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Abstract

We explore the phenomenon of unidirectional invisibility in two dimensions, examine its op-

tical realizations, and discuss its three-dimensional generalization. In particular we construct

an infinite class of unidirectionally invisible optical potentials that describe the scattering of

normally incident transverse electric waves by an infinite planar slab with refractive-index

modulations along both the normal directions to the electric field. A by-product of this in-

vestigation is a demonstration of nonreciprocal transmission in two dimensions. To elucidate

this phenomenon we state and prove a general reciprocity theorem that applies to quantum

scattering theory of real and complex potentials in two and three dimensions.
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1 Introduction

In one dimension a real scattering potential has identical reflection and transmission coefficients for

incoming waves from the left and right, i.e., it obeys reciprocity in reflection and transmission. In

contrast, a complex scattering potential can violate reciprocity in reflection [1]. A remarkable con-

sequence of this observation is the existence of unidirectionally reflectionless and invisible potentials

[2, 3, 4, 5, 6, 7, 8, 9, 10]. These have recently attracted a great deal of attention, mainly because

they model certain one-way optical devices with possible applications in optical circuitry.

One of the most sought-after examples of a one-way element of an optical circuit is an optical

diode [11]. It is generally believed that real and complex potentials are incapable of modeling an

optical diode, because they are bound to respect reciprocity in transmission [12, 13, 14]. The same
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problem arises also in acoustics where designing acoustic waveguides with nonreciprocal transmission

is a major area of research [15].

The search for means of achieving nonreciprocal transmission is dominated by the use of non-

linear, time-dependent, or magnetic materials [16, 11, 15]. The present work is motivated by the

observation that reciprocity in reflection and transmission can both be violated within the confines

of linear, stationary, isotropic, nonmagnetic material provided that one employs a genuine multi-

dimensional setup. In particular, it is possible to construct unidirectionally invisible potentials in

two and three dimensions that enjoy nonreciprocal transmission.

The basic conceptual framework for the present work is the multidimensional transfer matrix

formulation of scattering theory that we report in [17]. We use it to offer a precise and convenient

way of describing unidirectional reflection, unidirectional invisibility, and transmission reciprocity

in dimensions higher than one.

The organization of this article is as follows. In Sec. 2 we review the formulation of scattering

theory presented in [17] and use it to give a precise definition for the notions of unidirectional re-

flectionlessness, unidirectional transparency, unidirectional invisibility, and reciprocal transmission

in two dimensions. Here we also derive some useful relations characterizing these notions. In Sec. 3

we prove a general reciprocity theorem that applies to real and complex scattering potentials in two

dimensions. In Sec. 4, we construct an infinite class of unidirectionally invisible potentials in two

dimensions that possess nonreciprocal transmission. In Sec. 5 we examine an optical realization of

a particular example of these potentials and discuss the physical implications of their unidirectional

invisibility and nonreciprocal transmission properties. In Sec. 6 we generalize the results of the

preceding sections to three dimensions, in particular establishing the three-dimensional analog of

the reciprocity theorem of Sec. 3 and constructing finite-range unidirectionally invisible potentials

with nonreciprocal transmission in three dimensions. Finally, in Sec. 7 we summarize our findings

and present our concluding remarks.

2 Transfer Matrix and Unidirectional Invisibility in 2D

Consider the Schrödinger equation

−∇
2ψ(r) + v(r)ψ(r) = k2ψ(r), (1)

for a real or complex scattering potential v, where r := (x, y) and k is the wave number. Let us

identify the x-axis with the scattering axis, and recall that for x→ ±∞ the scattering solutions of

(1) have the form
1

2π

∫ k

−k

dp eipy
[

A±(p)e
iω(p)x +B±(p)e

−iω(p)x
]

, (2)

where A±(p) and B±(p) are coefficient functions vanishing for p /∈ [−k, k] and ω(p) :=
√

k2 − p2,
[17]. By definition, the transfer matrix of v is the 2× 2 matrix operator M(p) satisfying

[

A+(p)

B+(p)

]

= M(p)

[

A−(p)

B−(p)

]

. (3)

Similarly to its one-dimensional analog [18], it can be expressed as a time-ordered exponential [17];

M(p) := T exp

∫ ∞

−∞

−iH(x, p)dx, (4)
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where x plays the role of time, H(x, p) is the non-Hermitian effective Hamiltonian operator:

H(x, p) :=
1

2ω(p)
e−iω(p)xσ3v(x, i∂p)K eiω(p)xσ3 , (5)

σi are the Pauli matrices, K := σ3 + iσ2, v(x, i∂p) is the integral operator acting on test functions

φ : [−k, k]→ C according to

v(x, i∂p)φ(p) :=
1

2π

∫ k

−k

dq ṽ(x, p− q)φ(q),

and ṽ(x,Ky) denotes the Fourier transform of v(x, y) with respect to y, i.e., ṽ(x,Ky) :=
∫∞

−∞
dy e−iKyyv(x, y).

The transfer matrix M(p) contains all the scattering information about v. To see this we recall

that for a left-incident plane wave with a momentum k pointing along the positive x-axis, the

scattering solutions ψl of (1) have the asymptotic form:

ψl(r) = eikx +

√

i

kr
eikrf l(θ) as r →∞, (6)

where (r, θ) are the polar coordinates of r, and f l(θ) is the scattering amplitude for the left-incident

waves. In order to express the latter in terms of M(p), we introduce

T l
−(p) := B−(p), T l

+(p) := A+(p)− A−(p), (7)

and note that for a left-incident wave,

A−(p) = 2πδ(p), B+(p) = 0, (8)

where δ stands for the Dirac delta-function. In Ref. [17], we show that (3), (7), and (8) imply

T l
−(p) = −2πM−1

22 M21δ(p), (9)

T l
+(p) = 2π(M11 − 1−M12M

−1
22 M21)δ(p), (10)

f l(θ) = −(2π)− 1

2 ik| cos θ| T l
±(k sin θ), (11)

where Mij are the entries of M(p) and the ± in (11) stands for sgn(cos θ).

Similarly, we can introduce the scattering amplitude f r(θ) for a right-incident wave by expressing

the asymptotic form of the corresponding scattering solution as

ψr(r) = e−ikx +

√

i

kr
eikrf r(θ) as r →∞. (12)

To relate f r(θ) to M(p), we define

T r
−(p) := B−(p)− B+(p), T r

+(p) := A+(p), (13)

and set

A−(p) = 0, B+(p) = 2πδ(p). (14)
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These together with (3) give

T r
−(p) = −2π(1−M−1

22 )δ(p), (15)

T r
+(p) = 2πM12M

−1
22 δ(p), (16)

f r(θ) = −(2π)− 1

2 ik| cos θ| T r
±(k sin θ), (17)

where again ± := sgn(cos θ).

It is important to note that Mij and T
l/r
± (p) depend on the wavenumber k. Therefore any

quantity or concept whose definition involves Mij or T
l/r
± (p) is k-dependent.

Definition 1. Let v : R2 → C be a scattering potential and k be a wavenumber. Choose a

Cartesian coordinate system in which the scattering axis coincides with the x-axis. Then v is

said to be

- left- (respectively right-) reflectionless if f l(θ) = 0 for all θ ∈ (π
2
, 3π

2
) (respectively f r(θ) =

0 for all θ ∈ (−π
2
, π
2
)),

- left- (respectively right-) transparent if f l(θ) = 0 for all θ ∈ (−π
2
, π
2
) (respectively f r(θ) =

0 for all θ ∈ (π
2
, 3π

2
)),

- left- (respectively right-) invisible if it is both left- (respectively right-) reflectionless and

transparent.

- unidirectionally reflectionless (respectively transparent or invisible) if it is either left- or

right-reflectionless (respectively transparent or invisible), but not both.

The following is a direct consequence of (11) and (17).

Theorem 1. Let v be as in Definition 1. Then v is

- left- (respectively right-) reflectionless if and only if T l
−(p) = 0 (respectively T r

+(p) = 0)

for all p ∈ [−k, k],
- left- (respectively right-) transparent if T l

+(p) = 0 (respectively T r
−(p) = 0) for all p ∈

[−k, k].

In view of (9), (10), (15), and (16), we also have the following useful result.

Theorem 2. Let v be as in Definition 1. Then v is

- left-reflectionless, if and only if M21δ(p) = 0 for all p ∈ [−k, k].
- left-invisible, if and only if M21δ(p) = (M11 − 1)δ(p) = 0 for all p ∈ [−k, k].
- right-invisible, if and only if M12δ(p) = (M22 − 1)δ(p) = 0 for all p ∈ [−k, k].

3 Reciprocity Principle in 2D

The phrase ‘Reciprocity Principle’ is usually taken to be synonymous to the ‘Lorentz Reciprocity

Theorem’ for electromagnetic fields which follows from Maxwell’s equations [11]. Here we formulate

a reciprocity principle that applies directly to the quantum scattering theory as defined by the

Schrödinger equation (1). First, we define what we mean by reciprocity in transmission in two

dimensions.
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Definition 2. A real or complex scattering potential v is said to have reciprocal transmission

for a wavenumber k, if for all p ∈ [−k, k], T l
+(p) = T r

−(p). According to (10) and (15), this is

equivalent to

(M11 −M−1
22 −M12M

−1
22 M21)δ(p) = 0. (18)

We can also use (11) and (17) to state it in the form

f l(θ) = f r(π − θ) for all θ ∈ (−π
2
, π
2
). (19)

The content of Definitions 1 and 2 reduce to their well-known one-dimensional analog provided

that we replace δ(p) with 1 and identify Mij with the entries of the transfer matrix in one dimension

[6]. In this case, Condition (18) for reciprocal transmission reduces toM11−M−1
22 −M12M

−1
22 M21 = 0

which is equivalent to detM = 1. But in one-dimension, one can use Abel’s theorem for linear

homogeneous ordinary differential equations [19] to show that ‘detM = 1’ holds for every real

or complex scattering potential, [20]. This proves that nonreciprocal transmission is forbidden in

one dimension. It also suggests that in order to establish (18) or its violation in two (and higher)

dimensions, we should seek for an analog of Abel’s theorem for the Schrödinger equation (1), which

is a partial differential equation.

In one dimension, the Schrödinger equation reads: −ψ′′(x) + v(x)ψ(x) = k2ψ(x), and Abel’s

theorem states that the Wronskian, ψ1(x)ψ
′
2(x)−ψ2(x)ψ

′
1(x), of any pair of solutions of this equation,

ψ1 and ψ2, is x-independent. A higher-dimensional generalization of the Wronskian is the vector

field, J(r) := ψ1(r)∇ψ2(r)−ψ2(r)∇ψ1(r). It is easy to check that whenever ψ1 and ψ2 are solutions

of the Schrödinger equation (1), J is divergence-free;

∇ · J(r) = 0. (20)

Now, let a and b be positive real numbers, V be the rectangular region enclosed between the

planes x = 0, x = a, and y = ±b, and

j(x) :=

∫ ∞

−∞

dy [ψ1(r)∂xψ2(r)− ψ2(r)∂xψ1(r)] . (21)

Suppose that ∂yψj(x, y)→ 0 for y → ±∞, which is consistent with (6) and (12). Then applying the

divergence theorem to J(r) and V , using (20), and taking the b→∞ limit, we find that j(a) = j(0).

Because a is arbitrary, this means that j(x) does not depend on x. In particular, we have1

j(−∞) = j(∞). (22)

Because scattering solutions of (1) admit an asymptotic expression of the form (2), we can

calculate j(±∞) whenever ψ1 and ψ2 are scattering solutions. Let Aj± and Bj± respectively denote

the coefficient functions A± and B± appearing in the asymptotic expression (2) for ψj. Then

substituting this expression in (21), we obtain

j(x) =
−i
π

∫ k

−k

dp ω(p)∆±(p) for x→ ±∞, (23)

∆±(p) := A1±(−p)B2±(p)− B1±(−p)A2±(p). (24)

1Here we assume that j(x) has finite asymptotic values for x→ ±∞. For our purposes we only need to consider

j(x) for the the scattering solutions ψl/r, and for these limx→±∞ j(x) exist.
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The fact that the right-hand side of (23) does not involve x provides an independent verification of

(22).

Next we use the definition of the transfer matrix, namely (3), to express the Aj+ and Bj+

appearing in (24) in terms of Aj− and Bj−. Inserting the resulting formula in (23), we can express

(22) in the form
∫ k

−k

dp ω(p)
[

C1+(−p)TΩC2+(p)

−C1−(−p)TΩC2−(p)
]

= 0, (25)

where the superscript ‘T ’ stands for the transpose,

Cj−(p) :=

[

Aj−(p)

Bj−(p)

]

, Cj+(p) := M(p)Cj−(p), (26)

and Ω := iσ2 =

[

0 1

−1 0

]

is the standard 2 × 2 symplectic matrix. Because the choice of Cj−(p)

is arbitrary, (25) is equivalent to ←−−−−−
M(−p)TΩ−−−→M(p) = Ω. (27)

Here we use arrows to stress that M(−p)T acts on the test functions appearing to its left while

M(p) acts on those appearing to its right.

In order to elucidate the physical meaning of Eq. (22), which is equivalent to (25) and (27),

we identify ψ1 and ψ2 with scattering solutions ψl and ψr associated with the incident plane waves

from the left and right, respectively. This corresponds to setting

A1−(p) = 2πδ(p), B1+(p) = 0,

B2+(p) = 2πδ(p), A2−(p) = 0.

Substituting these relations in (24) and making use of (8), (14), and (23), we can write (22) as

T l
+(0) = T r

−(0), (28)

or f l(0) = f r(π). In view of (11) and (17) this proves the following reciprocity theorem.

Theorem 3 (Reciprocity Principle). For every real or complex scattering potential, the forward

scattering amplitude for the left- and right-incident waves coincide.

Notice that this theorem does not prohibit nonreciprocal transmission in the sense of Definition 2.

In particular, as we show in the next section there are scattering potentials with different total

transmission cross section from the left and right.

4 Unidirectionally Invisible Potentials with Nonreciprocal

Transmission

The recent interest in unidirectional invisibility is initiated by the study of the locally periodic

optical potentials of the form [2, 3, 4]

v(x) = z eiKxχa(x) =

{

z eiKx for x ∈ [0, a],

0 otherwise,
(29)
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where z is a coupling constant, K := 2π/a, a is a positive real parameter, and χa is the characteristic

function for the interval [0, a], i.e.,

χa(x) :=

{

1 for x ∈ [0, a],

0 otherwise.

This potential is unidirectionally invisible for k = π/a provided that |z| is so small that the scattering

properties of v can be determined using the first Born approximation, i.e., it displays perturbative

unidirectional invisibility [7]. In optical applications, where v is related to the relative permittivity

ε̂ of the material according to v(x) = k2[1− ε̂(x)], this condition holds whenever |ε̂(x)− 1| ≪ 1.

In one dimension one can use the dynamical formulation of scattering theory developed in

Ref. [18] to construct scattering potentials that enjoy exact unidirectional invisibility [18, 21]. These

have a more complicated structure than (29). Reference [7] provides a complete characterization of

finite-range potentials that similarly to (29) support perturbative unidirectional invisibility. In the

remainder of this section, we construct a class of perturbative unidirectionally invisible potentials

in two dimensions that generalize (29).

Consider a planar slab of optical material with relative permittivity ε̂ that is located between

the planes x = 0 and x = a in three-dimensional Euclidean space. Suppose that the slab has

translational symmetry along the z-directions, so that ε̂ depends only on x and y. Then the

interaction of this slab with the time-harmonic normally incident z-polarized transverse electric

waves of the form

E(x, y, z) = E0 e
−ikctψ(x, y)ez (30)

is described by the Schrödinger equation (1) with the potential:

v(x, y) = k2[1− ε̂(x, y)]χa(x). (31)

In Eq. (30), E0 is a nonzero complex parameter, c is the speed of light in vacuum, and ez is the

unit vector pointing along the positive z-axis.

In what follows we consider situations where |ε̂(x, y)− 1| is so small that the first Born approx-

imation provides a reliable description of the behavior of the system. In this case, we can compute

the transfer matrix (4) using the formula

M(p) ≈ I− i
∫ ∞

−∞

dxH(x, p), (32)

where I is the 2× 2 identity matrix, and ‘≈’ stands for the first Born approximation. Substituting

(5) in this relation to determine Mij and using these in (9), (10), (15), and (16) give

T l
±(p) ≈

−i
2ω(p)

˜̃v(−p∓, p), (33)

T r
±(p) ≈

−i
2ω(p)

˜̃v(p±, p), (34)

where ˜̃v(Kx,Ky) is the two-dimensional Fourier transform of v(x, y), i.e.,

˜̃v(Kx,Ky) :=

∫ ∞

−∞

dx

∫ ∞

−∞

dy e−i(Kxx+Kyy)v(x, y), (35)
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and p± := k ± ω(p) = k ±
√

k2 − p2.
It is easy to see that Eqs. (33) and (34) are consistent with the statement of the Reciprocity

Principle (Theorem 3); clearly for p = 0, we have p− = 0, and (28) holds.

In view of Definition 1, Eqs. (33) and (34) imply that v is unidirectionally invisible from the

right if and only if the following conditions hold.

˜̃v(p±, p) = 0 for all p ∈ [−k, k], (36)

|˜̃v(−p−, p)|+ |˜̃v(−p+, p)| 6= 0 for some p ∈ [−k, k].

In order to obtain explicit examples of potentials of the form (31) that satisfy these conditions, we

expand them in their Fourier series in [0, a]. This gives

v(x, y) = χa(x)
∞
∑

n=−∞

cn(y)e
inKx, (37)

where cn(y) :=
1
a

∫ a

0
dx e−inKxv(x, y) and

K :=
2π

a
. (38)

In view of (35) and (37),

˜̃v(Kx,Ky) =

∞
∑

n=−∞

[

eia(nK−Kx) − 1

i(nK − Kx)

]

c̃n(Ky). (39)

Substituting this relation in (36), we find two complex equations for the coefficient functions c̃n(p).

These characterize perturbative right-invisible potentials v(x, y) that vanish for x /∈ [0, a]. To obtain

concrete examples of such potentials, we take a pair of distinct nonzero integers, ℓ and m, and set

cn(y) = 0 for n 6= 0, ℓ,m. (40)

We then solve (36) to express c̃0, c̃ℓ, and c̃m in terms of an arbitrary function that we denote by g̃.

This gives

c̃0(p) = p2g̃(p), (41)

c̃ℓ(p) =
m [ℓK(ℓK − 2k) + p2] g̃(p)

ℓ−m , (42)

c̃m(p) =
ℓ [mK(mK − 2k) + p2] g̃(p)

m− ℓ . (43)

Evaluating the inverse Fourier transform of these relations and using the result together with (40)

in (37), we find

v(x, y) = χa(x)
{

−
(

1 +
ℓeiℓKx −meimKx

ℓ−m
)

g′′(y) (44)

+
ℓmK

ℓ−m
[

(ℓK − 2k)eiℓKx − (mK − 2k)eimKx
]

g(y)
}

,

where g is the inverse Fourier transform of g̃.
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Figure 1: Schematic view of an optically active wire of rectangular cross section with a screen placed

to its right at x = d.

Equation (44) gives a right-invisible potential for each choice of k, ℓ,m, and g, provided that

g and g′′ be such that (44) defines a well-behaved scattering potential and that the first Born

approximation is justified. Typical examples are

g(y) = g0 e
−y2/2b2 , (45)

g(y) = g0 b
−4y2(y − b)2χb(y), (46)

where g0 is a possibly complex nonzero coupling constant, b is a positive real parameter, and |g0|
is sufficiently small. Notice that (46) corresponds to a finite-range right-invisible potential whose

support is the rectangular region: [0, a]× [0, b]. It describes an optically active wire of rectangular

cross section that is aligned along the z-axis, as shown in Fig. 1.

In order to make sure that the potentials (44) are not invisible from the left, we examine T l
±(p).

First, we substitute (41) – (43) in (39) and make use of (38) and (40) to derive

˜̃v(Kx,Ky) =
ℓmK2(1− e−iaKx)[K2

y + (Kx − 2k)Kx]g̃(Ky)

iKx(Kx − ℓK)(Kx −mK)
.

This together with (33) imply

T l
±(p) ≈

[

2ℓmK2k(1− eiap∓)
ω(p)(p∓ + ℓK)(p∓ +mK)

]

g̃(p). (47)

This equation provides an explicit demonstration of nonreciprocity in transmission, because for

generic choices of g and p, we have T l
+(p) 6= 0, while T r

−(p) ≈ 0 for all p ∈ [−k, k].
Using (47) in (11), we also find

f l(θ) ≈ −
√
2 iℓmK2k

[

1− eiak(1−cos θ)
]

g̃(k sin θ)√
π[k(1− cos θ) + ℓK][k(1− cos θ) +mK]

. (48)

According to this relation and the fact that f r(θ) ≈ 0, the potential (44) is unidirectionally invisible

from the right, but it is neither left-reflectionless nor left-transparent.
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5 Optical Manifestation of Unidirectional Invisibility and

Nonreciprocal Transmission

We can identify the unidirectionally invisible potentials of the form (44) with optical potentials de-

scribing the interaction of the linearly polarized electromagnetic waves (30) with an optically active

wire of rectangular cross section as depicted in Fig. 1. In this section we explore the implications

of the nonreciprocal transmission property of these potentials for the transmitted power associated

with the left- and right-incident waves. This requires the computation of the Poynting vector for

the corresponding scattered waves.

First, we recall that for a charge-free, nonmagnetic, isotropic medium, the time-averaged energy
density and Poynting vector are respectively given by

〈u〉 = 1

4
Re(E ·D∗ +B ·H∗), 〈S〉 := 1

2
Re(E×H

∗), (49)

where E and H are the electric and magnetic fields, D = ε0ε̂E, B = µ0H, and ε0 and µ0 are the

permittivity and permeability of the vacuum, respectively. For time-harmonic waves, Maxwell’s

equations imply that H = 1
ik

√

ε0
µ0

∇×E. Substituting this relation in (49) and making use of (30),

we have

〈u〉 =
ε0|E0|2

4

{

Re[ε̂(r)]|ψ(r)|2 + k−2|∇ψ(r)|2
}

, (50)

〈S〉 =
|E0|2
2µ0ck

Im [ψ(r)∗∇ψ(r)] , (51)

where ‘Re’ and ‘Im’ respectively denote the real and imaginary part of their argument.

Now, consider the time-averaged energy density and Poynting vector for the scattered waves ψl/r,

which we denote by 〈ul/r〉 and 〈Sl/r〉, respectively. We can use the latter to compute the reflected

and transmitted power to the left (x = −∞) and right (x = ∞). It is not difficult to see that the

contribution of the scattering potential to these quantities, i.e., the difference between their value

in the presence and absence of the potential, is proportional to

∆P l/r
± := ±

∫ ∞

−∞

dy ex · (〈Sl/r〉 − 〈S∅〉)
∣

∣

∣

x=±∞
, (52)

where ex is the unit vector pointing along the positive x-axis, and the subscript ‘∅’ means that

the corresponding quantity is computed in the absence of the potential, i.e., for v = 0. Notice

that ∆P l
−, ∆P l

+, ∆Pr
−, and ∆Pr

+ respectively correspond to the reflected power for ψl, transmitted

power for ψl, transmitted power for ψr, and reflected power for ψr.
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We can use (2), (7), (8), (11), (13), (14), (17), (51), and (52) to compute ∆P l/r
± . The result is

∆P l
− =

|E0|2
2µ0ck

∫ 3π
2

π
2

dθ|f l(θ)|2,

∆P l
+ =

|E0|2
2µ0ck

{

∫ π
2

−π
2

dθ|f l(θ)|2 −
√
8π Im[f l(0)]

}

,

∆Pr
− =

|E0|2
2µ0ck

{

∫ 3π
2

π
2

dθ|f r(θ)|2 −
√
8π Im[f r(0)]

}

,

∆Pr
+ =

|E0|2
2µ0ck

∫ π
2

−π
2

dθ|f r(θ)|2.

For an optical wire described by an optical potential of the form (44), f r(θ) ≈ 0 for all θ ∈ (−π
2
, 3π

2
),

and f l(0) ≈ 0 by virtue of the Reciprocity Principle. Therefore ∆Pr
± ≈ 0, while ∆P l

± > 0. This in

particular shows that the wire displays nonreciprocal transmission, because ∆P l
+ 6= ∆Pr

−.

It is interesting to observe that ∆P l
− and ∆P l

+ are respectively proportional to the total reflection

and transmission cross section, i.e.,
∫

3π
2

π
2

dθ|f l(θ)|2 and
∫

π
2

−π
2

dθ|f l(θ)|2. This in turn implies that the

total reflected and transmitted power for ψl are quadratic functions of the strength of the potential.2

Next, we examine a more realistic situation where we intend to determine the power transmitted

to a finite screen placed at a large but finite distance from the wire. To this end we introduce the

dimensionless parameters:

∆û :=
〈u〉 − 〈u∅〉
〈u∅〉

, ∆Ŝ :=
〈S〉 − 〈S∅〉
|〈S∅〉|

. (53)

In light of the right-invisibility of the wire, these vanish for a right-incident wave. For a scattering

solution corresponding to a left-incident wave, they have the following asymptotic expression (in

the limit r →∞):

∆û ≈ (1 + cos θ)ξ(r, θ), ∆Ŝ ≈ ξ(r, θ)(ex +
r

r
), (54)

where

ξ(r, θ) := Re[e−ikxψl]− 1 = Re

[

√

i

kr
eikr(1−cos θ)f l(θ)

]

.

We can use (54) to compute the effect of the wire on the power transmitted to a screen determined

by x = d, |y| ≤ s/2 and |z| ≤ s/2, where d and s are real parameters, and d is much larger than the

side lengths of the wire. See Fig. 1. Because the screen is parallel to the y-z plane, the difference

between the time-averaged power transmitted to the screen in the presence and absence of the wire

is proportional to

∆P̂ :=
1

s

∫ s
2

− s
2

dy∆Ŝ · ex
∣

∣

∣

x=d
≈ 1

s

∫ s
2

− s
2

dy∆û
∣

∣

∣

x=d
,

2This means that if we scale the potential as v → αv for a sufficiently small real number α so that the first Born

approximation remains valid, the total reflected and transmitted power for ψl scale by a factor of α2.
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Figure 2: Graphs of ∆P̂ as a function of s/a for k = 2π/a (thin solid navy curve in the top panel),

k = 4π/a (dashed red curve in the top panel), k = 8π/a (dotted black curve in the bottom panel),

and k = 12π/a (thick solid purple curve in the bottom panel).

where the second relation follows from (54).

Figure 2 shows the plots of ∆P̂ as a function of s/a for the cases where m = −ℓ = 1, g is given

by (46) with b = a, d = 100a, and k = 2π/a, 4π/a, 8π/a, and 12π/a. For a left-incident wave the

transmitted power exceeds its vacuum value provided that the screen, which is placed to the right

of the wire, is sufficiently large. The opposite is the case for a right-incident wave that does not get

affected by the wire. This is a clear manifestation of the nonreciprocal transmission property of the

system. As seen from Fig, 2, ∆P̂ tends to zero as s→ 0. This is in conformity with the reciprocity

principle (Theorem 3), because lims→0∆P̂ = 2ξ(x, 0) = 2Re
[
√

i
kx
f l(0)

]

and f l(0) = f r(π) ≈ 0.

The above calculation of the transmitted power to a finite screen reveals its linear dependence

on the strength of the optical potential. This is in contrast to the total transmitted power which

has a quadratic dependence on the strength of the potential. In view of the fact that we consider

a weak optical potential, so that the first Born approximation is reliable, this shows that the setup

involving a finite screen is more desirable for displaying the nonreciprocal transmission property of

the system.

6 Generalization to 3D

The results we have reported in the preceding sections admit straightforward generalizations to

three dimensions. Here we provide a brief summary of the results in this direction. We begin by

listing some convenient conventions and notation.

In what follows v is a real or complex scattering potential defined on R3. We use a Cartesian

coordinate system in which the scattering axis corresponds to the z-axis. Following [17] we employ

over-arrows to denote two-dimensional vectors obtained by projecting three-dimensional vectors

along the x-y axis. For example, ~ρ := (x, y) and ~p := (px, py), whereas r := (x, y, z) and p :=

(px, py, pz). Similarly we employ the notation: ~∂p := (∂px , ∂py) and ~∇2 := ∂2x + ∂2y .

12



6.1 Transfer Matrix in 3D

In order to define an appropriate notion of a transfer matrix in three-dimensions, we pursue the

approach of Sec. 2 with the role of x, p, and [−k, k] respectively played by z, ~p, and Dk :=
{

~p ∈
R2

∣

∣ |~p| ≤ k
}

. In particular the scattering solutions of the Schrödinger equation tend to

1

(2π)2

∫

Dk

d2p ei~p·~ρ
[

A±(~p)e
iω(~p)z +B±(~p)e

−iω(~p)z
]

, (55)

as z → ±∞, and the transfer matrix M(~p) is defined by (3) with p changed to ~p. Again we can

show that it satisfies (4) for an effective Hamiltonian operator of the form

H(z, ~p) :=
1

2ω(~p)
e−iω(~p)zσ3v(i~∂p, z)K eiω(~p)zσ3,

provided that we replace x with z, [17].

Next, we recall that in three dimensions the scattering solutions of the Schrödinger equation

admit the asymptotic expression:

e±ikz +
eikr

r
f l/r(ϑ, ϕ) for r →∞,

where + and− correspond to the left- and right-incident waves, (r, ϑ, ϕ) are the spherical coordinates

of r with ϑ denoting the polar angle, and f l/r(ϑ, ϕ) is the scattering amplitude. This turns out to

satisfy [17]:

f l/r(ϑ, ϕ) = −ik |cos ϑ|
2π

T
l/r
± (k sinϑ cosϕ, k sin ϑ sinϕ),

where ± := sgn(cosϑ) and T
l/r
± are given by (9), (10), (15), and (16) with δ(p) replaced by

2πδ(px)δ(py). Because the entries of the transfer matrix determine T
l/r
± , it contains all the in-

formation about the scattering features of the potential.

6.2 Reciprocity Principle in 3D

The argument we use in Sec. 3 to establish the reciprocity principle in two dimensions can be

easily generalized to three dimensions. Here we pursue an alternative approach that also has a

two-dimensional analog.

Let ψ1 and ψ2 be any pair of scattering solutions of the Schrödinger equation (1) in three
dimensions, and

j(z) :=

∫

Dk

d2p

4π2

[

ψ̃1(−~p, z)∂z ψ̃2(~p, z) − ψ̃2(~p, z)∂zψ̃1(−~p, z)
]

,

where ψ̃(~p, z) :=
∫∞

−∞
dx

∫∞

−∞
dy e−i(xpx+ypy)ψ(x, y, z) is the Fourier transform of ψ̃(x, y, z) over x and

y. Clearly, ψ̃j satisfy the Fourier transformed Schrödinger equation,

− ∂2z ψ̃(~p, z) + v(i~∂p, z)ψ̃(~p, z) = ω(~p)2ψ̃(~p, z), (56)

with ω(~p) :=
√

k2 − ~p 2. With the help of (56) we can easily show that ∂zj(z) = 0. Therefore j(z)

is actually z-independent. In particular,

j(−∞) = j(+∞). (57)

13



Next, we use the asymptotic form (55) of the scattering solutions to compute j(z) for z → ±∞.

This gives

j(±∞) =

∫

Dk

d2p

2π2
[−iω(~p)∆±(~p)] , (58)

where ∆±(~p) is defined by (24) with p changes to ~p. Imposing (57) and making use of (58), we are

led to the three-dimensional analogs of (27) and (28) which are equivalent to f l(0, ϕ) = f r(π, ϕ).

This argument establishes the validity of Theorem 3 (Reciprocity Principle) in three dimensions.

6.3 Unidirectional Invisibility in 3D

The content of Definitions 1 and 2 apply for scattering potentials in three dimensions provided that

we respectively use ~p and Dk in place of p and [−k, k]. In particular, reciprocal transmission means

that T l
+(~p) = T r

−(~p) for all ~p ∈ Dk or equivalently f l(ϑ, ϕ) = f r(π − ϑ, ϕ) for all ϑ ∈ [0, π
2
) and

ϕ ∈ [0, 2π). This is much stronger a condition than the one imposed by the reciprocity principle.

In particular, it is possible to construct left-invisible (right-invisible) scattering potentials with

nontrivial transmission from the right (left).

We can follow the approach of Sec. 4 to construct weak unidirectionally invisible potentials

that admit a reliable description using the first Born approximation. Similarly to the case of two

dimensions, we find that in three dimensions the first Born approximation yields the following

analogs of Eq. (33) and (34).

T l
±(~p) ≈

−i
2ω(p)

˜̃v(~p,−p∓), (59)

T r
±(~p) ≈

−i
2ω(p)

˜̃v(~p, p±), (60)

where ˜̃v(~K,Kz) := ˜̃v(Kx,Ky,Kz) =
∫

R3 d
3re−iK·rv(r) is the three-dimensional Fourier transform of

v(r), and p± := k±ω(~p). In particular, for left-invisible and right-invisible potentials, we respectively

have

˜̃v(~p,−p±) ≈ 0, (61)

˜̃v(~p, p±) ≈ 0. (62)

Repeating the construction of Sec. 4, we can use (62) to construct right-invisible potentials of

the form

v(x, y, z) = χc(z)
{

−
(

1 +
ℓeiℓKx −meimKx

ℓ−m
)

~∇2g(x, y)

+
ℓmK

ℓ−m
[

(ℓK − 2k)eiℓKx − (mK − 2k)eimKx
]

g(x, y)
}

,

where c is a length scale, ℓ and m are distinct nonzero integers, K := 2π/c, and g is an arbitrary

well-behaved function with sufficiently rapid asymptotic decay rate. For example, let a and b be

positive real parameters, g0 be a nonzero real or complex number, and

g(x, y) = g0a
−4b−4x2y2(x− a)2(y − b)2χa(x)χb(y).

Then for each choice of ℓ and m, v(x, y, z) is a right-invisible potential that vanishes outside the

(rectangular) cube defined by 0 ≤ x ≤ a, 0 ≤ y ≤ b, and 0 ≤ z ≤ c. It is easy to check that

it is neither left-reflectionless nor left-transparent. Therefore, it is a finite-range unidirectionally

invisible potential with nonreciprocal transmission.
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7 Concluding Remarks

For a scattering potential in one dimension, the reciprocity in transmission is a consequence of the x-

independence of the Wronskian of the left- and right-incident scattering solutions of the Schrödinger

equation. In this article, we have introduced a similar conserved quantity involving solutions of the

Schrödinger equation in two and three dimensions and used it to prove a reciprocity theorem that

applies for arbitrary real and complex scattering potentials in these dimensions. This theorem states

that the forward scattering amplitude for left- and right-incident waves coincide. The condition for

having reciprocal transmission in higher dimensions is much stronger. It requires the invariance of

the scattering amplitude under the parity transformation that flips the orientation of the scattering

axis. In two dimensions it takes the form f l(θ) = f r(π − θ), while the reciprocity principle only

demands f l(0) = f r(π).

In particular, it is possible to have potentials whose total transmission cross section to the left

differs from that to the right. An extreme example is a unidirectionally invisible potential that

is not transparent from both the directions. We have given a precise definition for the concept of

unidirectional invisibility in two and three dimensions and devised a general method of constructing

explicit examples of perturbative unidirectionally invisible potentials. These are the multidimen-

sional generalizations of the complex exponential potentials (29) in one dimension whose study

initiated the overwhelming recent interest in unidirectional invisibility.

We have constructed an infinite family of unidirectionally invisible potentials in two dimensions

that admit simple optical realizations. These include as a special case a right-invisible potential

modeling an optical wire with a rectangular cross section that is neither reflectionless nor transparent

from the left. For this model we have explored the behavior of the total transmitted and reflected

power as well as the power transmitted to a finite screen placed at finite distance from the wire.

We have also constructed similar unidirectionally invisible potentials in three dimensions.

We expect our results to pave the way for a systematic study of the phenomenon of unidirectional

invisibility in realistic multidimensional systems. They should be of particular interest for devising

optical and acoustic devices displaying nonreciprocal transmission.
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