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Abstract

We show that three basic actor characteristics, namely normalized reciprocity,

three cycles, and triplets, can be expressed using an unified framework that is

based on computing the similarity index between two sets associated with the

actor: the set of her/his friends and the set of those considering her/him as a

friend. These metrics are extended to multiplex networks and then computed

for two friendship networks generated by collecting data from two groups of

undergraduate students. We found that in offline communication strong and

weak ties are (almost) equally presented, while in online communication weak

ties are dominant. Moreover, weak ties are much less reciprocal than strong

ties. However, across different layers of the multiplex network reciprocities are

preserved, while triads (measured with normalized three cycles and triplets) are

not significant.

Keywords: Multiplex analysis, Social networks, Graph theory

1. Introduction

Intensity of involvement among actors in a social network and the types of

actions and interactions that arise between them are a long active topic in soci-

ological research. The analysis of group structures has started with the study of

dyads and triads that was pioneered by German sociologist Georg Simmel at the
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end of the nineteenth century [1]. In network analysis, the importance of triads

has long been emphasized in many research studies, including the highly influen-

tial work of Granovetter [2] and, more recently, the work of Watts and Strogatz

[3], where the notion of clustering (formation of many triangles in networks) is

an integral part of the analysis. Thus, both social and network analysis that

represent actors as networks nodes and their interactions as (un)directed links

have shown that the network structural properties like reciprocity and cycles

are very important when trying to explain processes like information spreading

and network evolution.

However, retaining the perspective on different connections, i.e. Granovet-

ter’s strong and weak ties, sheds additional light on the nature of connections

between actors and provides deeper understanding of the triads formations and

network clustering. Thus, deeper understanding of the network properties, and

therefore the processes that run on top of it, can be gained if it is viewed

as a collection of multiple types of links wherein each set of link types rep-

resents a separate layer of the network. This multilayered representation has

led to the introduction of the concept of multiplex networks which refers to

systems in which nodes are connected through more than one type of edges,

and therefore, belong to multiple interacting and co-evolving networks. The

importance of multiplex networks in sociology has been emphasized by many

scholars. In the seminal treatment of multiple networks as the foundation of

social structure, White, Boorman and Breiger [4] and Boorman and White [5]

argued that the patterning and interweaving of different types of ties are needed

to describe and characterize social structures. It has been demonstrated that

multiplexity is critical to diverse phenomena, such as the mobilization of social

movements [6], the consolidation of political power [7], the emergence of trust in

economic relationships [8], the creation of social bonds within civic networks [9],

and the organization of party coalitions [10]. Multiplexity has been studied to

understand scientific collaboration [11], structural logic of intra-organizational

networks [12], formation of ties featuring both an economic and a social compo-

nent in inter-organizational networks [13], and formation of relationships among
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producers in the multiplex triads [14].

Multiplex networks have also been recently subject of particularly intense

research by the network science and physics communities. Szell, Lambiotte,

and Thurner [15] worked on correlations and overlap between different types

of links and demonstrated the tendency of individuals to play different roles in

different networks. Algorithmic detection of tightly connected groups of nodes

known as communities in multiplex networks was studied in [16]. A framework

for growing multiplexes where a node can belong to a different networks was

developed by Nicosia et al [17], while Kim and Goh [18] studied the possibility

of growth of coevolving layers that can shape the network structure and showed

analytically and numerically that the coevolution can induce strong degree cor-

relations across layers, as well as modulate degree distributions. Evolutionary

game dynamics on structured populations in which individuals take part in sev-

eral layers of networks of interactions simultaneously which accounts for the

different kind of social ties each individual has was studied by Gomez et al [19].

In this paper we aim to study social relations among actors (strong and weak

ties) as they appear in real life face-to face (offline) and virtual via social network

sites (online) communications using the apparatus of multiplex network anal-

ysis/analytics. Real data was collected using an online survey/questionnaire

given to two groups of students (two classroom based social networks). The

students answers were used to map their own perception of strong vs. weak of-

fline and online connections, thus constructing several offline and online directed

friendship networks that constitute the layers of our multiplex network. The

primary goal of this research is to study the interrelationship of different social

structures represented as multiplex networks. For this reason, we develop nor-

malized actor characteristics for multiplex networks, including metrics for dyads

(such as reciprocity) and triads. We found that normalized reciprocity, three

cycles, and triplets of an actor can be expressed using an unifying framework

that is based on the comparison of two sets associated with the actor: the set of

her/his friends - out links and the set of actors that consider her/him as a friend

- in links. By extending these metrics for multiplex networks, we were able to
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observe the relationship of strong and weak ties in the offline and online space.

Analyzing the collected data from two groups of undergraduate students we

found that in offline communication strong and weak ties are (almost) equally

presented, while in online communication weak ties are dominant. Moreover,

weak ties are a lot less reciprocal than strong ties. However, while reciprocities

are preserved across layers, the triads (measured using normalized three cycles

and triplets) are not significant on the different layers of the multiplex network.

This is the outline of the paper. First, we describe the participants in-

volved in the study and the procedure for collecting data. Next, we address

the network endogenous (structural) and exogenous factors. Endogenous fac-

tors include graph characteristics such as reciprocity, three-cycles, transitive

triplets, together with their normalized versions, as well as their generalizations

for multiplex graphs. The section Results summarizes our findings regarding the

offline and online multiplex networks generated by collecting the data described

in the section Materials and Methods. We conclude the paper with the section

Conclusions where we also discuss our future work.

2. Materials and Methods

2.1. Participants and the procedure

Participants in this study were two groups of undergraduate students en-

rolled on two courses given at the Faculty of Computer Science and Engineering

within the Cyril and Methodius University in Skopje, Macedonia. During the

courses there was a dedicated lecture to explain the study and it’s objectives in

which the students were informed about the research experiment and only those

who agreed to participate were part of the experiment. Thus, the two groups

represent two social networks of students that attend the same class during one

semester of their studies. The total number of students in the first group, Group

1, is 171, out of which 153 voluntarily participated in the study. The gender

distribution is almost equal; there were 86 female and 85 male students. The

total number of students in the second group, Group 2, is 150 (118 male, 32
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female), while only 80 participated in the At the end we summarize our findings

regarding the offline and online multiplex networks generated from the collected

datastudy. The students age for both groups ranges from 19 years to 22 years.

Additional data was also collected for each student via the university online

electronic course enrollment system (such as: gender, study program, GPA,

accumulated credits).

The online survey was developed by the research team. Each student (that

participated in the study) was asked to select from the presented list of class-

mates those with whom she/he was engaged in face-to-face (offline) communica-

tion and Facebook (online) communication. Each chosen contact was described

as weak or strong according to the student’s own perception by the means of

pre-defined categories for frequency of communication. In the case of face-to-

face communication a contact (tie) is considered to be strong if the frequency of

communication is higher than 5 interactions per month, while it is considered as

weak contact (tie) if the number of interactions is larger than once in 3 months,

but less than 5 interactions per month. When considering the online communi-

cation, strong contacts (ties) are those with whom the student interacts more

than five times per week, while a weak contact (tie) is the one with whom there

was Facebook activity more than once a month, but less than five times per

week. Facebook was chosen as the online social network representative since it’s

use is extremely wide spread among the population.

2.2. Friendship graphs as multiplex networks

Graphs provide a powerful primitive for modeling data in social science.

Nodes usually represent real world objects and edges indicate relationships be-

tween objects. In sociology, nodes may have attributes associated with them and

graphs may contain many different types of relationships. The node attributes

are used to describe the features of the objects that the nodes represent. For

example, a node representing a student may have attributes that represent the

student’s gender and department. Different types of edges in a graph correspond

to different types of relationships between nodes, such as friends and classmates
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relationships.

Here we study friendship relations among n actors: the existence of a tie

i → j will be described as i calling j a friend. The ties are represented as

binary variables, denoted by xij . A tie from actor i to actor j, i → j, is

either present or absent (xij then having values 1 and 0, respectively). The

tie variables constitute the network, represented by its n× n adjacency matrix

X = [xij ] (self-ties are excluded). The graph is directed, where each tie i → j

has a sender i, who will also be referred to as ego, and a receiver j, referred to

as alter, as it is common in social network analysis.

We model different types of relationships among actors using the concept of

multiplex graphs. In sociology, multiplex graphs (networks) refer to the case

when nodes (actors) are connected through more than one type of (socially

relevant) ties. In mathematics, such graphs are also called multi-graphs (a

multi-graph is a graph that is allowed to have multiple edges, that is, edges that

have the same end nodes). We give a definition of multiplex graphs adapted

for the study reported in this paper. Let V denote the set of nodes; nodes are

connected via L different type of connections (ties). Each type of connection

(together with the set of nodes) forms a (directed) graph with n vertices. We

denote with Gα = (V,Eα) the graph which represents the connection type

α, where Eα denotes the set of α-type ties, α = 1, . . . , L. Let [xij(G
α)] be

n × n adjacency matrix of the graph Gα. A multiplex graph G is then defined

as a collection of all graphs Gα and all edge-aggregated graphs of the form

(V,∪αm
α=α1

Eα), where α1, αm ∈ {1, . . . , L}. We assume that the case α1 = αm

is not excluded and thus write

G = {Gα1α2...αm = (V,Eα1 ∪ Eα2 ∪ . . . ∪ Eαm) : α1, . . . αm ∈ {1, . . . , L}}

for the multiplex graph G. In the study discussed here, different types of edges

correspond to the four types of friendship relations: online weak or strong con-

nections and offline weak or strong connections.
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2.3. Jaccard similarity coefficient

In order to introduce an unifying framework for discussing graph character-

istics, we use the Jaccard index, also known as Jaccard similarity coefficient.

It measures the similarity between finite sets and is defined as the size of the

intersection divided by the size of the union of the sets:

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
,

where |S| denotes the cardinality of the set S. If A and B are both empty,

J(A,B) is defined as 1. Note that

0 ≤ J(A,B) ≤ 1.

The Jaccard distance, which measures dissimilarity between sets and is a metric

on the collection of all finite sets, is complementary to the Jaccard coefficient

and is obtained by subtracting the Jaccard coefficient from 1. Using Jaccard

index to introduce various actor-based characteristics is based on the following

observation. Let Ai = {a : i→ a} and Bj = {b : j → b}. Then

|Ai ∩Bj | =
∑
h

xihxjh

|Ai ∪Bj | =
∑
h

xih +
∑
h

xjh −
∑
h

xihxjh,

where |Ai| =
∑
h xih and |Bj | =

∑
h xjh.

2.4. Network (endogenous) characteristics

We consider a number of social network characteristics; those depending

only on the network are called structural or endogenous characteristics, while

characteristics depending on externally given attributes are called covariate or

exogenous characteristics.

2.4.1. Simple-graph characteristics

Let G = (V,E) be a directed graph and let i be an arbitrary node (actor)

in the graph. We denote Sini (k) and Souti (k) for the k-in-neighborhood of i and
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k-out-neighborhood of i, respectively, i.e., for the set of vertices from where

vertex i can be reached and for the set of vertices that can be reached from i in

k steps (using k directed edges). More formally, these sets are defined as

Sini (k) = {j : there is a path of length k from j to i} (1)

Souti (k) = {j : there is a path of length k from i to j} (2)

The general case of arbitrary k will be discussed elsewhere, here we consider only

to the case when k = 1. For k = 1 we use the shorter notations Sini (1) = Sini

and Souti (1) = Souti . In other words, we consider the 1-hop-neighbor sets of node

i defined as:

Souti = {j : i→ j}, (3)

Sini = {j : j → i}, (4)

If the existence of a tie i → j is being interpreted as j is a friend of i, then

Souti is the set of i’s friends, while Sini is the set of nodes that consider i as

their friend. For the cardinalities of these sets, we write douti =
∑
j xij = |Souti |

and dini =
∑
j xji = |Sini |. Therefore, douti is the number of i’s friends and dini

is the number of nodes that consider i as their friend. These two metrics are

known as activity, i.e. tendency to establish friendships, and popularity, i.e.

ability to gain friends, in social science. In this paper, we analyse several graph

characteristics that can all be expressed using the Jaccard similarity index for

a given pair of node sets. Out of the many different possible characteristics,

here the focus is set on those that we consider most relevant for this study:

reciprocity, three-cycles, and triplets.

Reciprocity – One of the most basic properties of social networks is reci-

procity, represented by the number of reciprocated ties of actor i and defined

as
∑
j xijxji, which can be rewritten as

Reci = |Souti ∩ Sini | =
∑
j

xijxji

Here we consider normalized reciprocity defied as:

ri = J
(
Souti , Sini

)
=

∑
j xijxji

douti + dini −
∑
j xijxji

. (5)
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The normalized reciprocity enables one to decide on the quantity of reciprocated

ties when compared to the total number of ties of both actors. This normal-

ization provides a perspective and places the phenomenon of reciprocity into

context by comparing it to the total number of possibilities for reciprocated ties

under the given circumstances. Three-cycles – Next to reciprocity, an essential

feature in most social networks is transitivity, or transitive closure which is rep-

resented by two metrics: three-cycles and triplets. A cycle of length 3 in a given

graph is defined as a sub-graph that consists of a sequence of directed edges

i → j → h → i which connect a sequence of vertices i, j, h, all distinct from

one another. We discuss the first metric, three-cycles, defined as the number of

three-cycles an actor i is involved in, that is

cyci =
∑
j,h

xijxjhxhi

We introduce a normalized characteristic for the number of three-cycles an actor

i is involved in as follows:

tci =
1

dini

∑
h

xhiJ(Souti , Sinh )

=
1

dini

∑
h

xhi
∑
j xijxjh

douti + dinh −
∑
j xijxjh

|Souti ∩ Sinh | is the number of the common neighbors for both i and h or, the

number of i’s friends that consider h to be a friend as well. The Jaccard index

between these two sets Souti and Sinh reflects how similar these sets are in terms

of common versus non-common friends. Moreover,∑
h

xhi|Souti ∩ Sinh | =
∑
h

xhi
∑
j

xijxjh

is the number of three-cycles that actor i is involved in. Therefore, by sum-

marizing the Jaccard indexes J(Souti , Sinh ) for all h one can obtain a measure

(metric) tci that represents the status of common versus non-common friends

of i in the graph when considered in terms of transitive three-cycles.

Transitive triplets – A transitive triplet of length 3 in a given graph is a sub-

graph that consists of a sequence of directed edges i→ j → h and i→ h which
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connect a sequence of vertices i, j, h that are all distinct from one another.

Recall, the metric triplets is defined as the number of triplets an actor i is

involved in, that is

plti =
∑
j.h

xijxjhxih.

In a similar fashion as for the three-cycles, one can define normalized metric for

the number of triplets in the graph:

tpi =
1

douti

∑
j

xijJ(Souti , Soutj )

=
1

douti

∑
j

xij
∑
h xihxjh

douti + doutj −
∑
h xihxjh

Note that the normalized reciprocity, normalized transitive triplets, and normal-

ized three-cycles are related to reciprocity, transitive triplets, and three-cycles,

respectively - quantities that are commonly used in social science and graph

theory. The fact, shown here, that they can be expressed with Jaccard simi-

larity index not only brings novel understanding of these quantities, but also

suggests how they can be extended for multiplex networks, which will be done

in the next section. However, take into consideration that while using the Jac-

card similarity index to express the network characteristics, we define it as 0

when both considered sets are empty in order to reflect the social aspects of the

interpretation, i.e. two nodes that have no friends at all are not reciprocated

and are not part of any triplets or cycles.

2.4.2. Multiplex-graph characteristics

When considering a multiplex graph wherein α and β (α = β is not ex-

cluded) represent two types of social relationships, the normalized reciprocity,

normalized three-cycles, and normalized transitive triplets can be generalized

as:

ri(G
α, Gβ) = J

(
Souti (Gα), Sini (Gβ)

)
tci(G

α, Gβ) =
1

dini

∑
h

xhiJ(Souti (Gα), Sinh (Gβ))
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tpi(G
α, Gβ) =

1

douti

∑
j

xijJ(Souti (Gα), Soutj (Gβ)).

By using these metrics we can analyze how different types of links interact

and form mixed dyad and triad formations. Recalling that in the general case

a multiplex graph can consist of several different layers, the multiplex-graph

extension of the reciprocity, cycles and triplets metrics enables us to study what

type of links are stronger than others, as well as how the network characteristics

change when considering only a subset of all existing interrelations among its

nodes.

We also consider the following two characteristics called overlapping indexes

and defined as:

oiouti (Gα, Gβ) = J(Souti (Gα), Souti (Gβ))

oiini (Gα, Gβ) = J(Sini (Gα), Sini (Gβ))

These two metrics are introduced in order to create a contrasting view compared

to the normalized multiplex graph characteristics as they are defined above. By

analyzing the Jaccard similarity of sets of links for a given node that belong

to different layers of the multiplex graph, we are able to infer the consistency

of the relationship intensity for different types of links. In other words, does

the node have the tendency to have different types of relationship with the

same set of friends in different environments (for example, online and offline

environment in our study case). We argue that the out overlapping index shows

the node activity in creating and maintaining different types of links, while the

in overlapping index represents the node popularity, i.e. ability to gain different

types of relationships.

2.5. Exogenous characteristics

Nodes in a graph may have a set of associated attributes, also called exoge-

nous actor covariates. In order to emphasize the completeness of the approach,

in this section we show that our unified framework based on the Jaccard sim-

ilarity index can also be used for the analysis of the exogenous characteristics
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of the multiplex graph. The results for the exogenous characteristics will be

presented elsewhere.

Let Ai be the set of attributes associated to the node i. There are two

basic characteristics for the actor i: the out-attributes characteristic, measuring

whether actors with higher similarity-index values tend to nominate more friends

and hence have a higher out-degree; the in-attributes characteristic, measuring

whether actors with higher similarity-index values will tend to be nominated by

many others and hence have higher in-degrees. These two characteristics are

defined as

attouti =
1

douti

∑
j

xijJ(Ai, Aj) (6)

attini =
1

dini

∑
j

xjiJ(Ai, Aj), (7)

which will be compared to the average un-networked similarity value computed

as

att =
2

n(n− 1)

∑
i,j;i<j

J(Ai, Aj).

The characteristic attouti measures similarity of attributes of the pair of end-

nodes i and j for all the friends of i, that is, for all nodes in the set Souti . The

characteristic attini measures similarity of attributes of the pair of end-nodes i

and j for those j that consider i as a friend, that is, for all nodes in the set Sini .

The quantities (6) and (7) can be extended for multiplex networks as

attouti (Gα) =
1

douti

∑
j

xij(G
α)J(Ai, Aj)

attini (Gα) =
1

dini

∑
j

xji(G
α)J(Ai, Aj)

With this extension once can also analyze the similarity of the attributes for

different pairs of nodes that are connected across different layers of the multiplex

network. Therefore, these metrics provide insight into how different types of

links influence the attribute based node similarity.
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Figure 1: Visualization of a part of the multiplex graph constructed according to

the data from Group 2 with 2 basic and 2 aggregated graphs. Note that all nodes

(if present) are in the same positions across the layers.

3. Results

Let V be the set of all students enrolled on a given course (group). For

each group of students, there are four distinct directed graphs that have been

generated based on the answers collected from the online survey: offline/online

social network with strong ties and offline/online social network with weak ties,

defined as:

Gofs = (V,Eofs ), Eofs = {i→ j is an offline strong tie} (8)

Gofw = (V,Eofw ), Eofw = {i→ j is an offline weak tie} (9)

Gons = (V,Eons ), Eons = {i→ j is an online strong tie} (10)

Gonw = (V,Eonw ), Eonw = {i→ j is an online weak tie} (11)

From these four (basic) graphs, five more aggregated graphs are constructed:

Gof = (V,Eof ), Eof = Eofs ∪ Eofw (12)

Gon = (V,Eon), Eon = Eons ∪ Eonw (13)

Gs = (V,Es), Es = Eons ∪ Eofs (14)
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Gw = (V,Ew), Ew = Eonw ∪ Eofw (15)

G = (V,E) E = Eof ∪ Eon = Es ∪ Ew (16)

Two multiplex networks are studied for two groups. Each network consists

of nine layers or nine sets of ties: four basic - strong OFF, weak OFF, strong

ON, and weak ON and five aggregated sets - strong, weak, ON, OFF, and all,

as described with the given equations. In Fig. 1 a partial visual representa-

tion of the multiplex network for Group 2 is presented aiming to conceptualize

the different types of links in each layer together with the possible ways for

aggregation.

Table 1: Basic graph characteristics for all layers in the multiplex graph that

represents the social interrelations between the students from Group 1

Group 1 |V | |E| TotDegree Assor |V1| |E1| Path Diam

strong OFF 153 675 4.412 0.431 122 630 4.632 14

weak OFF 153 756 4.941 0.018 135 693 3.856 9

OFF 153 1420 9.281 0.238 150 1402 2.994 7

strong ON 153 428 2.797 0.235 87 319 5.196 14

weak ON 153 783 5.118 0.154 138 742 3.782 9

ON 153 1201 7.850 0.253 150 1192 3.251 7

strong 153 730 4.771 0.392 128 689 4.339 11

weak 153 1046 6.837 0.087 145 1016 3.212 7

all 153 1487 9.719 0.195 153 1487 2.937 7

Multiplex networks are particularly significant when they overlap and in-

teract to create phenomena or processes that cannot be explained by a single

network alone. Tables 1 and 2 summarize the basic graph characteristics for all

graphs generated in the study (total of 9 graphs per group): number of actors

|V |, number of ties |E|, average degree and assortativity. Recall, a directed

graph is strongly connected if there is a directed path from each vertex to every

other vertex. The strongly connected components (SCC) of a directed graph

are its maximal strongly connected sub-graphs. The number of actors |V1| and
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Table 2: Basic graph characteristics for all layers in the multiplex graph that

represents the social interrelations between the students from Group 2

Group 2 |V | |E| TotDegree Assor |V1| |E1| Path Diam

strong OFF 80 412 5.150 0.184 64 390 3.337 9

weak OFF 80 521 6.513 0.297 57 420 2.697 5

OFF 80 930 11.625 0.360 71 892 2.282 5

strong ON 80 226 2.825 0.199 49 188 4.468 12

weak ON 80 465 5.812 0.352 62 414 2.922 7

ON 80 690 8.625 0.356 68 651 2.544 5

strong 80 455 5.688 0.213 65 430 3.157 9

weak 80 728 9.100 0.352 67 675 2.463 5

all 80 1013 12.662 0.384 73 985 2.243 5

ties |E1| for the largest SCCs for each of these graphs are also presented in the

tables, including the average path length and the diameter.

Since the number of participants in the two groups (153 versus 80) is differ-

ent, it is significant to confirm that the same conclusions (especially concerning

the ratios) hold for both groups. Namely, the number of strong ties is smaller

than the number of weak ties: 689 versus 1016 (40% strong ties and 60% weak

ties) for the first group and 430 versus 685 (41% strong ties and 59% weak ties)

for the second group. However, if we take a closer look at the strong ties graphs,

one can notice that there are more strong offline ties than strong online ties.

This leads us to the conclusion that the students have closer friendship relations

in the offline real rather than the online virtual environment. The number of

ON ties is smaller than the number of OFF ties: 1192 versus 1402 (46% ON

ties and 54% OFF ties) for Group 1 and 651 versus 892 (42% ON ties and 58%

OFF ties) for Group 2. Moreover, the number of strong OFF ties is almost

the same as the number of weak OFF ties for both groups: 630 and 693 (48%

and 52%) for the first group and 390 and 420 (48% and 52%) for the second

group. This suggests that weak communications are (almost) equally presented
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in the online and real life communication. However, the number of strong ON

ties is almost half the number of weak ON ties: 319 and 742 (30% and 70%)

for the first group and 188 and 414 (31% and 69%) for the second group. This

could be interpreted as the fact that students within one group interact with all

colleagues no matter whether they consider them close or distant which could

be due to the necessities of working together on different projects, homework or

labs for example. However, looking at the number of online strong and online

weak ties, we can infer that the students use the virtual world to spread weak

and more common friendships most probably aiming to expand their circle of

acquaintances.

Comparing the average total degrees between basic graphs and aggregated

graphs in the multiplex network it is fairly straightforward to conclude that

both groups exhibit similar patterns for the average degrees: strong OFF and

weak OFF graphs have average degrees 4.4 and 4.9 for the first group and 5.1

and 6.5 for the second group, respectively. Strong ON and weak ON graphs

have average degrees 2.8 and 5.1 for the first group and 2.8 and 5.8 for the

second group, respectively. At the aggregated level, the average degrees for

strong and weak graphs are 4.8 and 6.8 for the first group and 5.7 and 9.1 for

the second group, while for the OFF and ON graphs these numbers are 9.3 and

7.8 for the first group and 11.6 and 8.6 for the second group. Note that the

average degrees for all graphs in the multiplex network of the second group are

greater than the average degrees for the corresponding graphs of the first group.

One possible explanation is that the students which are part of smaller group

are more friendly and associative between them. This is especially the case in

this scenario since the the students belonging to Group 2 have a more diverse

background (i.e. type of study program, year of study and alike) compared to

Group 1. However, we do not have more data to confirm (or disconfirm) this

conclusion (hypothesis).

Tables 3 and 4 provide summaries of the basic metrics: average values for

the reciprocities, three cycles, and triplets for all (single) graphs in the mul-

tiplex networks that represent group 1 and 2, respectively. All weak graphs
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(weak OFF, weak ON, and weak) have smaller values for reciprocity, three

cycles, and triplets for both groups indicating that weak ties are less socially

significant. Both transitive triplets and three-cycles represent closed structures,

however, triplets indicate hierarchical ordering in contrast to three-cycles which

are against of such ordering. For all graphs studied here, the average values

of transitive triplets is slightly larger than the average values of three-cycles

showing that the elements of hierarchical ordering are present in these social

networks. Also, the results given in both tables 3 and 4 indicate that there is a

correlation between dyads (reciprocity) and triads (transitive triplet and three-

cycle) such that larger (smaller) values of the former imply larger (smaller)

values of the latter.

Table 3: Basic endogenous characteristics for all layers in the multiplex network

that represents social interactions in Group 1

Group 1 Average ri Average tci Average tpi

strong OFF 0.445 0.153 0.168

weak OFF 0.154 0.029 0.039

OFF 0.467 0.147 0.190

strong ON 0.465 0.141 0.136

weak ON 0.204 0.045 0.049

ON 0.442 0.133 0.173

strong 0.482 0.159 0.177

weak 0.278 0.061 0.074

all 0.492 0.155 0.200

Tables 5 and 6 show the average values of 5 different additional characteris-

tics that are focusing on the interrelationship of different parts of the multiplex

graph. Here, in addition to reciprocity, three-cycle, and triplet, we also have

the two overlapping indexes, all as they are defined in the subsection Multiplex

graph characteristics. The given results indicate that reciprocity is preserved

across different layers of the multiplex network; in particular the ties in strong
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Table 4: Basic endogenous characteristics for all layers in the multiplex network

that represents social interactions in Group 2

Group 2 Average ri Average tci Average tpi

strong OFF 0.425 0.156 0.161

weak OFF 0.074 0.041 0.049

OFF 0.335 0.139 0.200

strong ON 0.448 0.146 0.149

weak ON 0.099 0.049 0.064

ON 0.342 0.115 0.172

strong 0.509 0.150 0.171

weak 0.148 0.081 0.102

all 0.360 0.153 0.216

OFF are reciprocal with ties in strong ON and vice versa (the normalized average

values are ri(G
OFF
s , GONs ) = 0.417 and ri(G

ON
s , GOFFs ) = 0.406, respectively.

Similar values are also obtained for the pairs (OFF, ON) and (ON, OFF). How-

ever, for the considered social multiplex network, the triads (measured with

normalized three cycles and triplets) are not significant. On the other hand, the

values for the overlapping indexes show that activity and popularity patterns

among some layers of the multiplex network are significant. For instance, the

number of out-degree and in-degree friends in the strong OFF layer coincides

with the out-degree and in-degree friends in the strong ON layer. Or, out-degree

and in-degree friends in the weak OFF layer are also out-degree and in-degree

friends in the weak ON layer. On the other hand, the overlapping indexes for

both out-degree (activity) and in-degree (popularity) are small for the following

combinations of two graphs (strong ON, weak ON) and (strong OFF, weak,

OFF) for both Groups 1 and 2.

In social science structural equivalence is defined as “two nodes are consid-

ered structurally equivalent if they share many of the same network neighbors.”

A possible operationalization of this definition could be done as follows: two
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Table 5: Multiplex-graph characteristics for different pairs of layers reflecting the

combined types of ties for Group 1

Group 1 Reciprocity tc2 tp2 oi1 oi2

strong OFF, strong ON 0.417 0.136 0.148 0.568 0.524

weak OFF, weak ON 0.160 0.032 0.037 0.427 0.512

strong OFF, weak OFF 0.091 0.061 0.065 0.025 0.005

strong ON, weak ON 0.081 0.052 0.059 0.028 0.006

strong, weak 0.175 0.093 0.102 0.195 0.180

OFF, ON 0.434 0.141 0.182 0.735 0.775

strong ON, strong OFF 0.406 0.145 0.136 0.568 0.524

weak ON, weak OFF 0.165 0.038 0.042 0.427 0.512

weak OFF, strong OFF 0.116 0.040 0.061 0.025 0.005

weak ON, strong ON 0.098 0.046 0.064 0.028 0.006

weak, strong 0.207 0.075 0.098 0.195 0.180

ON, OFF 0.433 0.139 0.179 0.735 0.775

nodes i and j are structurally equivalent if ri = rj , tci = tcj and tpi = tpj . We

found that in each network some of the actors are structurally equivalent. For

example in the strong ON graph for Group 1, the actors with id 2, 24, and 127

are structurally equivalent having ri = 1, tci = 0.55, and tpi = 0.532. These

actors have out-degree and in-degree douti = 4 and dini = 4, respectively. Ta-

ble 7 shows characteristics for those actors in the strong OFF graph that have

douti = 4 and dini = 4. Again some of those actors are structurally equivalent (2

and 127). These initial results are very promising and open up a way to formally

mathematically define the concept of structural equivalence. However, further

deeper study on this matter must be carefully conducted in order to confirm

the viability of our proposed method. For instance, if we relax the condition to

approximately equal then nodes 80 and 83 from Table 7 will also be considered

equivalent.

Finally, we have also tested and confirmed the hypothesis of Granovetter.
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Table 6: Multiplex-graph characteristics for different pairs of layers reflecting the

combined types of ties for Group 2

Group 2 Reciprocity tc2 tp2 oi1 oi2

strong OFF, strong ON 0.411 0.127 0.138 0.517 0.470

weak OFF, weak ON 0.072 0.038 0.057 0.400 0.401

strong OFF, weak OFF 0.071 0.054 0.056 0.093 0.003

strong ON, weak ON 0.062 0.042 0.047 0.102 0.001

strong, weak 0.132 0.086 0.095 0.269 0.141

OFF, ON 0.334 0.117 0.181 0.708 0.604

strong ON, strong OFF 0.362 0.130 0.138 0.517 0.470

weak ON, weak OFF 0.067 0.040 0.047 0.400 0.401

weak OFF, strong OFF 0.110 0.041 0.070 0.093 0.003

weak ON, strong ON 0.135 0.039 0.065 0.102 0.001

weak, strong 0.209 0.073 0.103 0.269 0.141

ON, OFF 0.306 0.118 0.180 0.708 0.604

Consider two arbitrary selected individuals A and B and the set of all persons

with ties to either or both of them. The hypothesis is: the stronger the tie

between A and B, the larger the proportion of individuals in S to whom they

will be both tied (connected by a weak or strong tie). For Group 1, there are a

total of 5526 strong wedges out of which: 39.052 % are closed by another strong

link, 33.406 % are closed by a weak link and 72.457 % are closed by any link.

Also, there are a total of 29860 weak wedges out of which: 8.279 % are closed

by a strong link, 9.752 % are closed by another weak link and 18.031 % are

closed by any link. For Group 2, there are a total of 4811 strong wedges out

of which: 39.243 % are closed by another strong link, 45.022 % are closed by a

weak link and 84.265 % are closed by any link. Also, there are a total of 25424

weak wedges out of which: 14.301 % are closed by a strong link, 23.450 % are

closed by another weak link and 37.752 % are closed by any link.
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Table 7: Structural equivalence. Graph characteristics of the nodes in Group 1

with douti = 4 and dini = 4

strong OFF ri tci tpi

i = 2 1 0.424 0.442

i = 40 0.333 0.042 0.094

i = 80 0.6 0.343 0.353

i = 83 0.6 0.356 0.287

i = 94 0.6 0.053 0.056

i = 122 1 0.376 0.366

i = 127 1 0.424 0.442

i = 148 0.143 0.083 0.191

4. Conclusions

By studying friendship relations among students enrolled on two different

courses represented using a multiplex structure, a number of interesting con-

clusions regarding the strength of online and offline ties can be drawn: (1)

strong ties are preferred in face-to-face (offline) communications; (2) weak ties

are equally presented in online and offline communications; (3) in offline com-

munication, strong and weak ties are (almost) equally included; (4) in online

communication weak ties are dominant; (5) weak ties (in three layers of the

multiplex network: weak offline, weak online, and weak) are much less recip-

rocal than strong ties; (6) dyads (that is, reciprocities) are preserved, however

triads (measured with normalized three cycles and triplets) are not significant in

different layers of a multiplex network; (7) activity and popularity patterns for

some layers of the multiplex network are significant: out-degree and in-degree

friends in one layer could also be out-degree and in-degree friends in another

layer. These conclusions are supported by the data obtained from both groups.

The number and consistency of the drawn conclusions have confirmed that by

approaching the problem of different interrelationships between actors as a mul-

tiplex network problem, one can gain useful insight on the importance of each
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type of link within the social network as a whole, as well as on the interaction

and overlapping between different link types, especially in the offline/online

(real/virtual) environments as was our case of study.

In the future, we plan to study how exogenous characteristics influence the

structure of the multiplex network and how the network structure dominates

the actors (students) characteristics and their temporal evolution. In particular,

we will address questions on: how student grades are distributed; students’

commitment and progress to the studies; how one could empower the students

to obtain better grades or determine their specific areas of interest with greater

success. Are the students with better grades and habits more central to the

network or not, and how changing the placement of these individuals could

influence the structure of the network?
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