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For understanding the dissipation in a rotating flow when resonance occurs, we study
the rotating flow driven by the harmonic force in a periodic box. Both the linear and
nonlinear regimes are studied. The various parameters such as the force amplitude a, the
force frequency ω, the force wavenumber k, and the Ekman number E are investigated.
In the linear regime, the dissipation at the resonant frequency scales as E−1k−2, and it
is much stronger than the dissipation at the non-resonant frequencies on the large scales
and at the low Ekman numbers. In the nonlinear regime, at the resonant frequency the
effective dissipation (dissipation normalised with the square of force amplitude) is lower
than in the linear regime and it decreases with the increasing force amplitude. This
nonlinear suppression effect is significant near the resonant frequency but negligible far
away from the resonant frequency. Opposite to the linear regime, in the nonlinear regime
at the resonant frequency the lower Ekman number leads to the lower dissipation because
of the stronger nonlinear effect. This work implies that the previous linear calculations
overestimated the tidal dissipation, which is important for understanding the tides in
stars and giant planets.
Keywords: rotating flow; inertial wave; resonance

1. Introduction

Rotation plays an important role in the engineering, geophysical and astrophysical
fluid motions. It induces inertial waves of which the Coriolis force acts as the restoring
force (Greenspan 1968). The dispersion relationship for inertial wave is

σ = ±2Ω · k
k

, (1.1)

where σ is the wave frequency, k the wave vector and Ω the angular velocity of rotation.
This expression shows that the frequency of inertial wave is in the range |σ| ≤ 2Ω. Inertial
wave is dispersive and its group velocity is perpendicular to its phase velocity. Inertial
wave carries energy and angular momentum in the interior of fluid and then dissipates
through viscosity. Moreover, it has helical structure which favours the dynamo action for
generating magnetic field, e.g. Moffatt (1970a,b); Davidson (2014); Wei (2014), etc.
In the geometry of an annular channel, the problem of inertial waves was studied

by Cui et al. (2014), and in the spherical geometry it has been extensively studied,
e.g. Hollerbach & Kerswell (1995); Rieutord & Valdettaro (1997); Ogilvie (2005); Tilgner
(2007a), etc. Because of the singularity of Poincaré equation, i.e. the governing equation
of inertial waves, the inertial waves in the spherical geometry are spawn from the critical
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latitude and then propagate and reflect in the thin shear layers, i.e. the wave attrac-
tors (Ogilvie 2005). In the Earth’s fluid core, the inertial waves driven by precession are
discussed by Busse (1968); Kerswell (1993); Lorenzani & Tilgner (2001, 2003); Tilgner
(2007b), and Zhang et al. (2014).
Inertial waves can be excited by the tidal force in the planetary and stellar interiors.

Tide exists widely in astronomical binary systems, e.g. Earth and Moon, giant planet
and its satellite, host star and exoplanet, binary normal stars or white dwarfs, etc. In
the binary system, one body (primary) is gravitationally perturbed by the other (com-
panion) such that the primary deforms and produces the tidal bulge pointing to the
companion. Tidal torque transfers angular momentum between the orbital motion and
the rotational motion of binaries, and the dissipation in the planetary and stellar inte-
riors plays an important role for the angular momentum transfer. Waves can be excited
by the harmonic tidal force, i.e. the dynamical tide, and the dissipation of these waves is
very efficient because of their small scales. Particularly, the inertial waves induced by the
tidal force, i.e. the dynamical tide arising from rotation, are discussed by Kerswell (1994),
Kumar & Goodman (1996), and Ogilvie (2014). Tidally excited inertial waves dissipate
through viscosity, and the tidal dissipation becomes very strong when the resonance oc-
curs, namely the tidal frequency is close to the eigen-frequency of the inertial wave in the
unforced rotating flow. There are infinite inertial eigen-modes in the spherical geometry
and therefore the tidal resonance is prone to occur as long as the tidal frequency is less
than twice of the rotation frequency. In the nonlinear regime, i.e. with the presence of
nonlinear inertial force, it was pointed out by Tilgner (2007a) that the inertial waves
can generate zonal flow. In addition, the nonlinear wave-breaking has significant effect
on the tidal dissipation (Kumar & Goodman 1996). The nonlinear tidal flow was nu-
merically studied by Favier et al. (2014) with the boundary radial flow method and by
Cébron & Hollerbach (2014) with the body force method. Although the linear regime is
extensively studied, the nonlinear regime is not well understood, e.g. the scaling laws of
tidal dissipation versus Ekman number is unknown (Favier et al. (2014) studied a little
about the scaling laws, see figure 4, but their study is at the non-resonant frequencies
and the nonlinear dissipation at the resonant frequency is still unknown). In our study
we will focus on the nonlinear effect at both the resonant and non-resonant frequencies.
In this short paper, we will study the rotating flow driven by the harmonic force in a

periodic box, i.e. a cubic box with the periodic boundary condition, which is a toy model
for a small piece of region in a container (for engineering) or a star (for astrophysics).
Not as in the spherical geometry, the inertial waves in a periodic box do not reflect
but propagate forward, and hence do not focus in the thin shear layers. In section §2
the equations are given. In section §3 the linear regime is analytically studied and the
dissipation at the resonant frequency is derived. In section §4 the nonlinear regime is
numerically studied and compared to the linear regime. In section §5 a brief summary is
given.

2. Equations

We study the rotating flow of an incompressible fluid in a periodic box with its size 2πl.
We use the Cartesian coordinate system (x, y, z) and the uniform rotation is imposed in
the z direction. In the frame rotating at the angular velocity Ω = Ωẑ, the dimensionless
Navier-Stoke equation of fluid motion reads

∂u

∂t
+ u ·∇u = −∇p+ E∇2u+ 2u× ẑ + f , (2.1)
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where length is normalised with l, time with the inverse of rotation frequency Ω−1 and
velocity with Ωl. The Ekman number E = ν/(Ωl2), where ν is viscosity, measures the
ratio of rotational time scale to viscous time scale.
The driving force is assumed to be a single traveling wave, i.e.

f = ℜ{f̂ei(k·x−ωt)}, (2.2)

where f̂ is the complex force amplitude, k the force wavevector, ω the force frequency,
and ℜ denotes taking the real part. The tidal force exerted by the companion on the
primary is the difference between the force on any point and the force at the centre of
the primary, and the tidal potential is the superposition of spherical harmonics with the
time dependence on the Doppler-shifted frequency (Souchay et al. 2013; Ogilvie 2014).
Although the total tidal force is curl-free, its contribution to the dynamical tide is vortical
because of the very slow equilibrium tide, see the details in Appendix B of Ogilvie (2005).
Briefly speaking, the incompressible equilibrium tide varies slowly and does not satisfy the
hydrostatic balance such that the residual is a vortical force that can drive the dynamical
tide, e.g. the inertial waves in rotating fluid. In our simplified model, f corresponds to
the force responsible for the dynamical tide and it is not curl-free. On the other hand,
to have the dynamical effect on flow, the driving force f should not be curl-free (if it is
curl-free then it can be absorbed into pressure gradient to act as the additional pressure).
For the simplicity to derive the solution in the linear regime (see section §3), we assume
it to be a helical force, i.e. ∇ × f = kf where k = |k| is the force wavenumber. One
may argue that the helical force is too artificial. Here we give more explanation. Any
vector field can be decomposed to the curl-free part and the divergence-free part, i.e. the
Helmholtz decomposition. Moreover, the divergence-free part can be decomposed into
helical modes, see Waleffe (1992). Back to the driving force f , the curl-free part can be
absorbed into the pressure gradient and the divergence-free part can be expressed as the
superposition of helical forces. This is the reason that we use the helical force for the
study of tidal waves. In the spectral space the helical force satisfies

ik × f̂ = kf̂ . (2.3)

Equation (2.3) is degenerate (i.e. only two components are independent) and yields

f̂y

f̂x
=

−kxky + ikkz
k2y + k2z

,
f̂z

f̂y
=

−kykz + ikkx
k2z + k2x

,
f̂x

f̂z
=

−kzkx + ikky
k2x + k2y

. (2.4)

We denote the module of the complex force amplitude by a, i.e.

|f̂ | =
√

|f̂x|2 + |f̂y|2 + |f̂z|2 = a. (2.5)

Equations (2.4) and (2.5) then combine to yield

|f̂x| =

√

k2y + k2z
√
2k

a, |f̂y| =
√

k2z + k2x√
2k

a, |f̂z| =

√

k2x + k2y
√
2k

a, (2.6)

and in addition, the arguments of f̂y/f̂x and f̂z/f̂x are, respectively,

π − arccos
kxky

√

(k2y + k2z)(k
2
z + k2x)

, π + arccos
kzkx

√

(k2x + k2y)(k
2
y + k2z)

. (2.7)

The arguments of f̂x, f̂y and f̂z themselves are insignificant for the volume integral of
energy and dissipation, but the differences between them (i.e. phase shifts) do matter,
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and without loss of generality the argument of f̂x is given to be 0. Thus, equations (2.6)

and (2.7) give the three components of the complex amplitude f̂ , and equation (2.2)
gives the driving force in the physical space.
The output that we are concerned with is the volume-averaged dissipation. With the

periodic boundary condition, it is proportional to enstrophy, i.e.

D = E
1

V

∫

V

|∇× u|2dV =
E

2
|ik × û|2. (2.8)

The numerical calculations are carried out with the pseudo-spectral code using fast
Fourier transform. The resolution is checked with two methods. One is to double the
resolution until the total energy and enstrophy have no noticeable change. The other
is to see whether the energy and enstrophy spectra decay by sufficient (say, more than
10) magnitudes. In our moderate parameters regime, the resolutions as high as 1283 are
used.

3. Linear regime

In the absence of the nonlinear inertial force, we can analytically solve the linearised
Navier-Stokes equation

∂u

∂t
= −∇p+ E∇2u+ 2u× ẑ + f . (3.1)

Because the driving force is a single harmonic (equation (2.2)), the solution to the linear
equation is assumed to be u = ℜ{ûei(k·x−ωt)} and p = ℜ{p̂ei(k·x−ωt)}. Substitution into
(3.1) yields

− iωû = −ikp̂− Ek2û+ 2û× ẑ + f̂ . (3.2)

By performing ik× on the above equation to eliminate pressure and applying ik · û = 0
(incompressible flow) and ik × f̂ = kf̂ (helical force), we derive

(ω + iEk2)k × û = 2ikzû+ kf̂ . (3.3)

Performing again ik× on the above equation yields

k2(ω + iEk2)û = −2ikzk × û+ ik2f̂ . (3.4)

Combining the above two equations to eliminate ik × û, we are led to
[

(2kz)
2 − k2(ω + iEk2)2

]

û = ik
[

2kz − k(ω + iEk2)
]

f̂ . (3.5)

When the driving force is absent (f̂ = 0) and viscosity vanishes (E = 0), equation (3.5)
reduces to the dispersion relationship for inertial wave, i.e. σ = ±2kz/k (where the eigen-
frequency is denoted by σ). Because the factor

[

2kz − k(ω + iEk2)
]

can never be zero
due to the phase shift caused by viscosity, it is cancelled and we derive

û =
ikf̂

2kz + k(ω + iEk2)
. (3.6)

Equation (3.6) is the solution to the linearised Navier-Stokes equation (3.1). By virtue
of equation (2.8), dissipation can be calculated as

D =
E

2
|ik × û|2 =

E

2

a2k4

|2kz + k(ω + iEk2)|2 . (3.7)

The resonance occurs when the linear response (3.6) is singular with the neglect of
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Figure 1. The investigation of the force frequency in the linear regime. The dissipation D
versus the force frequency ω. a = 1. kx = ky = kz = 1. Black, red, green and blue lines denote
respectively E = 10−3, 10−4, 10−5 and 10−6.

viscosity. In the presence of viscosity, the linear response (3.6) becomes very strong at
the frequency

ω = −2kz
k

, (3.8)

which is called the resonant frequency. Substitution of (3.8) into (3.6) leads to the re-
sponse at the resonant frequency

û =
1

Ek2
f̂ . (3.9)

Substitution of (3.8) into (3.7) leads to the dissipation at the resonance frequency

D =
a2

2Ek2
. (3.10)

Therefore, the dissipation at the resonant frequency scales as

D ∝ E−1k−2. (3.11)

According to (3.7), we can calculate the dissipation of the linear response. For the
linear response we fix a = 1. Firstly we study the effect of the force frequency on the
linear response. We calculate at the four Ekman numbers 10−3, 10−4, 10−5 and 10−6,
and at the fixed wavenumbers kx = ky = kz = 1. Figure 1 shows the dissipation versus
the force frequency. It is verified that the dissipation has a sharp peak at the resonant
frequency ω = −2kz/k = −2/

√
3 ≈ −1.1547. It also indicates that a lower Ekman

number corresponds to a higher peak, which is consistent with (3.11). We pick out two
representative frequencies. One frequency is ω = −1.16 which is considered to be near

the resonant frequency (e.g. at E = 10−3 the dissipation at ω = −1.16 is 24% of the
dissipation at the resonant frequency). The other is ω = −1.2 which is considered to be
far away from the resonant frequency (e.g. at E = 10−3 the dissipation at ω = −1.2 is
0.44% of the dissipation at the resonant frequency). In the next calculations throughout
this paper, we will often use these two representative frequencies.
Next we study the effect of the force wavenumber on the linear response. We calculate at

the four Ekman numbers as in the last paragraph and at the three frequencies, namely the
resonant frequency ω = −2/

√
3, ω = −1.16 near the resonant frequency, and ω = −1.2

far away from the resonant frequency. The resonant frequency depends on the orientation
of the wave vector. To keep the resonant frequency fixed, we keep kx = ky = kz. Figure
2 shows the dissipation versus the force wavenumber. It is verified that the dissipation
scales as D ∝ k−2 at the resonant frequency, as predicted by (3.11). When the force
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Figure 2. The investigation of the force wavenumber in the linear regime. The dissipation D
versus the force wavenumber kx = ky = kz. a = 1. Black, red, green and blue lines denote respec-

tively E = 10−3, 10−4, 10−5 and 10−6. Solid lines denote the resonant frequency ω = −2/
√
3,

dashed lines ω = −1.16 near the resonant frequency, and dahsed dotted lines ω = −1.2 far away
from the resonant frequency.
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Figure 3. The investigation of the Ekman number in the linear regime. The dissipation D
versus the Ekman number E. a = 1. kx = ky = kz = 1. Solid line denotes ω = −2/

√
3, dashed

line ω = −1.16 near the resonant frequency, and dash-dotted line ω = −1.2 far away from the
resonant frequency.

wavenumber is sufficiently large, the dissipation at the other frequencies converges to the
dissipation at the resonant frequency. This suggests that the dissipation at the resonant
frequency is much stronger than the dissipation at the non-resonant frequency on the

large scales.

We then study the effect of the Ekman number on the linear response. Since we know
that the resonance has the striking effect on the large scales, we fix kx = ky = kz = 1.
Figure 3 shows the dissipation versus E at the three frequencies. It indicates that the
dissipation at the resonant frequency scales as D ∝ E−1, as predicted by (3.11). The
dissipation at the other frequencies scales as D ∝ E in the regime of low Ekman number
and converges to the dissipation at the resonant frequency in the regime of high Ekman
number. This suggests that the dissipation at the resonant frequency is much stronger
than the dissipation at the non-resonant frequencies at the low Ekman numbers.

In addition, we also carried out the direct numerical calculations of equation (3.1)
and the relative error of the numerical calculations compared to the analytical results is
within 0.01%.
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Figure 4. The investigation of the force amplitude in the nonlinear regime. The normalised
dissipation D/a2 versus time at E = 1 × 10−3 with kx = ky = kz = 1. (a) The resonant

frequency ω = −2/
√
3. (b) ω = −1.16 near the resonant frequency. (c) ω = −1.2 far away from

the resonant frequency. Black lines denote the results in the linear regime. Red, green and blue
lines denote the nonlinear regime with respectively a = 1× 10−3, 2× 10−3, and 3× 10−3.

4. Nonlinear regime

We now numerically study the nonlinear regime, i.e. solving equation (2.1). Firstly we
study the nonlinear effect due to the force amplitude. We gradually increase the force
amplitude a from 1× 10−3 to 2 × 10−3 and then to 3× 10−3. The stronger force drives
the stronger flow and hence the higher dissipation, and so we normalise the dissipation
with a2, which reflects the nonlinear effect on the dissipation and we call D/a2 the
effective dissipation. Figure 4 shows the effective dissipation D/a2 versus time for the
three amplitudes, 1× 10−3, 2× 10−3 and 3× 10−3, at E = 1× 10−3. The three different
frequencies are studied, i.e. the resonant frequency ω = −2/

√
3 ≈ −1.1547, ω = −1.16

near the resonant frequency, and ω = −1.2 far away from the resonant frequency. The
linear results are also shown in the figure for comparison with the nonlinear results.
Figure 4(a) shows that at the resonant frequency the effective dissipation is lower than
in the linear regime and it decreases with the increasing force amplitude, namely the
stronger nonlinearity has a greater suppression effect on the effective dissipation. It is
interesting that the rapid fluctuations occur with a = 1 × 10−3 while the linear result
has no such fluctuations. Evidently these fluctuations arise from some instabilities caused
by the nonlinearity. They become less frequent with a = 2 × 10−3 and vanish with a =
3× 10−3. Figure 4(b) shows that near the resonant frequency this nonlinear suppression
for dissipation still exists but becomes weaker, e.g. the black line (the linear regime) and
the time average of the unsteady red line (the weakest nonlinear regime) almost overlap.
Figure 4(c) shows that far away from the resonant frequency the nonlinear suppression
is absent, namely the black, red, green and blue lines completely overlap. This is because
the flow amplitude at the frequency far away from the resonant frequency is too small to
have the strong nonlinear effect. In summary, the nonlinear effect suppresses the effective
dissipation at the resonant frequency and this suppression effect is still significant near
the resonant frequency but negligible far away from the resonant frequency.
To better understand the nonlinear effect on the dissipation, we investigate the depen-

dence of the dissipation on the Rossby number, which measures the relative strength of
the inertial force and the Coriolis force. The Rossby number is defined as Ro = U/(lΩ)
where U is the characteristic velocity. We take U to be the square root of the volume-
averaged kinetic energy, and under our normalisation the Rossby number is exactly the
dimensionless U , i.e.

Ro =

√

1

V

∫

u2dV (4.1)
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ω −2/
√
3 −1.16 −1.2

a 1e-3 2e-3 3e-3 1e-3 2e-3 3e-3 1e-3 2e-3 3e-3
Ro 1.59e-1 1.78e-1 2.08e-1 9.19e-2 1.54e-1 1.87e-1 1.56e-2 3.12e-2 4.68e-2

D/a2 9.39e1 2.65e1 7.79e0 4.33e1 1.78e1 8.10e0 7.29e-1 7.29e-1 7.29e-1
D/Dlin 0.563 0.159 0.047 1.070 0.441 0.200 1.001 1.001 1.001

Table 1. The nonlinear regime. The time-averaged Ro, D/a2 and D/Dlin versus ω and a in
figure 4.

For the fluctuating flows, we take the time average in the statistically steady stage (after
the initial transient growth stage) to calculate Ro. Table 1 shows Ro and D/a2 versus a
at the three frequencies. It indicates that at the fixed frequency the larger force amplitude
leads to the stronger nonlinearity (Ro) and hence the weaker D/a2. The last row shows
the ratio of the nonlinear dissipation to the corresponding linear dissipation, which clearly
reveals that the nonlinear suppression is very strong at the resonant frequency for the
large force amplitude. At the resonant frequency, the stronger force amplitude leads to the
lower ratio. When the force frequency departs farther away from the resonant frequency,
the nonlinearity becomes weaker.
Figure 5 shows the velocity structure at the resonant frequency ω = −2/

√
3. With

a = 1 × 10−3 the main flow structure has the basic flow of (kx = ky = kz = 1) (figure
5(a)) and the instabilities on top of the basic flow (figure 5(b)), with a = 2 × 10−3

the structure of basic flow alters due to the strong nonlinearity (figure 5(c)), and at
a = 3 × 10−3 the structure of basic flow completely disappears and the z-independent
structure emerges (figure 5(d)).
Next we investigate the force wavenumber. In the linear regime, the dissipation scales

as k−2 at the resonant frequency and it is much stronger than the dissipation at the
non-resonant frequencies on the large scales, see figure 2. In the nonlinear regime, figure
6 shows the dissipation versus time for the three wavenumbers, kx = ky = kz = 1,
2 and 3, with the three frequencies as in figure 4. At the resonant frequency (figure
6(a)), the higher wavenumber leads to the lower dissipation, which is consistent with the
prediction in the linear regime (the solid black line in figure 2). At the frequency near the
resonant frequency (figure 6(b)), the higher wavenumber leads to the lower dissipation,
which is also consistent with the prediction in the linear regime (the dashed black line in
figure 2). At the frequency far away from the resonant frequency (figure 6(c)), the higher
wavenumber leads to the higher dissipation, which is again consistent with the prediction
in the linear regime (the dash-dotted black line in figure 2).
We then investigate the Ekman number. Usually viscosity has a stabilising effect (rig-

orously speaking, viscosity can be both stabilising and destabilising, e.g. in the parallel
shear flow it can destabilise the inviscid flow with parabolic profile), and therefore, when
the Ekman number decreases the nonlinear effect becomes significant. Figure 7 shows the
dissipation versus time for the three different Ekman numbers, i.e. 1× 10−3, 7.5× 10−4

and 5 × 10−4, with the three frequencies as in figure 4. Figure 7(a) shows that at the
resonant frequency the lower Ekman number leads to the lower dissipation. This is op-

posite to the prediction in the linear regime, namely the lower Ekman number leads to
the higher dissipation at the resonant frequency as shown by the solid line in figure 3.
A tentative interpretation is that at the resonant frequency the lower Ekman number
gives rise to the stronger nonlinear suppression for dissipation which wins out the linear
enhancement for dissipation. Figure 7(b) shows that near the resonant frequency the
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Figure 5. The contours of velocity in the x−z plane at y = 0 for the snapshot at time=10000. In
each subfigure the four panels from left to right are contours of respectively u1, u2, u3 and kinetic
energy. At the resonant frequency ω = −2/

√
3 corresponding to figure 4(a). (a) Linear response

with a = 1× 10−3 (the kinetic energy is a constant). (b) Nonlinear response with a = 1× 10−3.
(c) Nonlinear response with a = 2× 10−3. (d) Nonlinear response with a = 3× 10−3.
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Figure 6. The investigation of the force wavenumber in the nonlinear regime. The dissipation
D versus time at E = 1 × 10−3 with a = 1 × 10−3. (a) The resonant frequency ω = −2/

√
3.

(b) ω = −1.16 near the resonant frequency. (c) ω = −1.2 far away from the resonant frequency.
Black, red and blue lines denote the nonlinear regime with respectively kx = ky = kz = 1, 2 and
3.
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Figure 7. The investigation of the Ekman number in the nonlinear regime. The dissipation D
versus time with a = 1× 10−3 and kx = ky = kz = 1. (a) The resonant frequency ω = −2/

√
3.

(b) ω = −1.16 near the resonant frequency. (c) ω = −1.2 far away from the resonant frequency.
Black, red and blue lines denote the nonlinear regime at respectively E = 1× 10−3, 7.5× 10−4

and 5× 10−4.

high and low Ekman numbers do not seem to have significant difference in respect of the
time-averaged dissipation but the lower Ekman number leads to the stronger amplitude
of oscillations of dissipation, which is presumably the instabilities caused by the stronger
nonlinearity. Figure 7(c) shows that far away from the resonant frequency the lower Ek-
man number leads to the lower dissipation. Moreover, the ratio of three dissipations at
E = 1 × 10−3, 7.5 × 10−4 and 5 × 10−4 is 1 : 0.75 : 0.5, which is consistent with the
prediction of D ∝ E in the linear regime as shown by the dash-dotted line in figure 3.
This again indicates that the nonlinear effect is negligible far away from the resonant
frequency.

5. Conclusion

In this work we study analytically and numerically the rotating flow driven by the
harmonic force. In the linear regime we analytically derive the response to the harmonic
force and the dissipation. The dissipation scales as D ∝ E−1k−2 at the resonant fre-
quency and D ∝ E at the other non-resonant frequencies. In the nonlinear regime we do
the numerical calculations and compare to the linear regime. It is found that the effective
dissipation (D/a2) at the resonant frequency in the nonlinear regime is lower than in the
linear regime and decreases with the increasing force amplitude, and however, this nonlin-
ear suppression is negligible far away from the resonant frequency. Opposite to the linear
regime, the lower Ekman number leads to the lower dissipation at the resonant frequency
because of the stronger nonlinear effect. This nonlinear effect can be interpreted. At the
resonant frequency, if the tidal force amplitude is large enough or the Ekman number
is small enough, the nonlinear inertial force (u ·∇u) takes its effect, such that the flow
is suppressed, namely the flow intensity is weaker than without the nonlinear inertial
force. Hence, the dissipation, which is equal to the enstrophy multiplied by viscosity, is
also suppressed. Far away from the resonant frequency, the tidal response is weak and
therefore the nonlinear effect is not striking.
In summary, when the frequency of the external harmonic force is close to the neg-

ative frequency of inertial wave in the unforced rotating flow, the dissipation can be
greatly enhanced but the stronger nonlinear effect due to the stronger force amplitude
or the lower Ekman number can suppress this enhancement, however, the dissipation
at the frequency far away from the resonant frequency is small and the nonlinear effect
is insignificant. Our numerical calculations about the nonlinear effect on the dynamical
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tide imply that the previous linear calculations overestimated the tidal dissipation at the
resonant frequency.
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