otherwise.

(1)

For simplicity, we will always assume G is connected and does not contain any self-loops. We further define
the combinatorial Laplacian matrix,

L = D −A, (2)

where the degree matrix D is the diagonal matrix of vertex degrees,

Dii =

n∑
j=1

Aij .

The matrix L is symmetric and positive semi-definite. We denote by φk the kth eigenvector of L corre-
sponding to λk, with 0 = λ1 < λ2 ≤ . . . ≤ λn. We can write L in terms of its spectral decomposition,

L =

n∑
k=2

λkφkφ
T
k . (3)

L† denotes the Moore-Penrose pseudoinverse of L. Because L is symmetric, L† is also symmetric. The
pseudoinverse is easily formulated from the spectral decomposition of L,

L† =

n∑
k=2

1

λk
φkφ

T
k . (4)

We can also express L† in terms of the inverse of L+ 1
nJ , which is full-rank,

L† =

(
L+

1

n
J

)−1

− 1

n
J , (5)

where
J = 11T , with 1T =

[
1 1 · · ·

]
. (6)

For the purpose of defining a concept of gradient on the graph, we assign an (arbitrary) orientation to each
edge e. With this orientation, we define a notion of gradient, captured by the signed edge incidence matrix,
B ∈Mm×n,

Bei =


1 if vertex i is at the head of e,

−1 if vertex i is at the tail of e,

0 otherwise.

(7)

We define the diagonal edge weight matrix dA ∈Mm×n with diagonal entries dAee = we. The (gradient)
edge incidence matrix can be used to express the combinatorial Laplacian matrix as

L = BTdAB. (8)

In this paper we are concerned with two undirected weighted graphs G(1) and G(2) with a common vertex
set V = {1, . . . , n}, two edge sets E(1) and E(2), and two symmetric weight functions w(1) and w(2). We
denote by A(1) and A(2) the corresponding weighted adjacency matrices.
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3. Statement of the Problem and Related Work

Inspired by the work of Koutra et al. [29], we propose to characterize distances between graphs using a
set of axioms and principles. After defining these axioms and principles, we use these to review the existing
literature on graph distance and similarity.

3.1. Metrics Between Graphs: an Axiomatic Definition

Axiom 1 (Definition of a Distance). A distance on a space of graphs should meet all the conditions of
a distance: non-negativity, identity, symmetry, and subadditivity.

The set of axioms in Koutra et al. [29] are somewhat similar to our single axiom, given the translation of a
distance into a similarity measure. Our axiom is stronger in that it also implies the triangle inequality, in
addition to symmetry and identity (the first two axioms in [29]).

We note that Axiom 3 from Koutra et al. [29] is the Zero property:
sim(G(1), G(2))→ 0 as n→∞, if G(1) is the complete graph and G(2) is the empty graph. As explained in
Remark 3, the zero property holds in our case: if G(2) is obtained by disconnecting G(1), then our distance
goes to infinity; in other words the similarity goes to zero.

In addition to the above axiom, we argue that a useful distance should obey the following the four principles
proposed by Koutra et al. [29].

Principle 1 (Edge Importance). Changes that create disconnected components should be penalized more
than changes that maintain the connectivity properties of the graphs.

Principle 2 (Weight Awareness). In weighted graphs, the larger the weight of the removed edge is, the
greater the impact on the distance should be.

Principle 3 (Edge-“Submodularity”). A specific change is more important in a graph with few edges
than in a much denser, but equally sized graph.

Principle 4 (Focus Awareness). Random changes in graphs are less important than targeted changes of
the same extent.

The first three principles are intuitive and self-explanatory. The principle of focus awareness requires some
interpretation. Koutra et al. [29] test for focus awareness by either removing all edges connected to a vertex
(a targeted change) or randomly removing the same number of edges from the whole graph (a random change
of the same extent). In most applications, the targeted removal of all edges connecting a single vertex would
be viewed as a more significant change to the network topology compared with most realizations of random
edge removal. An ideal distance should account for the relative importance of these types of changes.

We propose an alternative interpretation of the “focus awareness” principle. We first observe that edges
can be partitioned in terms of their “functionality” in the network. In this work, the notion of functionality
is measured in terms of connectivity, and is quantified with the concept of effective resistance. Now,
if we consider the distribution of effective resistances across all edges in E, some edges will contribute to
rare events because they have very large effective resistance. We argue that such edges are unlikely to be
removed by a random selection of edges in the network. In other words, a targeted change would correspond
to a perturbation of these rare edges with very high effective resistance. Our definition of focus awareness
recovers the intuitive notion introduced by Koutra et al. [29]. This point is further discussed in section 10.
Adherence to the axioms and principles does not imply that a distance will be useful in practice. A distance
must also be computable. Modern applications require algorithms to compute or approximate the distance
in nearly linear time in the number of edges.
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3.2. Existing Notions of Similarities Between Graphs

Unlike a true metric that satisfies the three axioms of a metric, similarities are merely providing a notion
of resemblance. This approach relies on the construction of a feature vector that provides a signature of the
graph characteristics; the respective feature vectors of the two graphs are then compared using some norm,
or distance (e.g., [8, 29, 36], and references therein). The similarity function is typically not injective (two
graphs can be perfectly similar without being the same), and rarely satisfies the triangular inequality. The
authors in [29] offer a list of properties that a “good” similarity should obey. They define the DeltaCon0

similarity as follows,

simDC0

(
G(1), G(2)

)
=

1

1 + drootED

(
G(1), G(2)

) , (9)

where the root Euclidean distance is defined as

drootED

(
G(1), G(2)

)
=


n∑

i,j=1

(√
S

(1)
ij −

√
S

(2)
ij

)2


1/2

, (10)

and where S(i) is the fast belief propagation matrix defined by

S(i) =
[
I + ε2D(i) − εA(i)

]−1

, (11)

and ε = 1/(1 + maxiDii). To gain some intuition about the role of the fast belief propagation matrix S ,
we assume ε� 1, and drop the term ε2D in S to arrive at

S ≈ (I − εA)
−1

= I + εA+ ε2A2 + ε3A3 + . . . . (12)

In the unweighted case, Akij is the count of paths of length k between vertices i and j. In the weighted case,

Akij is the sum, over all paths of length k between vertices i and j, of the product of the weights along the
corresponding paths. We conclude that S encapsulates information about the connectivity between vertices
at all scales (with longer paths having a reduced impact).

We provide in Appendix A a detailed analysis of the DeltaCon0 distance that uncovers unexpected
behavior. Our analysis is based on a single-edge
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Figure 2: Experimental scaling of the DeltaCon0 similarity (left) and the resistance perturbation distance (right) for single
edge perturbation of simple graphs.
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perturbation of several simple graphs, where the DeltaCon0 distance between the original and perturbed
graphs can be computed analytically.

In the case of the complete graph, Kn, the root Euclidean distance created by the perturbation grows with
n = |V |,

drootED (Kn,Kn + ∆wkl)) =

∣∣∣∣ 1√
2
− 1√

2 + ∆wkl

∣∣∣∣n+O (1) . (13)

However, in the case of the much sparser star graph, Sn, the root Euclidean distance decays with n = |V |,

drootED (Sn, Sn + ∆wkl) =

√
2∆wkl√
n

−
√

2

n
+O

(
1/n3/2

)
. (14)

These leading-order analyses are confirmed experimentally in Fig. 2, where we compare the DeltaCon0

similarity with the resistance perturbation presented in this paper.
We can interpret these results in terms of the graph density. The density of the complete graph Kn, as

measured by the average degree dn, is n − 1, whereas the densities of the star Sn and path Pn graphs are
2(1− 1/n) and 1 respectively,

dn(Pn) = 1 < dn(Sn) = 2 (1− 1/n) < dn(Kn) = n− 1, n ≥ 3. (15)

The DeltaCon distances for a single edge perturbation are ordered as follows,

drootED (Sn, Sn + ∆wkl) = Θ

(
1√
n

)
< drootED (Pn, Pn + ∆wkl) = Θ (1)

< drootED (Kn,Kn + ∆wkl) = Θ (n) ,

(16)

while the RP distances for the respective graphs are ordered as follows,

drp 1 (Kn,Kn + ∆wkl) = Θ

(
1

n

)
< drp 1 (Sn, Sn + ∆wkl) = Θ (n)

< drp 1 (Pn, Pn + ∆wkl) = Θ
(
n3
)
.

(17)

We conclude that, on these three graphs, the RP distance for a single edge perturbation decreases as a
function of the graph density, which is consistent with Principle 3 from Koutra et al. [29], which asserts
that “A specific change is more important in a graph with few edges than in a much denser, but equally sized
graph.”

The ordering of the DeltaCon distances is not exactly the reverse of the ordering of the RP-distances.
Nevertheless, when comparing the complete graph to either the star, or the path graphs, we conclude that
the DeltaCon distance for a single edge perturbation increases as a function of the graph density, which is
inconsistent with Principle 3.

Indeed, a principled distance should ascribe greater significance to changing an edge weight in the star
graph (a sparser graph in which each edge is more important) relative to the complete graph (a dense graph
in which no single edge is crucial to the overall connectivity).

When comparing the star to the path, we note that DeltaCon respects Principle 3. Because both the
star and the path graphs have a constant density, we find this comparison to be less of a concern. We
complement our theoretical analysis of DeltaCon0 with an experimental evaluation conducted in Section 9.

In the context of the analysis of dynamic graphs, the authors in [50] describe an algorithm to localize
edges that most significantly contribute to dynamical structural changes. To tackle this question, the authors
define the following distance to quantify structural changes as the graph G(n) evolves to G(n+1),

dCAD(G(n), G(n+1)) =
∑

(u,v)∈F⊆E(n)

∣∣∣A(n+1)(u, v)−A(n)(u, v)
∣∣∣ ∣∣∣κ(n+1)(u, v)− κ(n)(u, v)

∣∣∣ , (18)
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where F is a subset of the edge set E(n) of the graph G(n), and κ
(n)
u,v is the commute time between vertices

u and v in the graph G(n) (see Definition 4).
The authors in [50] propose to minimize this distance to identify the maximal “core” subset of edges F

that contribute to the least structural changes between time n and n + 1. The complement of the core set
F consists of edges that trigger large structural changes.

While the goal of our work is quite different from that of [50], our notion of effective resistance, defined
in (28), is indeed similar to the distance (18). As explained in section 5.1, the commute time is – up to a
renormalization by the volume of the graph m = |E(n)| – the same as the effective resistance.

Because of the presence of the term
∣∣A(n+1)(u, v)−A(n)(u, v)

∣∣, the distance dCAD does not satisfy the
triangle inequality. We suspect that dCAD is not injective. An increase (decrease) in the commute time κuv
throughout the graph could in principle be cancelled by a corresponding increase (decrease) in the volume
m, to keep the effective resistance the same (see (27)). This argument is not in contradiction with the
Rayleigh’s Monotonicity Principle that only applies to effective resistance, and not the commute time.

Because of the similarity between the distance dCAD and the resistance perturbation distance, we eval-
uated dCAD in all experiments conducted in section 9.

Another similarity that captures the geometry of the graph at all scale is provided by the spectral

similarity which quantifies the distance between the respective spectra {λ(1)
i }ni=1 and {λ(2)

i }ni=1 of G(1)

and G(2) The spectra can be computed from the adjacency, Laplacian, or normalized Laplacian matrices
[10, 38, 55]. The spectral similarity is defined by

dλ

(
G(1), G(2)

)
=

√√√√ n∑
i=1

(
λ

(1)
i − λ

(2)
i

)2

.

The existence of iso-spectral graphs prevents dλ to be a distance, since
dλ
(
G(1), G(2)

)
= 0 does not necessarily imply that G(1) = G(2). In addition, the spectral methods are costly

since they require computation of the full graph spectrum.
Signature similarity is another method considered in Koutra et al. [29]. The signature similarity compares

two graphs by first computing a large number of features from the two graphs. These features are then
projected onto a random lower-dimensional feature space within which the similarity between the two graphs
is computed. This method was found to be the best performing method in Papadimitriou et al. [36].
Unfortunately, Koutra et al. [29] proved that the signature similarity, along with the graph edit distance,
and all variants of the λ-distance fail to conform to Principles 1 and 3.

Other notions of similarity, which do not necessarily define a proper distance, can be defined. For
example, Spielman and Teng [49] (see also [6]) introduced another notion of spectral similarity. Two graphs
G(1) and G(2), with Laplacians L(1) and L(2), on the same vertex set V are said to be σ-spectrally similar
if [49],

1

σ
xTL(2)x ≤ xTL(1)x ≤ σ xTL(2)x, ∀x ∈ Rn. (19)

3.3. Graph Kernels

Instead of comparing the feature vectors, which represent the graphs G(1) and G(2) respectively, several
researchers (e.g., [1, 9, 11, 4, 19, 43, 52] and references therein) have proposed to use a kernel function. This
approach offers the same advantage as the computation of a similarity: the isomorphism problem need not
be solved. Unfortunately, the kernels do not define proper metrics, and we are left with weaker notions of
resemblance.

3.4. Existing True Metrics on the Space of Connected Graphs of a Fixed Size.

Finally, we review the distances between two graphs with the same size n that lead to true metrics [7, 11].
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The edit distance between G(1) and G(2) is defined by

d1(G(1), G(2)) =
∥∥∥A(1) −A(2)

∥∥∥
1

=
∑
i,j

∣∣∣A(1)
ij −A

(2)
ij

∣∣∣ .
The edit distance does not reflect structural differences: all edges are treated equally. A more useful notion
of distance is provided by the cut distance defined by

dC(G(1), G(2)) = max
S,T⊆V

|EG(1)(S, T )− EG(2)(S, T )| ,

where EG(S, T ) denotes the sum of the weights along the edges connecting the vertices in S ⊆ V to the
vertices in T ⊆ V . The computation of the cut norm requires optimizing over O(22n) pairs of subsets of V ,
and is therefore prohibitively expensive even for moderately sized graphs.

The difference in path lengths [13] is based on the pairwise difference between the shortest distances in
the two graphs,

min
Π

∑
u,v∈V

|dG(1)(u, v)− dG(2)(Π(u),Π(v))|

where the minimum is computed over any permutation Π of the vertices, and dG(i)(u, v) is the shortest
distance from u to v in the graph G(i). Although this method defines a metric between unweighted graphs,
it only defines a pseudo-metric on the space of weighted graphs (it is not injective).

Finally, a set-theoretical notion of distance can be derived from computing the size (number of vertices)
of the largest edge-, or vertex-induced subgraph that is common to G(1) and G(2). It can be shown that
this concept yields a metric on graphs with the same size [7]. Unfortunately, the detection of a maximum
common subgraph is an NP-complete problem.

We conclude this section with the observation that many existing distances fail to conform to the set of
axioms and principles presented in the previous section, which were inspired by the work of [29]. Furthermore,
many true distances suffer from a prohibitive computational cost (e.g., the cut distance). The limitations of
existing distances and similarity measures demonstrate the need for novel distances between graphs. In the
next section, we introduce a very general framework for constructing distances between two graphs. This
novel approach allows the user to customize the distance to specific needs. We study one specific instance
of this framework, and introduce the resistance perturbation distance, as a metric that obeys all the
axioms and principles. In addition, we develop fast algorithms to compute this metric.

4. A Unified Framework for Graph Distances

We first make the following simple observation: if we consider a distance d on Mn, then we can induce
a family of distances between any two graphs G(1) and G(2) on the same set of vertices by measuring the
distance, d(A(1),A(2)) between the corresponding adjacency matrices A(1) and A(2) . More generally, one
can compute the distance between any matrix-to-matrix function ϕ of A(1) and A(2), as explained in the
following definition.

Definition 1 (General graph distance). Given a matrix-to-matrix function, (or more simply a matrix
function), ϕ,

ϕ : Mn →Mn,

and a distance d on Mn, we define the pseudo-distance dϕ between two graphs G(1) and G(2) as follows,

dϕ(G(1), G(2)) = d(ϕ(A(1)), ϕ(A(2))), (20)

where A(1) and A(2) are the adjacency matrices representing G(1) and G(2), respectively. If ϕ is injective,
then dϕ defines a distance.
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Definition 1 is significant because it provides a natural mechanism to construct new distances by decoupling
two aspects of the distance dϕ. First, the matrix function ϕ extracts from each graph a property of interest.
The function ϕ extracts configurational or geometric properties about each graph. The distance d can then
be used to emphasize large or small variations in the matrix function ϕ. In addition, the choice of d can
also be guided by the existence of fast algorithms to compute dϕ (as is the case in our work).

We note that the structure introduced in Definition 1 is quite general since many existing (pseudo-)
distances can be recast using this formalism. For example, if ϕ is the identity map, and d is the entrywise
1-norm of the difference, then dϕ is the edit distance. Alternatively, if d is the cut norm of the difference
between the adjacency matrices [20], we arrive at the cut distance. If ϕ returns the diagonal matrix of
sorted eigenvalues of either the adjacency, Laplacian, or normalized Laplacian matrices, and d is chosen as
the Frobenius norm of the difference, then dϕ is the spectral pseudo-distance. If ϕ(A) = [I + ε2D − εA]−1

is the fast belief propagation matrix, and d is the root Euclidean distance (10), then dϕ is the DeltaCon0

similarity. Finally, if ϕ computes the matrix of pairwise shortest distance between two nodes, and d is the
l1 norm, then dϕ is the difference in path lengths.

In this paper, we propose to use the matrix function ϕ that maps the adjacency matrix A to the
corresponding matrix, R, of pairwise effective resistances. We study various norms for the distance d. As
we will see, the matrix function ϕ is injective, and therefore dϕ is a proper distance. As illustrated in several
examples, the choice of ϕ yields a distance that adheres to the axioms and principles defined in section
3.1. Because the effective resistance can be understood in terms of the commute time, our new distance
shares some similarity with the difference in path lengths [13], albeit with a richer choice of distances d. The
effective resistance can also be expressed using the eigenvalues and corresponding eigenvectors of the graph
Laplacian, and thus this new distance can resolve changes in the graphs occurring at multiple spectral scale
in a manner similar to the spectral distance.

5. The Resistance Perturbation Distance

For the sake of completeness, we review the concept of effective resistance. Our discussion focuses on
those aspects that are relevant for the definition of the new distance. Excellent references on the topic
include, for instance, [26, 15, 22, 18]. The reader familiar with these concepts can jump to section 5.2.

5.1. The Effective Resistance

There are many different ways to present the concept of effective resistance. We use the electrical analogy,
which is very standard (e.g., [15]). Given a graph G = (V,E), we transform G into a resistor network by
replacing each edge e by a resistor with conductance we (i.e., with resistance 1/we).

Definition 2 (Effective resistance [26]). The effective resistance between two vertices u and v in V
is defined as the voltage applied between u and v that is required to maintain a unit current through the
terminals formed by u and v.

A simple derivation (see e.g., [5], chapter 9) yields the following expression of the effective resistance,

Rij = L†ii + L†jj − 2L†ij , (21)

or equivalently in matrix form

R = diag(L†)1T + 1 diag(L†)T − 2L†, (22)

where diag(L†) is the column vector formed by the diagonal entries of L†,

diag(L†) =

L
†
11
...

L†nn

 (23)

In this paper, we will often compute the Kirchhoff index to quantify the robustness of a network (e.g., [53]).
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Definition 3 (Kirchhoff Index [18]). The total resistance, or Kirchhoff index, KI(G) of a graph G is
defined as the sum of the effective resistances between all pairs of vertices in a graph,

KI(G) =
∑
i,j∈V

Rij . (24)

The relevance of the effective resistance in graph theory stems from the fact that it provides a distance on
a graph [26] that quantifies the connectivity between any two vertices, not simply the length of the shortest
path. In problems related to diffusion on a graph, or propagation of infections or gossips [16, 25, 37], the
redundancy of paths affects the dynamics of the corresponding processes. Formally, the effective resistance
provides the correct notion of distance for a random walk on a graph, also known as the commute time.

Definition 4 (Commute Time [12]). Consider a random walk {Xt}∞t=1 on the set of vertices V , with the
probability transition matrix Pij = P [Xt+1 = j|Xt = i] = Aij/Dii, then the commute time between vertices
i and j, κij, is defined as the expected time for the random walk to travel from i to j, and back to i,

κij = E[Tij ] + E[Tji], (25)

where E[Tij ] is the expected number of steps needed for the random walk, initialized at i, to reach j,

E[Tij ] = E[argmint≥1{Xt = j|X0 = i}]. (26)

Chandra et al. [12] showed that the commute time and the effective resistance are equivalent up to a
rescaling by the volume of the graph, m = |E|,

κij = 2mRij , ∀i, j ∈ V. (27)

5.2. The Resistance Perturbation Distance

We are now in a position to introduce the resistance perturbation distance between two graphs
with known node correspondence. This distance, which is a particular instance of the general construction
proposed in Definition 1, obeys all the axioms and principles laid out in section 3.1. In addition, we propose
fast algorithms to compute the distance.

Definition 5 (Resistance Perturbation Distance). Let G(1) = (V,E(1), w(1)) and G(2) = (V,E(2), w(2))
be two connected, weighted, undirected graphs on the same vertex set, with respective effective resistance ma-
trices, R(1) and R(2), respectively. The RP-p distance, drp(p), between G(1) and G(2) is defined as the
element-wise p-norm of the difference between their effective resistance matrices. For 1 ≤ p <∞,

drp(p)(G
(1), G(2)) =

∥∥∥R(1) −R(2)
∥∥∥
p

=

∑
i,j∈V

∣∣∣R(1)
ij −R

(2)
ij

∣∣∣p
1/p

, (28)

and for p =∞,

drp(∞)

(
G(1), G(2)

)
=
∥∥∥R(1) −R(2)

∥∥∥
∞

= max
i,j∈V

∣∣∣R(1)
ij −R

(2)
ij

∣∣∣ . (29)

Theorem 1 (Resistance perturbation distance). For 1 ≤ p ≤ ∞, the RP-p distance defines a distance
on the space of connected, weighted, undirected graphs with the same vertex set.

Proof of Theorem 1. According to (22), the Laplacian L uniquely identifies its effective resistance matrix
R. Additionally, for 1 ≤ p ≤ ∞, the element-wise p-norm ‖·‖p is a norm on Mn. As a result, non-negativity,
symmetry, and the triangle inequality are satisfied. Additionally, we observe that if G(1) = G(2), then
drp(p)(G

(1), G(2)) = 0, since R(1) = R(2). It remains to show that if drp(p)(G
(1), G(2)) = 0, or equivalently

R(1) = R(2), then G(1) = G(2). The following lemma completes the proof of the theorem, by showing that a
resistance matrix uniquely identifies a weighted graph. �
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Lemma 1 (Injective property). If G(1) and G(2) are two graphs with the same effective resistance matrix,
R(1) = R(2), then G(1) = G(2).

Proof of Lemma 1. We proceed as follows: since G(1) and G(2) do not contain self-loops, the equality of
their respective Laplacian matrices implies the equality of their adjacency matrices. We will therefore prove
that if R(1) = R(2) then L(1) = L(2). In fact, we show that in general L is uniquely determined from R.
The first observation is that since L†1 = 0 we have

n∑
j=1

L†ij = 0. (30)

We also have 1TL† = 0T , since L† is symmetric. Thus

n∑
i=1

L†ij = 0. (31)

Starting from the expression of Rij given by (21), one should be able to express L†ij in terms of Rij by using
the cancellations above. In fact, a simple calculation shows that

L†ij = −1

2

[
Rij −

1

n
([RJ ]ij + [JR]ij) +

1

n2
[JRJ ]ij

]
, (32)

where J = 11T . We conclude the proof by injecting in (32) the expression of L† given by (5) to recover L
as a function of R,

L =

(
−1

2

[
R− 1

n
(RJ + JR) +

1

n2
JRJ

]
+

1

n
J

)−1

− 1

n
J . (33)

�

We note that the resistance perturbation distance is related to changes in the Kirchhoff index, as described
in the following result.

Corollary 1 (Monotonicity). If G(2) is obtained from G(1) by monotone changes in edge weights, w
(2)
ij ≥

(≤)w
(1)
ij for all i, j, then

drp 1(G(1), G(2)) =
∣∣∣KI(G(1))−KI(G(2))

∣∣∣ . (34)

Proof of Corollary 1. If G(2) is obtained from G(1) by monotone changes in edge weights, w
(2)
ij ≥ (≤)w

(1)
ij

for all i, j, then R
(1)
ij ≤ (≥)R

(2)
ij for all i, j ∈ V , due to Rayleigh’s Monotonicity Principle. Thus,

drp 1(G(1), G(2)) =
∑
i,j∈V

∣∣∣R(1)
ij −R

(2)
ij

∣∣∣ =

∣∣∣∣∣∣
∑
i,j∈V

(
R

(1)
ij −R

(2)
ij

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i,j∈V

R
(1)
ij −

∑
i,j∈V

R
(2)
ij

∣∣∣∣∣∣ =
∣∣∣KI(G(1))−KI(G(2))

∣∣∣ .
�

In the remainder of the paper we will restrict our attention to the RP-1 and RP-2 distances. We dedicate
our attention to these two instances of the RP-p distance for the following reasons: in some contexts, the
RP-1 distance is directly analogous to the Kirchhoff index, and the RP-2 distance can be computed with a
fast randomized algorithm.
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Remark 1. The resistance metric is not properly defined when the vertices are not within the same connected
component. To remedy this, we use a standard approach, and use the conductance instead of the resistance.
Let u and v be two vertices. If u and v are connected, with effective resistance Ruv, then Cu v = R−1

uv is
the connectivity between these vertices. If u and v belong to different connected components, then we set
Cu v = 0.

We proceed to define the following similarity measure

R̂uv =
1

1 + Cu v
=

Ru v
1 +Ru v

, (35)

which we refer to as the renormalized effective resistance. The renormalized resistance perturbation distance
is defined as follows.

Definition 6. Let G(1) = (V (1), E(1)) and G(2) = (V (2), E(2)) be two graphs (with possibly different vertex

sets). We consider V = V (1) ∪V (2), and relabel the union of vertices using [n], where n = |V |. Let R̂(1) and

R̂(2) denote the renormalized effective resistances in G̃(1) = (V,E(1)) and G̃(2) = (V,E(2)) respectively.
We define the renormalized resistance distance to be

d̂rp(p)(G
(1), G(2)) =

[ ∑
u,v=1,...,n

∣∣∣R̂(1)
uv − R̂(2)

uv

∣∣∣p]1/p

. (36)

The following lemma confirms that the distance defined by (36) remains a metric when we compare graphs
with the same vertex set.

Lemma 2 ([54]). Let V be a vertex set. The distance d̂rp(p) defined by (36) is a metric on the space of
unweighted undirected graphs defined on the same vertex set V .

The metric given in Definition 6 can be used to compare two graphs of different sizes, by adding isolated
vertices to both graphs until they have the same vertex set (this is why we must form the union V = V (1)∪V (2)

and compare the graphs over this vertex set). This method will give reasonable results when the overlap
between V (1) and V (2) is large.

When the graphs G(1) and G(2) have different sizes, the distance d̂rp(p) still satisfies the triangle inequality,

and is symmetric. However, d̂rp(p) is no longer injective: it is a pseudo-metric. Indeed, as explained in the

following lemmas, if d̂rp(p)(G
(1), G(2)) = 0, then the connected components of G(1) and G(2) are the same,

but the respective vertex sets may differ by an arbitrary number of isolated vertices.

Lemma 3 ([54]). Let G = (E, V ) be an unweighted undirected graph, and let V (i) be a set of isolated
vertices, to wit V (i) ∩ V = ∅ and ∀e ∈ E, endpoints (e) /∈ V (i). Define G′ = (V ∪ V (i), E), then we have

d̂rp(p)(G,G
′) = 0.

The following lemma shows that the converse is also true.

Lemma 4 ([54]). Let G(1) = (V,E(1)) and G(2) = (V,E(2)) be two unweighted, undirected graphs, where
|V (1)| > |V (2).

If d̂rp(p)(G
(1), G(2)) = 0, then E(1) = E(2). Furthermore, there exists a set V (i) of isolated vertices, such

that V (1) = V (2) ∪ V (i).

In summary, one can easily extend the drp(p) distance to unconnected graphs using the d̂rp(p) distance. To
simplify the exposition, we focus on the distance drp(p) in the remainder of the paper, and we only consider
graphs that are connected with high probability.
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5.3. RP-1 Distance After a Single Edge Perturbation

We consider the case where a single edge is modified. This case is useful because it provides a baseline
scenario to compare various graph perturbations in the context of dynamic graphs. Our analysis is based on
the following two ideas. First, one can compute analytically changes in the effective resistance that result
from the modification of a single edge. Indeed, we can apply the Sherman–Morrison–Woodburry theorem
[23] to compute the low-rank perturbation of the pseudo-inverse L†. The second idea is to express L† in
terms of its spectral decomposition (4). We use this result to derive a closed-form expression of the RP-1
distance between a graph and a rank-one perturbation of that graph.

Theorem 2 (RP-1 edge modification). If G + ∆wi0j0 is the graph obtained from G by a perturbation
∆wi0j0 to the edge [i0, j0], then

drp 1(G,G+ ∆wi0j0) =
2n |∆wi0j0 |

1 + ∆wi0j0Ri0j0

n∑
k=2

1

λ2
k

[φk(i0)− φk(j0)]
2

= 2n |∆wi0j0 |

n∑
k=2

1

λ2
k

[φk(i0)− φk(j0)]
2

1 + ∆wi0j0

n∑
k=2

1

λk
[φk(i0)− φk(j0)]

2

(37)

Proof of Theorem 2. The proof is given in Appendix B.1.

Remark 2. It is important to understand the behavior of the term

∆wi0j0
1 + ∆wi0j0Ri0j0

, (38)

that controls the size of drp 1(G,G+∆wi0j0). A quick computation shows that the derivative of the ratio (38)
with respect to ∆wi0j0 is equal to 1/(1 + ∆wi0j0Ri0j0)2, and thus (38) is an increasing function of ∆wi0j0 .
We also note that the smallest value that ∆wi0j0 can take without disconnecting the edge [i0, j0] is −wi0j0 .
Because we always have Ri0j0 ≤ 1/wi0j0 , we confirm that the denominator of (38) is always non negative,
1 + ∆wi0j0Ri0j0 ≥ 0.

In general, Ri0j0 < 1/wi0j0 , to wit i0 and j0 are connected by at least another path other than the direct edge
[i0, j0]. In this case, we can disconnect the edge [i0, j0] with the perturbation ∆wi0j0 = −wi0j0 , and the ratio
(38) becomes

− wi0j0
1− wi0j0Ri0j0

. (39)

This is the smallest value of (38), which really corresponds to an increase in the effective resistance of
G+ ∆wi0j0 (because of the absolute value around ∆wi0j0 in (37)).

We conclude that drp 1(G,G + ∆wi0j0) in (37) decreases for increasing ∆wi0j0 in the interval [−wi0j0 , 0],
reaches a minimum at ∆wi0j0 = 0, and increases for ∆wi0j0 in the interval [0,∞). As ∆wi0j0 → ∞, the
resistance perturbation distance no longer depends on ∆wi0j0 .

Remark 3. We further note that the case 1 + ∆wi0j0Ri0j0 = 0 corresponds to a targeted change ∆wi0j0 =
−wi0j0 along an edge [i0, j0] where 1/Ri0j0 = wi0j0 . Such a change will disconnect the graph, since the
condition Ri0j0 = 1/wi0j0 indicates that the edge [i0, j0] is the only path between i0 and j0, and setting its
weight to zero cuts the graphs into two parts. In this case, drp 1(G,G+ ∆wi0j0) =∞.
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Remark 4. The size of the sum
∑n
k=2 [φk(i0)− φk(j0)]

2
/λ2

k in (37) can be analyzed as follows. For large
k, eigenvectors φk “oscillate” very quickly on the graph, making it difficult to estimate the contribution of
[φk(i0)− φk(j0)]

2
. This issue is mitigated by the fact that the weights 1/λ2

k are relatively small, since the
eigenvalues λk are large.

For small k, the eigenvalues λk are small, and the corresponding eigenvectors φk “oscillate” very slowly
on the graph, i.e. φk(i0)−φk(j0) ≈ 0 unless i0 and j0 belong to different nodal regions. In this latter case,
the effect of the edge perturbation ∆wi0j0 will be maximal. An example of this phenomenon corresponds to
a network formed by densely connected communities, which are weakly connected to one another. For the
same ∆wi0j0 , drp 1(G,G+ ∆wi0j0) will be maximal if i0 and j0 are in different communities.

6. The RP-1 Metric Created by Small Perturbations of Simple Graphs

To understand the manner in which the RP distance quantifies changes in graph connectivity, we study
this distance on several graphs that epitomize limiting cases of general graph topology. Specifically, we
compute analytically (either by spectral decomposition of the graph Laplacian, or by simplification of the
corresponding resistor networks) the distance between a graph and a slightly perturbed version of it.

Our goal is to demonstrate that the RP distance can detect edge perturbations that have a profound
effect on the functionality of the network, while remaining unaffected by edge changes that have harmless
consequences for the graph.

To simplify the analysis we perturb a single edge, and we denote by G + ∆wi0j0 the graph formed by
altering the edge weight between vertices i0 and j0 according to wi0j0 → wi0j0 + ∆wi0j0 . In this section
we will not discuss the edit distance, but simply note that the edit distance is trivially constant for all the
following examples: d1(G,G+ ∆wi0j0) = |∆wi0j0 |.

Because the RP-1 distance drp 1(G,G + ∆wi0j0) can either decrease or increase with n, as n goes to
infinity, we also compute a normalized RP-1 distance by dividing by the l1 norm of the matrix R (Kirchhoff
index). As is shown in this section, this normalized distance is able to quantify the importance of the
perturbation on the geometry of the graph.

6.1. Complete graph

We consider a complete graph, Kn, with n vertices.

Theorem 3. If we perturb the weight of the edge [i0, j0] by ∆wi0j0 , then the RP-1 distance between the
original and the perturbed graph is

drp 1(Kn,Kn + ∆wi0j0) =
4|∆wi0j0 |
n+ 2∆wi0j0

. (40)

Proof of Theorem 3. See Appendix B.2.

The Kirchhoff index for the complete graph is

KI(Kn) = 2(n− 1), (41)

and therefore the normalized drp 1 distance created by modifying the edge wi0j0 is given by

drp 1(Kn,Kn + ∆wi0j0)

KI(Kn)
= O

(
1

n2

)
. (42)

The scaling of drp 1(Kn,Kn+ ∆wi0j0)/KI(Kn) suggests that individual edges in the complete graph rapidly
lose significance with increasing n. This matches our intuition about the complete graph, which is the most
robust to the removal of edges, due to the maximal redundancy in paths between all pairs of vertices.
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Remark 5. It is interesting to compare the complete graph to a dense Erdős-Rényi graph, G(n, p), when
p > log(n)/n. As shown in [44, 34],

n(1 + o(1)) ≤ E[κi,j ] ≤ n(2 + o(1)). (43)

Since the expected number of edges, E[m] ∼ pn2/2, we obtain the following estimate of the effective resistance,

E[Rij ] ∼
2

np
. (44)

We can compute the RP-1 distance between one random graph G in G(n, p), and a perturbed version of G,
obtained by randomly adding or removing one edge,

E [drp 1(G,G+ ∆1i0j0)] ∼ 2

np
. (45)

We conclude that this RP-1 distance has the same behavior as that of the complete graph, given by (40).

6.2. Star graph

We consider the star graph Sn, which is a tree where every leaf node 2, . . . , n is connected to the root node
(hub) 1.

Theorem 4. If we perturb the edge [1, i0], which connects the hub 1 to the leaf i0 6= 1, by ∆wi0j0 , then the
RP-1 distance between the original and the perturbed graph is

drp 1(Sn, Sn + ∆w1i0) =
2(n− 1)|∆w1i0 |

1 + ∆w1i0

. (46)

If we add an edge with weight ∆wi0j0 ≥ 0 between two leaves i0 and j0, i0, j0 6= 1, then the RP-1 distance
between the original and the perturbed graph is

drp 1(Sn, Sn + ∆wi0j0) =
4n∆wi0j0

1 + 2∆wi0j0
. (47)

Proof of Theorem 4. See Appendix B.3.

The Kirchhoff index for the star graph is

KI(Sn) = 2(n− 1)2, (48)

and therefore the normalized drp 1 distance created by modifying the edge wi0j0 is given by

drp 1(Sn, Sn + ∆wi0j0)

KI(Sn)
= O

(
1

n

)
. (49)

For the star graph, drp 1(Sn, Sn+∆wi0j0)/KI(Sn) decays more slowly with n than with the complete graph.
This matches our intuition, since the star graph is a tree (i.e. it has no redundant paths).

6.3. Path graph

We consider the path graph, Pn, on n vertices.

Theorem 5. If we add an edge with weight ∆wi0j0 ≥ 0 between the vertices i0 and j0 > i0, then the RP-1
distance between the original and the perturbed graph is

drp 1(Pn, Pn + ∆wi0j0) =

|∆wi0j0 |(j0 − i0)
2n [1 + (j0 − i0)(2j0 + 4i0 − 3)]− 3(j0 − i0)(i0 + j0 − 1)2

6 (∆wi0j0(j0 − i0) + 1)
.

(50)
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Proof of Theorem 5. See Appendix B.4.

The Kirchhoff index for the path graph is

KI(Pn) =
1

3
(n− 1)n(n+ 1). (51)

If we assume that i0 = O(1) and O(1) ≤ j0 ≤ O(n), then the normalized drp 1 distance created by modifying
the edge weight wi0j0 is given by

drp 1(Pn, Pn + ∆wi0j0)

KI(Pn)
= O

([
j0
n

]2
)
. (52)

If j0 = O(1), then i0 and j0 remain close, and the new edge has little impact on the graph. However, if
j0 = O(n), then the new edge acts as a short circuit that joins the beginning and the end of the path. In
this case, drp 1(Pn, Pn + ∆wi0j0) grows at the same rate as KI(Pn). In other words, the addition of the edge
has a profound effect that remains constant, as the graph grows.

We note that this behavior is very different from that of the star graph, even though both graphs are
trees. Indeed, in the star graph, all the nodes are well connected: a distance of 1 between a leaf and the
hub, and a distance of 2 between two leaves. On the contrary, in the path graph the head and the tail of
the graph are at a distance n, and the addition of a short circuit has a significant effect. Clearly, the RP-1
distance provides a very useful tool for the analysis of perturbations of both graph models.

It is interesting to note, that although the distance in (50) is correlated with |i0−j0|, the values of i0 and
j0 also play a role. In particular, the maximum of drp 1 does not occur when we add an edge between the
endpoints of the path. If the shortcut were at the extreme, it would create a cycle of perimeter n. However,
if the shortcut connects nodes n/8 and 7n/8, then the path becomes a cycle of perimeter 3n/4, with two
small tails of length n/8. On average, the diffusion will move faster across this geometry than around the
larger cycle.

6.4. Cycle graph

Finally, we consider the cycle on n vertices, Cn.

Theorem 6. If we add an edge with weight ∆wi0j0 ≥ 0 between the vertices i0 and j0 < i0, then the RP-1
distance between the original and the perturbed graph is

drp 1(Cn, Cn + ∆wi0j0) =

1

6
∆wi0j0 [i0 	 j0]n

[i0 	 j0]
3 − 2n

[
(i0 	 j0)2 − 1

]
+ [i0 	 j0] (n2 − 2)

n2 + n∆wi0j0 [i0 	 j0] [n− (i0 	 j0)]
,

(53)

with i0 	 j0 = i0 − j0 (mod n).

Proof of Theorem 6. See Appendix B.5.

The Kirchhoff index for the cycle graph is

KI(Cn) =
1

6
(n− 1)n(n+ 1). (54)

If we assume that O(1) ≤ i0 	 j0 ≤ O(n), we observe the following scaling,

drp 1(Cn, Cn + ∆wi0j0)

KI(Cn)
= O

(
i0 	 j0
n

)
. (55)

The interpretation of the scaling for the cycle graph is very similar to that of the path graph. One can show
that the largest change in the RP-1 distance in (53) is achieved with i0 − j0 = n/2. This edge creates a
short circuit in the middle of the cycle, and leads to a “small world” model.
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7. Fast Computation of the RP-2 Distance

Our discussion so far has focused on the relevance of the RP-p distance to detect structural changes
between graphs. We now consider the second fundamental question: can this new distance be computed
efficiently?

A naive evaluation of drp(p)(G
(1), G(2)) suggests that one first needs to compute the pseudo-inverse of L, in

order evaluate the distance as follows

drp(p)(G
(1), G(2)) =∥∥∥diag(L(1)† −L(2)†) 1T + 1 diag(L(1)† −L(2)†)T − 2(L(1)† −L(2)†)

∥∥∥
p
.

(56)

Equivalently, one could compute the eigenvectors and eigenvalues of L(1) and L(2), and estimate

drp(p)(G, G̃) =
n∑
i=1

n∑
j=1

∣∣∣∣∣
n∑
k=2

1

λ
(1)
k

[φ
(1)
k (i)− φ(1)

k (j)]2 −
n∑
k=2

1

λ
(2)
k

[φ
(2)
k (i)− φ(2)

k (j)]2

∣∣∣∣∣
p}1/p

.
(57)

This direct computation involves a full spectral decomposition of two Laplacian matrices of potentially very
large size, followed by the computation of the element-wise p-norm of the difference of two (dense) resistance
matrices, at a total cost of at least O(n2). Clearly, a direct computation is prohibitively expensive for large
networks, which motivates the development of a scalable randomized approximation algorithm.

We consider two general scenarios. The first one is the general problem of computing the resistance
perturbation distance between two graphs, which we address in this section. In section 8, we explore the re-
stricted problem of computing the resistance perturbation distance between a graph and a slightly perturbed
version of that graph (for example, a second graph obtained by adding one or several edges, or perturbing
the weight of an edge). The second problem has applications in a variety of settings including anomaly
detection in streaming graphs, and edge addition or protection for purposes of improving or maintaining
network robustness.

7.1. Fast Approximation of Pairwise Resistances

A key ingredient of our linear-time algorithm for approximation of the RP-2 distance is the linear-time
algorithm of Spielman and Srivastava [48, 51] for approximating pairwise effective resistances. The algorithm
relies on a bi-Lipschitz embedding of the vertices in RO(logn) that preserves the pairwise effective resistances.
Specifically, given ε > 0, there exists an Õ(m logw/ε2) time algorithm [48], where w = wmax/wmin, that

computes a (24 log n/ε2)× n matrix Z̃ such that with probability at least 1− 1/n,

(1− ε)Rij ≤
∥∥∥Z̃(ei − ej)

∥∥∥2

2
≤ (1 + ε)Rij , ∀i, j ∈ V, (58)

where we recall that ei is the ith vector of the canonical basis in Rn; wmin and wmax are the minimum
and maximum edge weights, respectively. The algorithm [48] combines some crucial ideas, which we recall
succinctly in the following. The reader can consult [48, 51] for further details about the algorithm.

The first observation is that the vertices can be embedded in an m-dimensional space where the pairwise
squared Euclidean distance is equal to the effective resistance between the corresponding vertices in the
graph,

Rij = (ei − ej)TL†(ei − ej) = (ei − ej)TL†LL†(ei − ej)

=
(

(ei − ej)TL†BTdA1/2
)(
dA1/2BL†(ei − ej)

)
=
∥∥∥dA1/2BL†(ei − ej)

∥∥∥2

2
.

(59)
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The second idea is to replace dA1/2B with a randomized version Y = QdA1/2B of size s × n, where
s = 24 log n/ε2. The matrix Q ∈ Rs×m is populated with random entries ±1/

√
s. The matrix Z̃ in (58)

is then defined as Z̃T = L†Y T . Instead of computing directly the pseudo-inverse L†, one approximates
the ith column of Z̃T by solving the linear system Lz̃i = yi, for i = 1, . . . , s, where yi is the ith column of
Y T . In summary, the matrix Z̃ in (58) is constructed using the algorithm [48, 51] described in Algorithm 1.

The algorithm runs in expected time Õ(m log(1/δ)), where m is the number of edges in G. The algorithm

returns the matrix Z̃ =
[
z̃1 · · · z̃s

]T ∈ Rs×n, which meets the bi-Lipschitz condition of (58).

Algorithm 1 Compute the matrix Z̃ in (58) [48, 51]

1: Generate a realization Q ∈Ms×m, with random entries ±1/
√
s, and s = 24 log n/ε2.

2: Y ← QdA1/2B
// δ controls the relative error,

∥∥x−L†y∥∥
L
≤ δ

∥∥L†y∥∥
L
, where ‖y‖L =

√
yTLy

3: δ ← ε

3

√
2

n3

(
1− ε
1 + ε

)
wmin

wmax
.

// Use Laplacian solver STSolve of Spielman and Teng [46, 47]
4: Compute: z̃i ← STSolve(L,yi, δ), ∀i = 1, . . . , s.

7.2. Fast Computation of the drp 2 distance

Based on Z̃, we can approximate the effective resistance matrix as follows,

R ≈ R̃ = diag(Z̃T Z̃)1T + 1 diag(Z̃T Z̃)T − 2Z̃T Z̃. (60)

If we approximate the RP-2 distance using (58), then we obtain the following error bound.

Theorem 7. If Z̃(1) and Z̃(2) are matrices satisfying (58) for the graphs G(1) and G(2) respectively, then
we have the following inequalities∥∥∥R(1) −R(2)

∥∥∥
F
− ε

∥∥∥R(1) +R(2)
∥∥∥
F
≤
∥∥∥R̃(1) − R̃(2)

∥∥∥
F

≤
∥∥∥R(1) −R(2)

∥∥∥
F

+ ε
∥∥∥R(1) +R(2)

∥∥∥
F
,

(61)

where R̃(1) and R̃(2) are defined in (60).

Proof of Theorem 7. Several applications of the triangle inequality prove the result; see Appendix B.6.

7.3. Fast Frobenius norm

Using the results of section 7.1 we can approximate the RP-2 distance as follows,

drp 2(G(1), G(2)) ≈
∥∥∥R̃(1) − R̃(2)

∥∥∥
F

=
∥∥∥diag

(
[Z̃(1)]T Z̃(1) − [Z̃(2)]T Z̃(2)

)
1T

+1 diag
(

[Z̃(1)]T Z̃(1) − [Z̃(2)]T Z̃(2)
)T
− 2

(
Z̃(1)T Z̃(1) − [Z̃(2)]T Z̃(2)

)∥∥∥∥
F

.
(62)

Direct computation of the Frobenius norm is quadratic in the number of vertices, n. However, the structure
of our problem permits us to compute (62) in near linear time in n.

Theorem 8 (Fast Frobenius).
∥∥∥R̃(1) − R̃(2)

∥∥∥
F

can be computed in Õ(n) = O(n log2 n) time.
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Proof of Theorem 8. Let

d = diag
(

[Z̃(1)]TZ̃(1) − [Z̃(2)]TZ̃(2)
)
∈ Rn. (63)

Using the invariance of the trace under cyclic permutations, we show in Appendix B.7 that∥∥∥R̃(1) − R̃(2)
∥∥∥2

F
= 2

[1Td]2 + n ‖d‖22 + 4
(
1T [Z̃(2)]T Z̃(2)d− 1T [Z̃(1)]T Z̃(1)d

)
+2

(∥∥∥Z̃(1)[Z̃(1)]T
∥∥∥2

F
+
∥∥∥Z̃(2)[Z̃(2)]T

∥∥∥2

F
− 2

∥∥∥Z̃(2)[Z̃(1)]T
∥∥∥2

F

) ,
(64)

which can be computed in Õ(n) = O(n log2 n) time. �

7.4. A Nearly Linear-time Algorithm for the RP-2 Distance

Combining the results of sections 7.1 and 7.3, we now build an algorithm to approximate the RP-2
distance between two graphs in nearly linear time. In the following theorem, let G(1) = (V,E(1), w(1))
and G(2) = (V,E(2), w(2)) be two graphs with the same vertex set, and let m(1) = |E(1)|, m(2) = |E(2)|,
w(1) = w

(1)
max/w

(1)
min, and w(2) = w

(2)
max/w

(2)
min. Further, let m logw = max(m(1) logw(1), m(2) logw(2)).

Theorem 9 (Fast RP-2 algorithm). There is an Õ
(
n+

m logw

ε2

)
algorithm that computes d̃rp2(G(1), G(2)),

an approximation of the RP-2 distance, such that with probability at least 1− 2/n,

drp 2(G(1), G(2))− ε
∥∥∥R(1) +R(2)

∥∥∥
F
≤d̃rp2(G(1), G(2))

≤drp 2(G(1), G(2)) + ε
∥∥∥R(1) +R(2)

∥∥∥
F
.

(65)

Proof of Theorem 9. Direct consequence of (58) and theorems 7, and 8. �

The algorithm for the fast computation of the drp 2 distance is described in Algorithm 2. A MATLAB
implementation of Spielman and Srivastava’s algorithm written by Richard Garcia-Lebron was used [21]
to compute Algorithm 1. The code utilizes an implementation of the combinatorial multigrid solver [28]
written by Ioannis Koutis, and Gary Miller.

Algorithm 2 Compute d̃rp2(G(1), G(2))

1: Input: E(1), w(1), E(2), w(2), tolerance ε > 0.
2: Compute Z̃(1), Z̃(2) ∈Ms×n using Algorithm 1.

3: d← diag([Z̃(1)]T Z̃(1) − [Z̃(2)]T Z̃(2)).

4: d̃rp2 ←
√

2
[1Td]2 + n ‖d‖22 + 4

(
1T [Z̃(2)]T Z̃(2)d− 1T [Z̃(1)]T Z̃(1)d

)
+2

(∥∥∥Z̃(1)[Z̃(1)]T
∥∥∥2

F
+
∥∥∥Z̃(2)[Z̃(2)]T

∥∥∥2

F
− 2

∥∥∥Z̃(2)[Z̃(1)]T
∥∥∥2

F

)1/2

.

5: return d̃rp2.

The scalability of the algorithm was verified experimentally on a set of sparse random graphs with m = O(n)
edges. The graphs generated for this experiment were latent space random path graphs with a power law
kernel edge probability; the probability of connecting nodes i and j is given by P (i ∼ j) = 100/|i− j|.
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Figure 3: Computation time for d̃rp2 as a function of the number of edges m = O(n).

This generates sparse random graphs with edge counts approximately proportional to the vertex counts.
In Fig. 3 we see that the computation time scales nearly linearly in the number of edges.

8. Fast Optimal Design of Networks Using the RP-1 Distance

Improving network robustness via targeted edge addition is a problem with considerable applications.
The Kirchhoff index is often used as a measure of network robustness (see e.g., Wang et al. [53] and
references therein). A lower Kirchhoff index is indicative of a more robust network, since lower effective
resistances between pairs of vertices is indicative of short and/or redundant paths between vertices. The
greedy approach, which consists in connecting the pair of vertices with the highest effective resistance, is
known to be suboptimal (e.g., Ellens et al. [18]). Wang et al. [53] demonstrate however, that choosing the
maximum effective resistance is often close to optimal, and can be accomplished in O(n3) time rather than
O(n5) as required for an exhaustive search.

We make the following significant contribution to this question: we propose an algorithm with complexity
O(n) to approximate the optimal edge addition. Specifically, this novel algorithm combines a low-rank
approximation of the exact drp 1 distance given by theorem 10 with a fast heuristic. We describe these two
components in the next sections.

8.1. Low-rank Approximation of the RP-1 Distance

Theorem 2 provides an exact formula for computing the perturbation of the Kirchhoff index due to
changes (addition, or removal) in a single edge. The optimal edge addition can thus be computed with a
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complexity O(n3) time. Indeed, O(n3) operations are needed to compute the spectral decomposition of L;
another O(n)×O(n2) operations are then required to exhaustively compute the exact drp 1(G,G+ ∆wi0j0)
distance (in O(n) operations using (37)), for every pair of vertices i0 and j0.

The O(n3) complexity is a significant improvement over the O(n5) algorithm described in Wang et al.
[53]. However, O(n3) is still prohibitively expensive for large networks, which motivates us to consider a
low-rank approximation strategy to reduce the cost of solving the optimal edge modification problem.

Many graphs exhibit a concentration of the bulk of the eigenvalues of the graph Laplacian [14]. In this
case, the bulk is well separated from the smallest eigenvalues, and because it is well confined, it can be
replaced by a single “representative” eigenvalue. This idea leads to the following approximations, which
prove to be very accurate in practice, for the summations in (37).

Theorem 10 (Low-rank approximation). The sums in the numerator and denominator in (37) can be
approximated using the following lower and upper bounds,

2

λ2
n

+

p∑
k=2

{
1

λ2
k

− 1

λ2
n

}
[φk(i)− φk(j)]

2 ≤
n∑
k=2

1

λ2
k

[φk(i)− φk(j)]
2

≤ 2

λ2
p

+

p∑
k=2

{
1

λ2
k

− 1

λ2
p

}
[φk(i)− φk(j)]

2
,

(66)

and

2

λn
+

p∑
k=2

{
1

λk
− 1

λn

}
[φk(i)− φk(j)]

2 ≤
n∑
k=2

1

λk
[φk(i)− φk(j)]

2

≤ 2

λp
+

p∑
k=2

{
1

λk
− 1

λp

}
[φk(i)− φk(j)]

2
.

(67)

Proof of Theorem 10. The proof relies on the orthonormality of the eigenvectors to bound the contribution
of the bulk of the spectrum (λp, . . . , λn) from above and below. See details in Appendix B.8.

Using the above result, we can approximate (37) using a partial set of eigenpairs. Corollary 2 in Appendix
B.9 provides the corresponding bounds. In the next section we evaluate numerically the quality of the
low-rank approximations provided by theorem 10. Our experiments indicate that close-to-optimal results
(as measured by the reduction in the Kirchhoff index) can be achieved with p� n eigenpairs.

We generated several graphs from ensembles of random graphs, and computed the upper and lower
bounds for both sums (66), and (67). To further improve the approximation, we noticed that the average of
the lower and upper bounds in (66) and (67) produced a very accurate estimates of the corresponding sum.
Indeed, the idea is that the bulk is approximated by the average of the largest and (one of) the smallest
eigenvalue in the bulk. Fig. 4 displays the various approximations. The left column shows the approximation
of
∑n
k=2[φk(i)− φk(j)]

2
/λk, while the left column displays the approximation of

∑n
k=2[φk(i)− φk(j)]

2
/λ2

k.
Each row corresponds to a different graph. All graphs have 2, 000 vertices. The top row is a realization

of an Erdős-Rényi random graph with edge probability equal to 0.1. The middle row corresponds to a block
stochastic model composed of two communities of equal sizes (also know as a planted partition model),
where the within-community edge probability is pin = 0.9, and the between-community edge probability is
pout = 0.005. Finally, the bottom row corresponds to a small world (Watts and Strogatz) model constructed
by randomly re-wiring a regular ring lattice of constant degree 80, where each edge is rewired with a
probability β = 0.01. We conclude that for all three graphs, the average of the lower and upper bounds in
(66) and (67) provided an accurate estimate of the numerator and the denominator of drp 1(G,G+ ∆wi0j0).

21



8.2. Fast greedy Optimization of the Kirchhoff Index

To avoid the exhaustive search of the optimal edge over all pairs of vertices, we designed the following
fast greedy search method. The algorithm iteratively constructs a sequence of edges that converges toward
a local optimum of (37). The initial edge is constructed by choosing randomly a vertex i0. The algorithm
then visits the other n − 1 vertices, and select that vertex j0 that maximizes the decrease in the Kirchhoff
index, as measured by (37). The vertex j0 is then kept fixed, and the algorithm visits the remaining n− 2
vertices to replace i0 by i1 in order to further decrease (37) using the edge [i1, j0]. The process is repeated
until (37) can no longer be improved. This algorithm runs in O (n) time, a significant improvement over the
O(n2) exhaustive search.

8.3. Experimental Validation of the Optimization of the Kirchhoff Index

To validate the fast optimization of the Kirchhoff index, we designed a second set of experiments, using
graphs generated from archetypal ensembles of random graphs. In this set of experiments, all graphs have
500 vertices. For all experiments we approximated the drp 1 distance using the average of the lower and upper
bounds (66) and (67) for the numerator and denominator of (37), respectively. This led to an estimate of the
decrease of the Kirchhoff index, ∆ KI, that was computed using p eigenvectors. As p increases and approaches
n, we recover the exact expression given by (37). The gold standard, ∆ KIoptimal = drp 1(G,G+ ∆woptimal),
is the optimal decrease of the Kirchhoff index that would result from the optimal edge addition if we were
to use an exhaustive search. Each plot in Fig. 5 displays the relative error, ∆ KI /∆ KIoptimal as a function
of p. For each random graph model, the experiment was repeated 50 times.

The mean and the range (minimum to maximum, shown as an error-bar) of the relative reduction in the
Kirchhoff index is plotted in Fig. 5. We note that this error compounds two approximations: the low-rank
approximation in (10), and the greedy algorithm described in section 8.2.

We now describe the five graph models.
Unit Circle Latent Space Model. We sampled 500 points using a uniform distribution on the unit circle
in R2,

xi =

[
cos(θi)
sin(θi)

]
, where θi ∼ U[0, 2π], i = 1, . . . , 500.

An unweighted graph G = (V,E) was then generated by randomly connecting each pair of vertices {i, j}
with an edge [i, j] according to a probability prescribed by a Gaussian kernel in the latent space,

P ([i, j] ∈ E) =
10√
π

exp
(
−100‖xi − xj‖2

)
, for i 6= j. (68)

Erdős-Rényi random graph. We constructed a random graph with edge probability equal to 0.05.
Two communities stochastic block model. We generated a stochastic block model formed by two
communities of equal sizes, where the within-community edge probability was pin = 0.1, and the between-
community edge probability was pout = 0.01.
Barabási-Albert preferential attachment model. The graph was constructed by sequentially adding
two edges from each new vertex, attaching to other vertices with probability proportional to their current
degrees.
Watts and Strogatz model. The small world model was designed by randomly re-wiring a regular ring
lattice of constant degree 40 and a rewiring probability β = 0.1.

We first notice in Fig. 5 that, for all graphs, the greedy search performed as well, or nearly as well, as
the exhaustive search. With regard to the quality of the low-rank approximation, using only the Fiedler
vector (φ2), we were able to capture 95% of the optimal increase in the Kirchhoff index. The Erdős Rényi
graph only required φ2 to estimate the optimal ∆ KIoptimal. As expected, the two-communities stochastic
block model required two eigenvectors φ2 and φ3 to achieve near-optimal approximation. The latent space
model required more eigenvectors to completely recover the optimal ∆ KIoptimal. Nevertheless, a very good
estimate was obtained with φ2 only, which was able to capture the topological structure of the latent space
formed by the ring. The stochastic nature of the graph construction necessitated more eigenvectors to fully
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Small world (Watts and Strogatz) model
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Figure 4: The lower, upper, and average bounds given by theorem 10, as well as the exact sum for
∑n

k=2[φk(i)− φk(j)]2 /λk
(left) and

∑n
k=2[φk(i)− φk(j)]2 /λ2k (right). All the quantities are displayed as a function of p, the number of eigenpairs used

in the partial sums, (67) and (66). All graphs have n = 2, 000 vertices. See main text for details.23
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Figure 5: Relative reduction in the Kirchhoff index ∆ KI /∆ KIoptimal as a function of p, the number of eigenvectors used to
approximate (37). We compare the exhaustive (solid red line) with the fast greedy search (dotted purple line). From left to
right and top to bottom: Erdős-Rényi, stochastic block model, latent space model, Barabási-Albert preferential attachment,
and Watts and Strogatz model. The mean relative reduction, as well as the range (minimum to maximum values, over 50
random realizations) are shown.

24



estimate the increase in the Kirchhoff index. A similar phenomenon happened with the Barabási-Albert
preferential attachment model and the Watts and Strogatz model. In the latter case, φ2 was only able
to recover the ring lattice, which corresponds to the regular part of the graph. Additional eigenvectors
were needed to capture the “disorder” created by the random rewiring. As mentioned earlier, the error is
a function of the low-rank approximation in (10) and the greedy algorithm described in section 8.2, and
therefore is not necessarily monotonically decreasing with p.

9. Analysis of Dynamic Networks with the RP-p Distances

We demonstrate in this section how the RP-1 and RP-2 distances can be used to detect anomalies caused
by significant structural changes in dynamic networks. Our analysis is based on a series of experiments on
synthetic and real networks. The results of the experiments clearly show that the resistance perturbation
metric can detect the configurational changes in dynamic graphs that are triggered by appreciable modifi-
cations of the hidden variables controlling the graph dynamics.

The distances drp 1 drp 2, DeltaCon using drootED (see (9) and (10)), and dCAD (see (18)) were computed
for all the experiments. We used all the edges to compute dCAD, to wit F = E in (18).

9.1. Random Graphs Models

The first set of experiments rely on realizations of graphs sampled from ensembles of random graphs.
The experiments were conducted on three different families of random graph models: a random graph with
a latent space, a two-communities block stochastic model, and a Watts and Strogatz model. All models
depend on a single scalar that characterizes the structure of the graph. We first detail the experimental
procedure, and then describe each graph model.

Experimental procedure. All experiments were conducted in the following manner: a baseline graph
G(1) was randomly selected using the baseline value for the parameter of the corresponding model. We then
generated 50 random realizations of a second graph G(2), using the same value of the parameter.

The parameter that controls the graph was then increased, in 10 increments. For each increment, 50
random realizations of a second graph G(2) were constructed, and all the graph distances were computed.
By modifying the parameter that has an important impact on the structure of the graphs, we evaluated
quantitatively the relationship between the resistance perturbation distance and (potentially unobserved)
changes in the latent parameter that controls the organization of the graph.

Our experiments show that the resistance perturbation distance is highly correlated with the evolution of
the parameter that governs the structure of the graphs. In contrast, the DeltaCon distance is very sensitive
to the normal fluctuations between the 50 random different realizations of the same exact graph structure.
The DeltaCon distance also exhibits the largest variability between the different random realizations. The
dCAD distance, which is biased by changes in the adjacency matrix can become too sensitive to changes in
the graph topology (e.g., in the case of the stochastic block model).
Unit Circle Latent Space. A first graph G(1) was constructed by first sampling 2,000 points using a
uniform distribution on the unit circle in R2,

x
(1)
i =

[
cos(θ

(1)
i )

sin(θ
(1)
i )

]
, with θ

(1)
i ∼ U[0, 2π], i = 1, . . . , 2, 000.

An unweighted graph G(1) = (V,E(1) was then generated by randomly connecting each pair of vertices {i, j}
with an edge [i, j] according to a probability prescribed by a Gaussian kernel in the latent space,

P ([i, j] ∈ E(1)) =
20√
π

exp
(
−400‖xi − xj‖2

)
, for i 6= j. (69)
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Figure 6: The graph distances drp 1(G(1), G(2)), drp 2(G(1), G(2)), DeltaCon (drootED

(
G(1), G(2)

)
), and dCAD(G(1), G(2)), as

a function of the latent parameter that controls the structural difference between G(1) and G(2). Error bars represent the
standard deviation computed over 50 random realizations. Top: unit circle latent space model (left), and the two communities
stochastic block model (right). Bottom: the small world (Watts and Strogatz) model. See text for details.

A second random graph G(2) = (V,E(2)) was generated according to the same principle, but with a second

set of latent locations, {x(2)
i } that was obtained by a perturbation of the initial set {x(1)

i },

x
(2)
i =

[
cos(θ

(2)
i )

sin(θ
(2)
i )

]
, with θ

(2)
i = θ

(1)
i + γi, γi ∼ N (0, σ2), i = 1, . . . , 2, 000.
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The random edges E(2) were connected using the same probability distribution given by (69). The magnitude

of the random Gaussian shifts between the angles of the set {x(1)
i } and those of the set {x(2)

i } is controlled
by the standard deviation σ. For increasing values of σ ∈ [0, 1] we constructed 50 random realizations of
G(2), and we computed drp 1(G(1), G(2)) and drp 2(G(1), G(2)).
Figure 6 top-left displays all the graph distances as a function of σ. We first observe that drp 1(G(1), G(2))
and drp 2(G(1), G(2)) are very similar. This is crucial, since we designed a fast algorithm to approximate
drp 2. We also note that both RP distances are highly correlated with the magnitude of the perturbation, σ.

The increasing difference between G(1) and G(2), created by the increase in σ, intensifies the “disorgani-
zation” of G(2); the latent model is less and less regularly organized along the unit circle. The DeltaCon
distance is able to detect this progression toward disorder, but quickly reaches its maximum value for unre-
markable values of σ, making it useless for detecting anomalies. In contrast the dCAD distance performed
extremely well.
Two Communities Stochastic Block Model. The n = 2, 000 nodes are divided into two communities
of size n/2. Every pair of nodes {i, j} forms an edge [i, j] with probability pin if they belong to the same
community, and with probability pout if they belong to different communities. We fixed pin = 0.9 for both

graphs. We used p
(1)
out = 0.005 for G(1), and we varied p

(2)
out ∈ [0.005, 0.01] for G(2). Figure 6 top-right displays

the four graph distances as a function of ∆pout = p
(2)
out − p

(1)
out.

In comparison with the latent space model, we note that the changes in the adjacency matrix created by
the intrinsic randomness of the model confuses the dCAD distance very quickly. Indeed, the dCAD distance
immediately reaches 0.73 in the baseline condition when G(1) and G(2) have the same structure, to wit
when they are both realizations of the same random model (same pin and same pout). DeltaCon is equally
confused: the standard deviation is very large, making it difficult to assess the confidence one should attach
to a single measurement of the distance.

Conversely, drp 1(G(1), G(2)) are highly correlated with the increase in pout, making the distances suitable
to detect changes in community networks. Furthermore, the standard deviations for both RP-distances
remain very small.

Small World Model. We generated random realizations of a small world (Watts and Strogatz) model
constructed by randomly re-wiring a regular ring lattice of constant degree 40 using a random rewiring with
probability β2 that varied from β2 = β1 = 0.01 for G(1), to β2 = 0.02. We generated 50 random realizations
for each value of β2. Figure 6-bottom displays the four graph distances as a function of ∆β = β2 − β1.

In this model, the initial ring lattice moves toward a state of disorder when β2 increases. In a manner
comparable to the latent space model, the increase in disorganization is detected by the DeltaCon distance,
which is correlated with ∆β over the entire range. Both RP-distances as well as the dCAD distance are more
tightly correlated with the increase of ∆β, and are therefore more suitable to infer the dynamic underlying
changes in the graph.

9.2. Real Dynamic Network

The second set of experiments involved two real-world dynamic networks, where we can qualitatively
compare the resistance perturbation distance to known events that would likely influence the behavior of
actors in the dynamic networks. These results suggest that the resistance perturbation metric can identify
changes in real dynamic graphs, and could be used to infer changes in the hidden variables that govern
the evolution of such dynamic graphs. Enron email network. The Enron email corpus [27] is composed
of the email messages between approximately 150 high-level executives (the Enron “core”); these were
included in the analysis because these individuals were most closely involved in the scandal. Emails were
aggregated on a weekly basis to generate a dynamic series of communication graphs, and compared to a
timeline of events. Undirected edges were assigned between pairs of vertices, with a weight equal to the
number of emails exchanged between the two people during a given week. In order to focus on personal
communications, emails with greater than three recipients were excluded from the analysis. The size of the
remaining dynamic graph is: number of vertices = 151; count of emails = 31534; count of weighted
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Figure 7: drp 1 and drp 2 (top) and DeltaCon (drootED) and dCAD (bottom) between consecutive weekly email graphs from
the Enron corpus. Notable events in the timeline of the company’s collapse are also plotted for reference [39].

edges after weekly aggregation = 7794. The time period analyzed spans the period leading up to the Enron
scandal and subsequent collapse of the company.

The resistance perturbation metrics, drp1 and drp2, between consecutive weekly email graphs are plotted
in Fig. 7-top; drp1 and drp2 have very similar dynamics. Furthermore, we note that large changes detected
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by drp2 during the summer and fall of 2001 are predictive of the events that lead to the ultimate collapse of
the company.

An independent analysis of the same dataset [40, 41] confirms that changes in the mean degree, which
are highly correlated to changes in the volume, is a very poor predictor of the changes detected by the
RP-distance.

DeltaCon exhibits a lot of volatility, changing at times when there are no significant events in the com-
pany, while remaining constant around the time associated with notable events. Changes in the dCAD

distance appear to be tightly coupled with the events described by the vertical bars.

MIT reality mining dataset. The MIT reality mining dataset [17] provides collocation information
between a group of students and faculty at MIT during the course of an academic year. A dynamic undirected
graph was built from weekly-aggregated Bluetooth proximity data. The weights of the edges in this dynamic
graph are proportional to the amount of time each pair of cellphones registered one-another’s presence in
close physical proximity.

The drp1 and drp2 metrics between consecutive weekly proximity graphs are plotted in Fig. 8-top. We
again note that drp1 and drp2 appear to be within a constant factor of one another. Both metrics can
predict events during the course of the academic year. A substantial change between the first and second
week of classes at the beginning of the fall semester is likely representative of students sorting out their class
schedules and friend groups. The week after finals (the beginning of winter break) and the beginning of the
independent activities period are reflected by significant changes in the network, as measured by the drp1 and
drp2 metrics. The network also changes at the beginning and end of spring break, as students depart from
and return to their campus routine. For comparison, we present a similar analysis using the DeltaCon and
dCAD distances in Fig. 8-bottom. Both distances appear to detect changes during the academic calendar
(e.g., sponsor week, finals week, etc.) DeltaCon appears to be more stable then dCAD.

Because of the nature of the data, the RP distances can be used to confirm behavioral changes associated
with the geolocation of the different actors (nodes) of the network. Unlike the Enron dataset, the RP distance
has no predictive value in this case, but can be used to grade the significance of the changes in behavior:
finals are more important than spring break, which is more important than exam week. Finals week appears
to be more important than the beginning of the semester.
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Figure 8: drp 1 and drp 2 (top) and DeltaCon (drootED) and dCAD (bottom) between consecutive weekly Bluetooth proximity
graphs from the MIT Reality Mining dataset. Important events in the academic calendar are also plotted [39].
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10. Discussion

We revisit the goal of the paper and confirm that the resistance perturbation distance RP-p satisfies the
axiom and principles laid out in section 3.1.

10.1. Adherence to Axioms and Principles

Axiom 1. We have indeed proved in theorem 1 that all the RP-p distances were proper distances, and
therefore this family of distances satisfies Axiom 1.

Principle 1: Edge Importance. Remark 3 in section 5.3 proves that
drp 1(G,G + ∆wi0j0) → ∞ if and only if removing the edge [i0, j0] disconnects the graph, thereby proving
Principle 1.

Principle 2: Weight Awareness As explained in Remark 3 in section 5.3, as wi0j0 → ∞, then A−1
i0j0
≈

Ri0j0 , and 1 − wi0j0Ri0j0 ≈ 0, leading the distance drp 1(G,G + ∆wi0j0) to go to infinity when the edge
is removed, to wit when ∆wi0j0 = −wi0j0 . The second principle of “weight awareness” is therefore clearly
satisfied: as the weight of the removed edge grows, the distance grows to infinity.

Principle 3: Edge-“Submodularity”. While we do not have a formal proof of this principle, we can use
the comparison of the complete graph (theorem 3) with the star graph (theorem 4) to illustrate the scaling
of the distance drp 1. The complete graph has O(n2) edges, and drp 1(Kn,Kn + ∆wi0j0) = O(1/n). The star
graph has O(n) edges, and drp 1(Sn, Sn + ∆wi0j0) = O(n). In this example, changes made to a sparse graph
are more important than equally sized changes made to a denser graph with the same number of vertices.

Instead of comparing a single-edge perturbation of graphs that have different topologies, and thus dif-
ferent densities, we can evaluate the perturbation of graphs that have the same topology, but different
densities.

We illustrate this concept with a stochastic block model composed of size n = 1, 000. The nodes are
divided into two communities of size n/2. Every pair of nodes {i, j} forms an edge [i, j] with probability p
if they belong to the same community, and with probability q if they belong to different communities. We
fixed p = log2(n)/n, and we increase q from log(n)/n2 to 7p/n.

For each value of q we generate 200 realizations of the model. For each realization G, we perturb a single
edge, e. The edge is chosen at random within one of the two communities (within community perturbations),
or chosen to be one of the cross-community edges (cross community perturbation). We then compute the
distances between G and G\{e} – G with the edge e removed.

Figure 9 displays the distances dDC0 (G,G\{e}) and drp 1 (G,G\{e}) as a function of the probability q of
connecting the two balanced communities. Each of the distance time-series is normalized by its maximum
value, and the error-bars display the standard deviations computed over 200 realizations. The blue line
corresponds to the theoretical analysis of drp 1 (G,G\{e}) performed in [54], which corresponds to a power-
law decay (note the logarithmic scale).

We note that dDC0
is sensitive to the type of edges that is being removed: the distance is larger for

cross-community edges (see Fig. 9 magenta). However, dDC0 is independent of the increasing density of the
graph.

Similar to dDC0
, drp 1 can easily detect whether the deleted edge e was removed from within a community,

or was a cross-community edge. In contrast to dDC0
, the distance drp 1 is very sensitive to the density of

edges in the graph. In agreement to principle 3, drp 1 decreases as a function of the graph density.

Principle 4: Focus Awareness. The fourth principle, “focus awareness”, states that random changes
in graphs are less important than targeted changes of the same extent. While the notion of targeted versus
random changes would need to be defined more precisely, we argue that remark 4 in section 5.3 addresses this
principle. Indeed, in the example of a network formed by densely connected communities, which are weakly
connected to one another, drp 1(G,G+ ∆wi0j0) will be maximal if i0 and j0 are in different communities, for
the same ∆wi0j0 . Because there are much fewer edges bridging the communities, modifying the edge [i0, j0],
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Figure 9: The distances dDC0 (G,G\{e}) and drp 1 (G,G\{e}) as a function of the probability q of connecting two balanced
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deviation computed over 200 realizations. For each distance, the perturbed edge e can either belong to one of the two
communities (within community perturbation), or be one of the cross-community edges (cross community perturbation).

where i0 and j0 are in different communities, is indeed a targeted change.

We conclude that the resistance perturbation distance satisfies the axiom and principles (see section
3.1) that a graph distance should obey. These principles were inspired by the pioneering work of Koutra
et al. [29], where the authors compared the DeltaCon algorithm to vertex edge overlap [36], the graph edit
distance [10], the signature similarity [36], and three variations of the λ-similarity [10, 38, 55]. The authors
in [29] show that DeltaCon is the only algorithm that adheres to their set of axioms and principles. In
fact, our asymptotic analyses of the DeltaCon0 similarity for the complete and star graphs (Appendix A)
demonstrates that this distance fails to meet Principle 3.

10.2. Future Work

The introduction of the resistance perturbation distance prompts several important research questions.
A current limitation of the RP distance is its inability to measure distances between disconnected graphs in
a meaningful way, which stems from the fact that the effective resistance between vertices in disconnected
components of a graph is infinite. Thus, it may prove valuable to consider extensions of the resistance
perturbation distance that accommodate disconnected graphs. One option may be to define a distance
based on some comparison of the conductance matrices.
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A volume-normalized version of the distance may also be of interest. In some applications, the user
might be more interested in the overall structure of the graph, and less interested in the magnitude of the
weights along the edges. For example, if all edge weights are doubled between one graph and another, this
could be viewed as insignificant in some circumstances. The precise implications of such a normalization
are a worthy direction for future research.

Many applications of the RP distance should be explored.
In the context of dynamic graphs (see section 9), the drp(p) metric can be used to study the dynamic

evolution of a graph sequence {G(n)}, where n denotes the time index of the corresponding element G(n)

in the graph process. There has been some recent interest in the detection of anomalies in dynamic graphs

[2, 31, 42]. Formally, one can construct a statistic Zn, based on the distanceDn = drp(p)(G
(n)
n , Gn+1) between

G(n) and G(n+1), in order to test the hypothesis H0 that the graphs G(n) and G(n+1) are structurally the
same against the alternate hypothesis that G(n) and G(n+1) are structurally different. In this context, we
accept H0 if Zn < zε and accept H1 otherwise. The threshold zε for the rejection region satisfies

ProbH0
(Zn ≥ zε) ≤ ε as n→∞, (70)

and
ProbH1

(Zn ≥ zε)→ 1 as n→∞. (71)

The test has therefore asymptotic level ε and asymptotic power 1. Our recent work [54] develops the
construction of the statistic Zn in the context of a dynamic community network.

Our results in section 9 on random graph models, clearly show that one can quantify the normal random
fluctuations of the metric drp(p) using ensemble of random graphs, which defines a notion of normal baseline
“background” noise to be expected when a graph does not experience significant configurational changes.
Furthermore, both drp 1 and drp 2 can detect significant structural changes, such as changes in topology,
connectivity, or “disorder”. Formally, one can numerically estimate a 1 − ε point wise confidence interval
for the test statistic with a bootstrapping technique; the details of such a construction extend beyond the
scope of the present report and are the subject of ongoing investigation [54].

While the metric drp(p) can provide insightful information about changes at many different scales in the
graph structure, it does not provide any localization about the anomalies. One could study the problem of at-
tribution of the anomaly. A multiscale approach, where the metric drp(p) is computed between corresponding

subgraphs of G(2) and G(2), could provide insight into the localization of the metric changes. Alternatively,
one could try to localize the anomalous edges using the approach proposed in [50], and described in section
3.2.

Spielman and Srivastava [48] introduced a method for generating sparse spectrally similar graphs by
sampling edges of the original graph according to the effective resistance between endpoints of the edges.
This strategy suggests a meaningful connection between effective resistances and spectral similarity. Indeed,
Batson et al. [6] observed that spectrally similar graphs exhibit similar effective resistances between all
pairs of vertices. Improving our understanding of potential connections between the spectral similarity and
resistance perturbation distance is an avenue of significant interest for future work.

In this work, we have presented and implemented a fast algorithm to compute drp2. This effort leads to
several questions. First, we observed that the computation time for the fast drp2 approximation algorithm

is dominated by the Õ(log n) Laplacian linear solver (each of size n). Our current implementation utilizes
the combinatorial multigrid solver of Koutis et al. [28]. Although we observe linear scaling of the algorithm

on several scalable example problems, the constant hidden in the Õ is unfortunately significant.
One could explore competing algorithms for the Laplacian solver. Lean Algebraic Multigrid (LAMG)

[32, 33] is a competing method for solving graph Laplacian linear systems in linear time that may reduce
the cost of approximating the drp2 metric. Given the diversity of structural features in graphs, an adaptive
approach may be necessary to handle different types of graphs efficiently.

Modern high-performance computing architectures demand the development of highly parallelizable al-
gorithms. The structure of the drp2 approximation algorithm lends itself to natural parallelism. The most
direct opportunity for parallelism involves splitting the O(log n) independent calls to the Laplacian solver
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onto independent processors/cores. Additionally, depending on the choice of the Laplacian solver algo-
rithm, each call to the solver could potentially be parallelized. A detailed investigation of such algorithmic
improvements is an important avenue for future work.
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11. Notation

Symbol Definition (equation)

G graph with vertex set V , edge set E, and edge weights w (1)

[i, j] edge between nodes i and j (1)

A n× n adjacency matrix
Aij = wij if i and j are connected, 0 otherwise (1)

D n× n diagonal matrix of vertex degrees, Dii =
∑n

j=1Aij (2)

L n× n combinatorial Laplacian matrix (2)

φk, λk eigenvector and eigenvalue of L, with 0 = λ1 ≤ . . . ≤ λn (3)

L† pseudoinverse of L (4)

B m× n edge incidence matrix (7)

dA m×m diagonal edge weight matrix (7)

drootED root Euclidean distance (10)

S(i) n× n fast belief propagation matrix (11)

ei i-th canonical basis vector ei ∈ Rn

R n× n matrix of effective resistances (22)

KI(G) Kirchhoff index of G (24)

κij commute time between vertices i and j (25)

‖·‖p element-wise p-norm (28)

drp(p) resistance perturbation distance (28)

Z̃ O(logn)× n embedding matrix (58)

Q O(logn)×m random projection matrix Algorithm 1

p number of eigenvectors used
in the low-rank approximation of drp 1 (67)

Appendix A. DeltaCon0 Analysis

Appendix A.1. Introduction

In this section we compute analytically the DeltaCon0 similarity for small perturbations of the complete
and the star graphs. We restrict our attention to simple perturbations, where G(2) is generated from G by
a change in edge weight of size ∆wi0j0 between vertices i0 and j0.

Our main tool is the Sherman–Morrison–Woodburry theorem [23] that provides a closed form expression
for the inverse of a low-rank perturbation of a non-singular matrix. For completeness, we recall the Sherman–
Morrison–Woodburry formula.
If X is an n×n non singular matrix, and U and V are two n× k matrices, then T = I +V TX−1U is non
singular if and only if

Y = X +UV T (A.1)

is non singular. Furthermore, when Y −1 exists, we have[
X +UV T

]−1
= X−1 −X−1U

[
I + V TX−1U

]−1
V TX−1. (A.2)
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In the following, we use this theorem with k = 1 or k = 2. When k = 1, we have the Sherman–Morrison
formula, [

X + uvT
]−1

= X−1 − 1

1 + vTX−1u
X−1uvTX−1. (A.3)

For the purpose of writing concise equations, we extend the big O notation for matrices. If Ã(n) and A(n)
are two sequences of matrices that depend on n, then the notation

Ã(n) = A(n) +O (1/nq) , (A.4)

means that
∀i, j, ãij(n) = aij(n) +O (1/nq) . (A.5)

In other words, there exists a sequence of matrices B(n) =
[
b
(n)
ij

]
such that,

∃ c2 > c1 ≥ 0, Ã(n) = A(n) +B(n), and ∀n, c1 ≤ nqbij(n) ≤ c2. (A.6)

Appendix A.2. Complete Graph

In the case of the complete graph G on n vertices we have,

A = J − I, D = (n− 1)I, and ε =
1

n
. (A.7)

Then, the fast belief propagation matrix (11) is given by

S =

[
I +

n− 1

n2
I − 1

n
J +

1

n
I

]−1

=

[
n2 + 2n− 1

n2
I − 1

n
11T

]−1

(A.8)

The Sherman–Morrison–Woodbury formula (A.2) yields

S =
n2

n2 + 2n− 1

{
I − n

2n− 1
J

}
. (A.9)

We now consider the perturbed graph G(2). Without loss of generality, we can assume that the edge [1, 2]
was modified, and thus G(2) is obtained by the change w12 → w12 + ∆w12. The perturbed adjacency matrix
A(2) is given by

A(2)=


1 1 + ∆w12 1 · · ·

1 + ∆w12 1 1 · · ·

1
. . .

...

 , (A.10)

and degree matrix D(2) is given by

D(2)=


n− 1 + ∆w12 0

n− 1 + ∆w12

n− 1
. . .

0 n− 1

 . (A.11)

The inverse of the fast belief propagation matrix of G(2) is given by[
S(2)

]−1

= I + ε2
2D

(2) − ε2A
(2), with ε2 =

1

n+ ∆w12
, (A.12)
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which simplifies to[
S(2)

]−1

=
n2 + 2n− (3∆w12 + 1)

n2
I − 1

n

(
1− ∆w12

n
+

∆w12
2

n2

)
J

−∆w12

n

(
1− ∆w12

n

)(
e1e

T
2 + e2e

T
1

)
+

∆w12

n2

(
e1e

T
1 + e2e

T
2

)
+O

(
1/n3

)
.

(A.13)

We break
[
S(2)

]−1
into two parts. First, we apply the Sherman-Morrison formula (A.3) to get the inverse

of a rank-one perturbation of a diagonal matrix,[
n2 + 2n− (3∆w12 + 1)

n2
I − 1

n

(
1− ∆w12

n
+

∆w12

n2

)
11T

]−1

=
n2

n2 + 2n− (3∆w12 + 1)
I +

1

2 + ∆w12

(
1− 3 + ∆w12

n(2 + ∆w12)

)
J +O

(
1/n2

)
.

(A.14)

Then we add the rank-two perturbation, −∆w12

n

(
1− ∆w12

n

) (
e1e

T
2 + e2e

T
1

)
, and apply the Sherman–Morrison–

Woodbury formula (A.2) to arrive at

S(2) =
n2

n2 + 2n− (3∆w12 + 1)

(
I +

1

2 + ∆w12

(
1 +

1 + ∆w12

n(2 + ∆w12)

)
J

)
+

∆w12

n(2 + ∆w12)2

2J + (2 + ∆w12)
(
1(e1 + e2)T + (e1 + e2)1T

)
+(2 + ∆w12)2

(
e1e

T
2 + e2e

T
1

)+O
(
1/n2

)
.

(A.15)

Which simplifies to

S(2)=
n2

n2 + 2n− (3∆w12 + 1)
I +

1

2 + ∆w12

[
1 +

∆w12 − 3

n(2 + ∆w12)

]
J

+
∆w12

n

[
e1e

T
2 + e2e

T
1

]
+

∆w12

n(2 + ∆w12)

(
1[e1 + e2]T + [e1 + e2]1T

)
+O

(
1/n2

)
.

(A.16)

From (A.9) we derive the following first order approximation of S

S =

(
1− 2

n

)
I +

(
1− 3

2n

)
1

2
J +O

(
1/n2

)
(A.17)

We now proceed to compute the DeltaCon0 similarity between G and G(2). We need to estimate the size of

the terms
√
Sij−

√
S

(2)
ij . Because we expect a linear growth of the distance, we only need an approximation

up to order 1.
We start with the off-diagonal entries. If i 6= j, we have

Sij =
1

2
+O (1/n) , and S

(2)
ij =

1

2 + ∆w12
+O (1/n) , (A.18)

from which we get √
Sij −

√
S

(2)
ij =

1√
2
− 1√

2 + ∆w12

+O (1/n) . (A.19)

And therefore, (√
Sij −

√
S

(2)
ij

)2

=

(
1√
2
− 1√

2 + ∆w12

)2

+O (1/n) . (A.20)
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Thus
n∑

i,j=1;i6=j

(√
Sij −

√
S

(2)
ij

)2

= n(n− 1)

(
1√
2
− 1√

2 + ∆w12

)2

+O (n) (A.21)

From which we conclude that

n∑
i,j=1;i 6=j

(√
Sij −

√
S

(2)
ij

)2

=

(
1√
2
− 1√

2 + ∆w12

)2

n2 +O (n) . (A.22)

A similar calculation shows that the terms on the diagonal only contribute to a linear term,

n∑
i=1

(√
Sii −

√
S

(2)
ii

)2

= O (n) , (A.23)

since there are only n such terms and they have the same order as the off-diagonal terms. Combining all
the terms, and keeping only the highest order, we conclude that

drootED

(
G,G(2)

)
=

∣∣∣∣ 1√
2
− 1√

2 + ∆w12

∣∣∣∣n+O (1) . (A.24)

Figure 2-left confirms experimentally the linear growth of drootED

(
G,G(2)

)
, which implies the decay of the

DeltaCon0 similarity, and contradicts Principle 3 from Koutra et al. [29], which asserts that “A specific
change is more important in a graph with few edges than in a much denser, but equally sized graph.” Indeed,
one would expect that the similarity between G and G + ∆w12 should increase with n, since the relative
importance of the edge perturbation ∆w12 becomes negligible for large n.

Appendix A.3. Star Graph

We proceed with the analysis of drootED

(
G,G(2)

)
in the case of the star graph. The indices of the

leaf nodes are 2, . . . , n, and the index of the hub is 1. We follow the same sequence of steps as in the
complete graph. First, we compute the exact expression of the fast belief propagation matrix (11), S,
using the Sherman–Morrison–Woodbury formula (A.2). We then perturb a single edge, and we compute the
fast belief propagation matrix of the perturbed graph, S(2), using again the Sherman–Morrison–Woodbury
formula. Our analysis will be performed with precision 1/n2, since we expect that drootED

(
G,G(2)

)
decays

as a function of n.
For the star graph we have,

A = e1b
T + beT1 =


0 1 · · · 1
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

 , D = I + (n− 2)e1e
T
1 , and ε =

1

n
, (A.25)

where
b = 1− e1 =

[
0 1 · · · 1

]T
. (A.26)

Then, the fast belief propagation matrix (11) is given by

S =

[
I +

1

n2

(
I + (n− 2)e1e

T
1

)
− 1

n

(
e1b

T + beT1
)]−1

=

[
n2 + 1

n2
I +

n− 2

n2
e1e

T
1 −

1

n

(
e1b

T + beT1
)]−1

(A.27)

Now,

Σ =
n2 + 1

n2
I +

n− 2

n2
e1e

T
1 (A.28)
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is diagonal matrix, and its inverse is the following diagonal matrix

Σ−1 =
n2

n2 + 1
I − n2(n− 2)

(n2 + 1)(n2 + n− 1)
e1e

T
1

=


n2

n2+n−1 0 · · · 0

0 n2

n2+1

...
...

. . . 0

0 · · · 0 n2

n2+1

 .
(A.29)

We then get S using a rank-two perturbation of Σ−1, and we use the Sherman–Morrison–Woodbury formula
to compute the corresponding inverse. We have

S =

[
Σ− 1

n

(
e1b

T + beT1
)]−1

=
[
Σ−UV T

]−1

= Σ−1 + Σ−1U
[
I − V TΣ−1U

]−1
V TΣ−1.

(A.30)

where

U =
1

n

[
e1 b

]
=

1

n


1 0
0 1
...

...
0 1

 , and V =
[
b e1

]
=


0 1
1 0
...

...
1 0

 . (A.31)

We have [
I − V TΣ−1U

]−1
=

(n2 + 1)(n2 + n− 1)

n4 + n2 + n− 1

[
1 n(n−1)

n2+1
n

n2+n−1 1

]
, (A.32)

and

Σ−1U =


n2

n2+n−1 0

0 n2

n2+1
...

...

0 n2

n2+1

 and V TΣ−1 =

[
0 n2

n2+1 · · · n2

n2+1
n2

n2+n−1 0 · · · 0

]
(A.33)

Combining all the terms, and after some elementary calculations, we obtain

S = Σ−1 +
n3

n4 + n2 + n− 1

(
e1b

T + beT1
)

+
n4

n6 + 2n4 + n3 + n− 1
bbT

+
n5 − n4

n6 + n5 + 2n3
e1e

T
1 .

(A.34)

Therefore, we have the following approximation of order 1/n2 of S,

S =
n2 − 1

n2
I +

1

n

(
e1b

T + beT1
)

+
1

n2
bbT +

1

n2
e1e

T
1 +O

(
1/n3

)
, (A.35)

or

S =


1 1

n
1
n · · · 1

n
1
n 1 1

n2 · · · 1
n2

1
n

1
n2 1 1

n2

...
...

. . .
...

1
n

1
n2 · · · 1

n2 1

+O
(
1/n3

)
. (A.36)
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We now consider the perturbed graph G(2) created by adding an edge between two leaves. The perturbation
created by modifying the weight of an edge connecting the hub (1) to a leave yields the exact same asymptotic
for drootED

(
G,G(2)

)
, and for the sake of conciseness is not displayed here.

Without loss of generality, we can assume that the edge [2, 3] was modified, and thus G(2) is obtained by
the change w23 → w23 + ∆w23. The perturbed adjacency matrix A(2) and degree matrix D(2) are given by

A(2)= A+ ∆w23

(
e2e

T
3 + e3e

T
2

)
,D(2)= D + ∆w23

(
e2e

T
2 + e3e

T
3

)
. (A.37)

The inverse of the fast belief propagation matrix of G(2) is given by[
S(2)

]−1

= I + ε2
2D

(2) − ε2A
(2), with ε2 =

1

n
. (A.38)

[
S(2)

]−1
can be expressed as a low-rank perturbation of S−1,[

S(2)
]−1

= S−1 − ∆w23

n

(
e2e

T
3 + e3e

T
2

)
+

∆w23

n2

(
e2e

T
2 + e3e

T
3

)
. (A.39)

We break S(2) into two parts,
S(2) = S + ∆Si + ∆Sii, (A.40)

with

∆Si =

[
S−1 − ∆w23

n

(
e2e

T
3 + e3e

T
2

)]−1

− S, (A.41)

and

∆Sii = S(2) −
[
S−1 − ∆w23

n

(
e2e

T
3 + e3e

T
2

)]−1

. (A.42)

Since S + ∆Si =
[
S−1 − ∆w23

n

(
e2e

T
3 + e3e

T
2

)]−1
, we apply the Sherman–Morrison–Woodbury formula to

calculate ∆Si. The calculation is very similar to the computation of S. For the sake of brevity, we only
give the important steps.

Using the same U and V as defined in (A.31), we have[
S−1 − ∆w23

n

(
e2e

T
3 + e3e

T
2

)]−1

=
[
S−1 −∆w23UV

T
]−1

= S + ∆w23SU
[
I −∆w23V

TSU
]−1

V TS.

(A.43)

Injecting the expression for S given by (A.35), and after some elementary calculations, we get

∆Si = ∆w23SU
[
I −∆w23V

TSU
]−1
V TS

=
∆w23

n


0 1/n 1/n 0 · · ·

1/n ∆w23/n 1 0 · · ·
1/n 1 ∆w23/n 0 · · ·
0 0 0
...

...
...

+O
(
1/n3

)
.

(A.44)

We now carry on with the estimation of ∆Sii. We have

S(2) =

[
S−1 − ∆w23

n

(
e2e

T
3 + e3e

T
2

)
+

∆w23

n2

(
e2e

T
2 + e3e

T
3

)
.

]−1

=

[
S−1 − ∆w23

n

(
e2e

T
3 + e3e

T
2

)
+

∆w23

n2
U23U

T
23

]−1

,

(A.45)
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where
U23 =

[
e2 e3

]
. (A.46)

We recall that

S−1 − ∆w23

n

(
e2e

T
3 + e3e

T
2

)
= [S + ∆Si]

−1
, (A.47)

and thus
[
S(2)

]−1
is a rank-two perturbation of [S + ∆Si]

−1
. The Sherman–Morrison–Woodbury formula

yields

S(2) = S + ∆Si −
∆w23

n2
[S + ∆Si]U23

[
I +

∆w23

n2
UT

23 [S + ∆Si]

]−1

UT
23[S + ∆Si] . (A.48)

Therefore,

∆Sii = −∆w23

n2
[S + ∆Si]U23

[
I +

∆w23

n2
UT

23 [S + ∆Si]U23

]−1

UT
23[S + ∆Si] . (A.49)

We only want to recover the terms of order 1/n2. We can thus neglect ∆Si in (A.49), since its contribution
only creates terms of size O

(
1/n3

)
. As a result,

∆Sii = −∆w23

n2
SU23

[
I +

∆w23

n2
UT

23SU23

]−1

UT
23S +O

(
1/n3

)
. (A.50)

A simple calculation yields,

∆Sii = −∆w23

n2

(
e2e

T
2 + e3e3T

)
= −∆w23

n2


0 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0
...

...
...

+O
(
1/n3

)
. (A.51)

Finally, we advance to the computation of the DeltaCon0 similarity between G and G(2). We need to

estimate the size of the terms
√
Sij −

√
S

(2)
ij .

We start with the two non-zero entries on the diagonal of ∆Sii. If i = 2, 3,

Sii = 1 +O
(
1/n3

)
, and S

(2)
ii = 1 +

∆w23(∆w23 − 1)

2n2
+O

(
1/n3

)
, (A.52)

from which we get (√
Sii −

√
S

(2)
ii

)2

=
∆w23

2(∆w23 − 1)2

4n4
+O

(
1/n5

)
(A.53)

And therefore, ∑
i=2,3

(√
Sii −

√
S

(2)
ii

)2

=
∆w23

2(∆w23 − 1)2

2n4
+O

(
1/n5

)
(A.54)

A similar calculation shows that the four terms on the first row and first column contribute to∑
(i,j)∈{(1,2),(1,3),(2,1),(3,1)}

(√
Sii −

√
S

(2)
ii

)2

=
∆w23

2

n3
+O

(
1/n4

)
. (A.55)

Finally, we consider the off-diagonal terms for (i, j) ∈ {(2, 3), (3, 2)},

∑
(i,j)∈{(2,3),(3,2)}

(√
Sii −

√
S

(2)
ii

)2

=
2∆w23

n

(
1− 2√

∆w23n
+O (1/n)

)
. (A.56)
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Combining all the terms, and keeping only the highest order, we get

n∑
i,j=1

(√
Sii −

√
S

(2)
ii

)2

=
2∆w23

n

(
1− 2√

∆w23n
+O (1/n)

)
, (A.57)

and thus

drootED

(
G,G(2)

)
=

√
2∆w23√
n

−
√

2

n
+O

(
1/n3/2

)
. (A.58)

Figure 2-left confirms experimentally the decay of drootED

(
G,G(2)

)
, which implies the growth of the DeltaCon0

similarity.

Appendix B. Proofs

Appendix B.1. Proof of Theorem 2

Let L(w + ∆wi0j0) and L†(w + ∆wi0j0) denote the Laplacian and pseudo-inverse of the Laplacian of the
graph after modifying the edge [i0 j0], from wi0j0 to wi0j0 + ∆wi0j0 , respectively. We first observe that we
can apply the Sherman–Morrison theorem to the perturbed pseudo-inverse L†(w + ∆wi0j0). Indeed, using
(5), we have

L†(w + ∆wi0j0) =

(
L(w + ∆wi0j0) +

1

n
J

)−1

− 1

n
J . (B.1)

But L(w + ∆wi0j0) is a simple rank-one modification of L(w),

L(w + ∆wi0j0) = L(w)−∆wi0j0∇i0j0∇T
i0j0 , (B.2)

where ∇i0j0 is n-dimensional column vector, with entries given by

∇i0j0(i) =


1 if i = i0,

−1 if i = j0,

0 otherwise.

(B.3)

From Sherman–Morrison, we have(
L(w + ∆wi0j0) +

1

n
J

)−1

=

(
L(w) +

1

n
J

)−1

+∆wi0j0

(
L(w) + 1

nJ
)−1 ∇i0j0∇T

i0j0

(
L(w) + 1

nJ
)−1

1 + ∆wi0j0∇T
i0j0

(
L(w) + 1

nJ
)−1 ∇i0j0

.

(B.4)

Now, J∇i0j0 = 0, and therefore(
L(w) +

1

n
J

)−1

∇i0j0∇T
i0j0

(
L(w) +

1

n
J

)−1

= L†∇i0j0∇T
i0j0L

†

= L†∇i0j0

[
L†∇i0j0

]T
,

(B.5)

since L† is symmetric. The entry i, j of the matrix L†∇i0j0

[
L†∇i0j0

]T
can be found to be

L†∇i0j0

[
L†∇i0j0

]T
ij

=
[
L†ii0 − L

†
ji0

+ L†jj0 − L
†
ij0

]2
. (B.6)

Using (21), we have

L†ii0 − L
†
ji0

+ L†jj0 − L
†
ij0

= −1

2
[Rii0 +Rjj0 −Rij0 −Rji0 ] . (B.7)
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We also have

∇T
i0j0

(
L(w) +

1

n
J

)−1

∇i0j0 = ∇T
i0j0L

†∇i0j0 = Ri0j0 . (B.8)

We conclude that the change in effective resistance between vertices i and j, ∆Rij , resulting from a change
in edge weight ∆wi0j0 between vertices i0 and j0 is given by

∆Rij = −∆wi0j0 (Rii0 +Rjj0 −Rij0 −Rji0)
2

4(1 + ∆wi0j0Ri0j0)
. (B.9)

We now proceed to compute drp 1(G,G+∆wi0j0) by summing the entries in the numerator of (B.9). In fact,
we come back to (B.7) and compute

n∑
i,j=1

[
L†ii0 − L

†
ji0

+ L†jj0 − L
†
ij0

]2
. (B.10)

We use the spectral decomposition of L† given by (4) to express

L†ii0 − L
†
ji0

+ L†jj0 − L
†
ij0

=

n∑
k=2

1

λk
[φk(i)− φk(j)] [φk(i0)− φk(j0)] , (B.11)

so that
n∑

i,j=1

[L†ii0 − L
†
ji0

+ L†jj0 − L
†
ij0

]2 =

n∑
i=1

n∑
j=1

{
n∑
k=2

1

λk
[φk(i)− φk(j)] [φk(i0)− φk(j0)]

}2

.

(B.12)

The above equation can be written as

n∑
k=2

n∑
l=2

1

λk

1

λl
[φk(i0)− φk(j0)] [φl(i0)− φl(j0)]

n∑
i=1

n∑
j=1

[φk(i)− φk(j)] [φl(i)− φl(j)]

 .

(B.13)

Now,

n∑
i=1

n∑
j=1

[φk(i)− φk(j)] [φl(i)− φl(j)] =

n∑
i=1

n∑
j=1

φk(i)φl(i) +

n∑
j=1

n∑
j=1

φk(j)φl(j)

−
n∑
i=1

n∑
j=1

φk(i)φl(j)−
n∑
i=1

n∑
j=1

φk(j)φl(i)

= 2nδkl,

(B.14)

where we have used 〈φk, 1〉 = 0, k = 2, . . . , n, and 〈φk,φl〉 = δkl, k, l = 1, . . . , n. We conclude that

n∑
i,j=1

[L†ii0 − L
†
ji0

+ L†jj0 − L
†
ij0

]2 = 2n

n∑
k=2

1

λ2
k

[φk(i0)− φk(j0)]
2
. (B.15)

Finally, applying (B.11) with i = i0 and j = j0, we get

Ri0j0 =

n∑
k=2

1

λk
[φk(i0)− φk(j0)]

2
, (B.16)

which provides the denominator of (B.9). Substituting (B.15) into (B.9) completes the proof of theorem 2.
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Appendix B.2. Proof of Theorem 3

The spectrum of the Laplacian of the complete graph is given by

λi =

{
0 if i = 1

n otherwise.
(B.17)

The first eigenvector is φ1 = 1. The remaining eigenvectors, φ2, . . . ,φn, form an orthonormal basis for

span(1)⊥. Without loss of generality we assume i0 = 1 and j0 = 2, and let φ2 =
[

1√
2
− 1√

2
0 · · · 0

]T
.

We construct the remaining eigenvectors, φ3, . . . ,φn, by Gram-Schmidt on e3, . . . , en. By observing that
eTi φ2 = 0 for i = 3, . . . , n, we note that φi(i0) − φi(j0) = 0 for i = 3, . . . , n. Thus, using the result of
theorem 2,

drp 1(Kn,Kn + ∆wi0j0) =
2n |∆wi0j0 |

∑n
k=2 (φk(i0)− φk(j0))2/λ2

k

1 + ∆wi0j0
∑n
k=2 (φk(i0)− φk(j0))2/λk

=
2n |∆wi0j0 | (φ2r − φ2t)

2/λ2
2

1 + ∆wi0j0(φ2r − φ2t)2/λ2

=
2n |∆wi0j0 |

(
2/n2

)
1 + ∆wi0j0 (2/n)

=
4 |∆wi0j0 |
n+ 2∆wi0j0

,

(B.18)

which proves the result. �

Appendix B.3. Proof of Theorem 4

The simplicity of the star graph allows us to employ simple resistance network reduction techniques to
compute the change in effective resistances between each pair of vertices. For the first case (leaf to hub) we
assume without loss of generality that i0 = 2. In this case, we maintain a tree structure, and as a result
∆Rij = 0 whenever i 6= 2 and j 6= 2. In addition, every direct path between vertex i0 = 2 and another leaf
passes through the hub (vertex 1) which provides additional simplification:

drp 1(Sn, Sn + ∆w1i0) =

n∑
i,j=1

|∆Rij | = 2(n− 1) |∆R12|

= 2(n− 1)

∣∣∣∣1− 1

1 + ∆w12

∣∣∣∣ =
2(n− 1) |∆w1i0 |

1 + ∆w1i0

.

(B.19)

In the second case (connecting two leaves), we assume without loss of generality that i0 = 2 and j0 = 3, and
we note that ∆wi0j0 ≥ 0. We have

drp 1(Sn, Sn + ∆wi0j0) =

n∑
i,j=1

|∆Rij | = 2
∑
j 6=3

|∆R2j |+ 2
∑
j 6=2

|∆R3j |+ 2 |∆R23|

= 4
∑
j 6=3

|∆R2j |+ 2 |∆R23| = 4(n− 2) |∆R21|+ 2 |∆R23| .
(B.20)

Simple circuit reduction techniques yield

|∆R21| =
∆wi0j0

1 + 2∆wi0j0
, and |∆R23| =

4∆wi0j0
1 + 2∆wi0j0

, (B.21)

which leads to

drp 1(Sn, Sn + ∆wi0j0) =
4n∆wi0j0

1 + 2∆wi0j0
, (B.22)

as announced. �
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Appendix B.4. Proof of Theorem 5

The path RP-1 distance of the path graph can also be determined analytically using simple circuit’s
rules. We decompose drp 1 as follows,

drp 1(Pn, Pn + ∆wi0j0) = 2
∑
i<j

∆Rij =

n∑
i=1

n∑
j=i+1

∆Rij

= 2

i0−1∑
i=1

 i0∑
j=i+1

∆Rij +

j0−1∑
j=i0+1

∆Rij +

n∑
j=j0

∆Rij


+ 2

j0−1∑
i=i0

 j0∑
j=i+1

∆Rij +

n∑
j=j0+1

∆Rij

+ 2

n∑
i=j0

n∑
j=i+1

∆Rij .

(B.23)

Now, for 1 ≤ i < j ≤ i0 or j0 + 1 ≤ i < j ≤ n, ∆Rij = 0. We are thus left with four sums,

drp 1(Pn, Pn + ∆wi0j0) = 2

i0−1∑
i=1

j0−1∑
j=i0+1

∆Rij + 2

i0−1∑
i=1

n∑
j=j0

∆Rij

+ 2

j0−1∑
i=i0

j0∑
j=i+1

∆Rij + 2

j0−1∑
i=i0

n∑
j=j0+1

∆Rij .

(B.24)

We compute each of the four sums using simple rules for combining resistances. The simplest case corre-
sponds to 1 ≤ i ≤ i0 − 1 and j0 ≤ j ≤ n, where the two nodes are across the edges that was added. In this
case, i and j only feel a difference that corresponds to the resistor j0−i0 being in parallel with r = 1/∆wi0j0 ,

∆Rij =
(j0 − i)2

r + j0 − i0
, (B.25)

which does not depend on i or j. Therefore,

2

i0−1∑
i=1

n∑
j=j0

∆Rij =
(i0 − i)(n− j0 + 1)(j0 − i0)2

r + j0 − i0
. (B.26)

The next simple case corresponds to 1 ≤ i ≤ i0 − 1 and i0 ≤ j ≤ j0. In this case, we have

∆Rij =
(j − i0)2

r + j0 − i0
. (B.27)

By symmetry, we can handle the case where i0 ≤ i ≤ j0 − 1 and j0 ≤ j ≤ n, where we have

∆Rij =
(i− j0)2

r + j0 − i0
. (B.28)

In both cases, we can compute the corresponding sums, and we get,

2

i0−1∑
i=1

j0−1∑
j=i0

∆Rij =
(i0 − 1)(j0 − i0 − 1)(j0 − i0)(2(j0 − i0)− 1)

3(r + j0 − i0)
, (B.29)

2

i0−1∑
i=1

n∑
j=j0

∆Rij =
(n− j0)(j0 − i0 + 1)(j0 − i0)(2(j0 − i0) + 1)

3(r + j0 − i0)
. (B.30)
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Finally, the last case is slightly more complicated and involves the scenario were both i and j are in between
i0 and j0, i0 ≤ i < j ≤ j0 . In this case, we have

∆Rij =
(j − i)2

r + j0 − i0
. (B.31)

The corresponding sum becomes

2

j0−1∑
i=i0

j0∑
j=i+1

∆Rij =
(j0 − i0)(j0 − i0 + 1)((j0 − i0)2 + 3(j0 − i0) + 2)

6(r + j0 − i0)
. (B.32)

Grouping all the terms, (B.26), (B.29), (B.30), and (B.32), together, and after a some simple algebra, we
get

drp 1(Pn, Pn + ∆wi0j0) = (j0 − i0)
2n [1 + (j0 − i0)(2j0 − 4i0 − 3)]− 3(j0 − i0)(i0 + j0 − 1)2

6(r + j0 − i0)
. (B.33)

Substituting r = 1/∆wi0j0 in the above equation yields the advertised result. �

Appendix B.5. Proof of Theorem 6

In order to compute the resistance perturbation distance in the case of the cycle, we break the sum into
three terms. The indexing of the vertices along the cycle makes the derivation slightly more complicated
than in the case of the path. To simplify the derivation of the results, which eventually only depend on
i0 	 i0 = i0 − j0 (mod n), we first assume that

1 = j0 < i0.

In the end, we substitute i0 − j0 (mod n) for i0 − 1 in the final formula.
We proceed in a manner similar to the path and decompose drp 1(Cn, Cn + ∆wi0j0) into three sums,

drp 1(Cn, Cn + ∆wi0j0) =

n∑
i,j=1

|∆Rij | = 2

i0−1∑
i=1

r∑
j=i+1

|∆Rij |

+ 2

i0−1∑
i=1

n∑
j=i0+1

|∆Rij |+ 2

n−1∑
i=i0

n∑
j=i+1

|∆Rij | .

(B.34)

Assuming that ∆wi0j0 > 0, then Rayleigh’s monotonicity principle implies that

|∆Rij(Cn, Cn + ∆wi0j0)| = |Rij(Cn)−Rij(Cn + ∆wi0j0)|
= Rij(Cn)−Rij(Cn + ∆wi0j0)

(B.35)

Now,

Rij(Cn) = (j − i)− (j − i)2

n
. (B.36)

The first sum corresponds to the case where 1 ≤ i ≤ i0 − 1 and i + 1 ≤ j ≤ i0. In this case we have
j0 = 1 < i < j < j0 ≤ n, and the chords formed by (1, i0) and (i, j) do not intersect. Simple circuit rules
yield

∆Rij(Cn, Cn + ∆wi0j0) =
[(i− j)(n− (i0 − 1))]

2
∆wi0j0

n2 + ∆wi0j0n(i0 − 1)(n− (i0 − 1))
. (B.37)

The second sum correspond to the case where 1 ≤ i ≤ i0 − 1 and i0 + 1 ≤ j ≤ n. In this case, j0 = 1 <
i < j0 < j ≤ n, and the chords formed by (1, i0) and (i, j) intersect. The difference in effective resistance is
given by

∆Rij(Cn, Cn + ∆wi0j0) =
[(i− j)(i0 − 1) + (i0 − i)n]

2
∆wi0j0

n2 + ∆wi0j0n(i0 − 1)(n− (i0 − 1))
. (B.38)
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Finally, the last sum corresponds to the case where i0 ≤ n ≤ n− and i + 1 ≤ j ≤ n. In this case
j0 = 1 < i0 < i < j < j0 ≤ n, and the chords formed by (1, i0) and (i, j) do not intersect. The difference in
effective resistance is given by

[(i− j)(i0 − 1)]
2

∆wi0j0
n2 + ∆wi0j0n(i0 − 1)(n− (i0 − 1))

. (B.39)

Computing the three sums in (B.34) yields

drp 1(Cn, Cn + ∆wi0j0) =

n |∆wi0j0 | [i0 − 1]
(i0 − 1)3 − 2n((i0 − 1)2 − 1) + (i0 − 1)(n2 − 2)

6 {n2 + ∆wi0j0n(i0 − 1)(n− (i0 − 1))}
.

(B.40)

Finally, we can substitute i0 	 j0 = i0 − j0 (mod n) for i0 − 1, and we obtain (53),

drp 1(Cn, Cn + ∆wi0j0) =

n |∆wi0j0 | [i0 	 j0]
[i0 	 j0]

3 − 2n
[
(i0 	 j0)2 − 1

]
+ [i0 	 j0] (n2 − 2)

6 {n2 + ∆wi0j0n [i0 	 j0] [n− (i0 	 j0)]}
.

(B.41)

Appendix B.6. Proof of Theorem 7

Combining inequalities for R̃
(1)
ij and R̃

(2)
ij and applying the triangle inequality,

(1− ε)R(1)
ij − (1 + ε)R

(2)
ij ≤ R̃

(1)
ij − R̃

(2)
ij ≤ (1 + ε)R

(1)
ij − (1− ε)R(2)

ij (B.42)

(R
(1)
ij −R

(2)
ij )− ε(R(1)

ij +R
(2)
ij ) ≤ R̃(1)

ij − R̃
(2)
ij ≤ (R

(1)
ij −R

(2)
ij ) + ε(R

(1)
ij +R

(2)
ij ) (B.43)∥∥∥(R(1) −R(2))− ε(R(1) +R(2))

∥∥∥
F
≤
∥∥∥R̃(1) − R̃(2)

∥∥∥
F
≤
∥∥∥(R(1) −R(2)) + ε(R(1) +R(2))

∥∥∥
F

(B.44)∥∥∥R(1) −R(2)
∥∥∥
F
− ε

∥∥∥R(1) +R(2)
∥∥∥
F
≤
∥∥∥R̃(1) − R̃(2)

∥∥∥
F
≤
∥∥∥R(1) −R(2)

∥∥∥
F

+ ε
∥∥∥R(1) +R(2)

∥∥∥
F
. (B.45)

�

48



Appendix B.7. Proof of Theorem 8

Let d = diag
(

[Z̃(1)]T Z̃(1) − [Z̃(2)]T Z̃(2)
)
∈ Rn. Using the invariance of the trace under cyclic permu-

tations (tr(ABC) = tr(CAB)), we have∥∥∥R̃(1) − R̃(2)
∥∥∥2

F
=
∥∥∥d1T + 1dT − 2([Z̃(1)]T Z̃(1) − [Z̃(2)]T Z̃(2))

∥∥∥2

F

= tr

{[
d1T + 1dT − 2

(
[Z̃(1)]T Z̃(1) − [Z̃(2)]T Z̃(2)

)]2}
= tr

{
d1Td1T + d1T1dT + 1dTd1T + 1dT1dT − 2 d1T

[
[Z̃(1)]T Z̃(1) − [Z̃(2)]T Z̃(2)

]
− 2 1dT

[
[Z̃(1)]T Z̃(1) − [Z̃(2)]T Z̃(2)

]
− 2

[
[Z̃(1)]T Z̃(1) − [Z̃(2)]T Z̃(2)

]
d1T

+ 4
[
[Z̃(1)]T Z̃(1) − [Z̃(2)]T Z̃(2)

][
[Z̃(1)]T Z̃(1) − [Z̃(2)]T Z̃(2)

]
−2
[
[Z̃(1)]T Z̃(1) − [Z̃(2)]T Z̃(2)

]
1dT

}
= 2 tr

[
d1Td1T

]
+ 2 tr

[
d1T1dT

]
− 8 tr

[
d1T([Z̃(1)]T Z̃(1) − [Z̃(2)]T Z̃(2))

]
+ 4 tr

[(
[Z̃(1)]T Z̃(1) − [Z̃(2)]T Z̃(2)

)(
[Z̃(1)]T Z̃(1) − [Z̃(2)]T Z̃(2)

)]
= 2 tr

[
1Td1Td

]
+ 2 tr

[
dTd1T1

]
− 8 tr

[
d1T [Z̃(1)]T Z̃(1)

]
+ 8 tr

[
d1T [Z̃(2)]T Z̃(2)

]
+ 4 tr

[(
[Z̃(1)]T Z̃(1) − [Z̃(2)]T Z̃(2)

)(
[Z̃(1)]T Z̃(1) − [Z̃(2)]T Z̃(2)

)]
= 2

(
1Td

)2
+ 2n ‖d‖22 − 8

[
1T [Z̃(1)]T Z̃(1)d

]
+ 8

[
1T [Z̃(2)]T Z̃(2)d

]
+ 4 tr

[
Z̃(1)[Z̃(1)]T Z̃(1)[Z̃(1)]T

]
+ 4 tr

[
Z̃(2)[Z̃(2)]T Z̃(2)[Z̃(2)]T

]
− 8 tr

[
Z̃(2)[Z̃(1)]T Z̃(1)[Z̃(2)]T

]
= 2

(
1Td

)2
+ 2n ‖d‖22 − 8(1T [Z̃(1)]T )(Z̃(1)d) + 8(1T [Z̃(2)]T )(Z̃(2)d)

+ 4
∥∥∥Z̃(1)[Z̃(1)]T

∥∥∥2

F
+ 4

∥∥∥Z̃(2)[Z̃(2)]T
∥∥∥2

F
− 8

∥∥∥Z̃(2)[Z̃(1)]T
∥∥∥2

F
.

Computation of d is O(sn), and thus so is the computation of the 1st and 2nd terms. The 3rd and 4th

terms cost O(sn), as they involve multiplication of (s × n)-matrices with length-n vectors. The 5th, 6th,
and 7th terms cost O(s2n), due to the multiplication of (s × n) with (n × s)-matrices. Recalling that
s = O(log n) we see that the total computational complexity of computing the Frobenius norm is reduced

to Õ(n) = O(n log2 n).

Appendix B.8. Proof of Theorem 10

We will prove the first of the two inequalities. The proof of the second is identical if we replace λk
with λ2

k. We will employ the observation that
∑n
k=2(φk(i) − φk(j))2 = 2. To show this, we note that

Φ =
[
φ1 · · · φn

]
is an orthogonal matrix, and thus its rows are orthonormal,

n∑
k=2

(φk(i)− φk(j))2 =

n∑
k=1

(φk(i)− φk(j))2

=

n∑
k=1

φk(i)2 +

n∑
k=1

φk(j)2 − 2

n∑
k=1

φk(i)φk(j) = 2,

(B.46)
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since each of the first two terms is equal to the squared norm of a row of Φ, and the second is the inner-
product of two rows. To bound the effective resistance we break into two partial sums,

Rij =

n∑
k=2

1

λk
(φk(i)− φk(j))2 =

p∑
k=2

1

λk
(φk(i)− φk(j))2 +

n∑
k=p+1

1

λk
(φk(i)− φk(j))2. (B.47)

Then,

p∑
k=2

1

λk
(φk(i)− φk(j))2 +

1

λn

n∑
k=p+1

(φk(i)− φk(j))2 ≤ Rij

≤
p∑
k=2

1

λk
(φk(i)− φk(j))2 +

1

λp

n∑
k=p+1

(φk(i)− φk(j))2

p∑
k=2

1

λk
(φk(i)− φk(j))2 +

1

λn

n∑
k=p+1

(φk(i)− φk(j))2 ≤ Rij

≤
p∑
k=2

1

λk
(φk(i)− φk(j))2 +

1

λp

n∑
k=p+1

(φk(i)− φk(j))2

p∑
k=2

1

λk
(φk(i)− φk(j))2 +

1

λn

{
2−

p∑
k=2

(φk(i)− φk(j))2

}
≤ Rij

≤
p∑
k=2

1

λk
(φk(i)− φk(j))2 +

1

λp

{
2−

p∑
k=2

(φk(i)− φk(j))2

}
.

(B.48)

Combining terms proves the desired result. �

Appendix B.9. Low-rank edge modification Corollary

Corollary 2 (Low-rank edge modification). Assume G + ∆wi0j0 is the graph obtained from G by a
perturbation ∆wi0j0 to the edge connecting i0 and j0. If ∆wi0j0 > 0 we have

drp 1(G,G+ ∆wi0j0) ≥
2n |∆wi0j0 |

[
1

λ2
p

+

p∑
k=2

(
1

λ2
k

− 1

λ2
p

)
(φk(i0)− φk(j0))2

]

1 + ∆wi0j0

[
1

λn
+

p∑
k=2

(
1

λk
− 1

λn

)
(φk(i0)− φk(j0))2

] , (B.49)

and

drp 1(G,G+ ∆wi0j0) ≤
2n |∆wi0j0 |

[
1

λ2
n

+

p∑
k=2

(
1

λ2
k

− 1

λ2
n

)
(φk(i0)− φk(j0))2

]

1 + ∆wi0j0

[
1

λp
+

p∑
k=2

(
1

λk
− 1

λp

)
(φk(i0)− φk(j0))2

] . (B.50)

If ∆wi0j0 < 0 we have

drp 1(G,G+ ∆wi0j0) ≥
2n |∆wi0j0 |

[
1

λ2
n

+

p∑
k=2

(
1

λ2
k

− 1

λ2
n

)
(φk(i0)− φk(j0))2

]

1 + ∆wi0j0

[
1

λn
+

p∑
k=2

(
1

λk
− 1

λn

)
(φk(i0)− φk(j0))2

] , (B.51)
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and

drp 1(G,G+ ∆wi0j0) ≤
2n |∆wi0j0 |

[
1

λ2
p

+

p∑
k=2

(
1

λ2
k

− 1

λ2
p

)
(φk(i0)− φk(j0))2

]

1 + ∆wi0j0

[
1

λp
+

p∑
k=2

(
1

λk
− 1

λp

)
(φk(i0)− φk(j0))2

] . (B.52)

Proof of Corollary 2. Straightforward application of bounds from theorem 10 to theorem 2. �
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