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Abstract

One of the most highly debated questions in the field of animal swarming and social
behaviour, is the collective random patterns and chaotic behaviour formed by some
animal species, in particular if there is a danger. Is such a behaviour beneficial or
unfavourable for survival? Here we report on one of the most remarkable forms of
animal swarming and social behaviour - fish schooling - from a hydrodynamic point
of view. We found that some fish species do not have preferred orientation and
they swarm in a random pattern mode, despite the excess of energy consumed. Our
analyses, which includes calculations of the hydrodynamic forces between slender
bodies, show that such a behaviour enhances the transfer of hydrodynamic infor-
mation, and thus enhances the survivability of the school. These findings support
the general hypothesis that a disordered and non-trivial collective behaviour of in-
dividuals within a nonlinear dynamical system is essential for optimising transfer of
information - an optimisation that might be crucial for survival.

1 Introduction

The concurrent movement of fish in a school involves significant hydrodynamic
interactions. The relative longitudinal and lateral distances and velocities be-
tween the fish, as well as their relative lengths and cross-sectional areas deter-
mine the magnitude of the hydrodynamic forces and moments involved (Kadri,
2005; Rattansiri et. al, 2014; Kadri and Weihs, 2014), which in turn affect the

∗ ukadri@mit.edu

Preprint submitted to Journal 15 November 2021

ar
X

iv
:1

60
5.

01
97

3v
1 

 [
q-

bi
o.

PE
] 

 5
 M

ay
 2

01
6



! !

!"# !$#

!%# !&#

Fig. 1. Examples for schools of fishes swimming in random pattern mode: (a) Jack
Caranx sp. (60 cm) ; (b) Bluelined snapper Lutjanus kasmira & Yellowspot emperor
Gnathodentex aurolineatus (35 cm / 24 cm); (c) Goggle-eye Priacanthus hamrur (40
cm); and (d) Bluestreak fusilier Pterocaesio tile (25 cm). (Photos by F. Brümmer)

school overall manoeuvrability (Partridge and Pitcher, 1979). It is not the aim
of the current study to discuss how information due to a sudden movement
is (physiologically) transferred among the school members in terms of sen-
sory systems (Partridge and Pitcher, 1980), environmental effects (Killen et.
al, 2007), or aerobic capacity (Killen et. al, 2011). In this respect, the overall
manoeuvrability of a given school is dependant on the instantaneous school
pattern (structure) mode which dictates to leading order, the hydrodynamic
interactions.

Although it has been suggested that fish might be found to swim in a diamond-
shape pattern to increase hydrodynamic efficiency (Weihs and Webb, 1983),
or other preferred orientations and angles, observations (Fig. 1) and analyses
(Fig. 2) of aerial photographs and videos of different schools of fishes (Jacks,
blue-lined snapper, yellow-spot emperor, goggle-eye, and bluestreak fusilier)
reveal random-shape patterns instead. The supporting theoretical analysis we
present here show that swimming in random pattern modes increases the
mean hydrodynamic forces by a factor of two to five, depending on school
size, which in turn decreases the response time of fish due to a sudden change
of movement in neighbouring fish and enhances the overall manoeuvring of
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Fig. 2. Top: distribution of a school of Jack Caranx sp. (60 cm); at time 00.04.44
(circles), 00.05.44 (star), 00.06.59 (square). Middle: probability density function
(PDF) of the distance between each fish and the closest upper downstream neigh-
bour. Bottom: PDF of the angle between each fish and the closest upper down-
stream neighbour. All dimensionless quantities were normalized with respect to the
mean fish length.
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the school. An increased energy consumption that enhances the manoeuvring
efficiency is thus essential for survival especially amongst smaller fish that
cannot escape fast enough from predators.

2 Methods

2.1 Hydrodynamic calculations

The model by Weihs and Webb (1983) accurately predicts diamond-shape pat-
tern modes especially for relatively large fish or dolphins (Weihs, 2004; Kadri,
2005), and for different types of fish preferred orientations might be identified.
However, for smaller fish (e.g. Jack Caranx sp., 60 cm) the school pattern-
shapes were found to be random; especially when fish encounter danger (e.g.
due to the presence and sudden movement of scuba-divers) their behaviour
becomes more disordered within the school; at any given instant the relative
distances and angles between neighbouring fish fail to form ordered patterns,
as we observed (Fig. 2). It is observed that the probability density function
(PDF) of the relative distances and angles are Gaussian, indicating continu-
ous random variables. This observation raises the question whether random
school patterns and disordered behaviour, which are probably due to a natural
‘panic’ reflex (Hamilton, 1971), are beneficial or unfavourable for survival.

In order to evaluate the effect of random school patterns, we carried out a
theoretical analysis, based on the studies by Tuck and Newman (1974), and
Wang (1975) who investigated the hydrodynamic interactions between two
submerged slender bodies of revolution at various separation distances. For
the sake of brevity, the actual motion of each fish in the school is now trans-
lated into the motion of a slender ellipsoid with d/L = ε, where d and L are the
maximum lateral and longitudinal dimensions of the body, and ε is assumed
to be small. On this basis, an approximate solution is sought for the hydro-
dynamic quantities of interest. Each two streamlined bodies move through an
ideal fluid with constant velocities Ui and Uj along parallel paths. The relative
positions of the two bodies change in time as a quasi–steady approximation,
where each position is calculated individually. The two bodies are separated
by a lateral distance, ηij, and fore–and–aft distance, ξij, which is a function
of time t. For each two bodies we define two coordinate systems, (xi, yi, zi)
fixed on body i and (xj, yj, zj) fixed on the upper upstream neighbour, body
j, which are related to the fixed coordinate system (x0, y0, z0) so that

x0 = xi + Uit = xj + Ujt− ξij(0);

y0 = yi = yj + ηij; z0 = zi = zj,
(1)
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where
ξij(t) = xj − xi = (Ui − Uj)t+ ξ(0). (2)

where ξij(0) is the initial longitudinal distance between bodies i and j. The
flow about the i–th body is considered asymptotically steady, and can be es-
timated by standard methods of slender body theory (Newman, 1977). It is
also assumed that the separation distance ηij is O(εLi) to allow calculations
of small lateral separation distances. Thus, the three dimensional velocity po-
tential in outer region is expanded in a Taylor series about the other body.
Using the method of asymptotic expansions we find a solution to the longitu-
dinal motion. The inner solution is governed by the two–dimensional Laplace
equation and the no penetration boundary condition. The outer solution is
governed by the three dimensional Laplace equation and by the condition at
infinity where the potential diminishes. These solutions are matched in an
overlap region, leading to, after rather long but straight forward algebra, ex-
pressions for the longitudinal and lateral forces, and moment acting on body j
due to the presence and/or movement of body i (Newman, 1977; Kadri, 2005;
Kadri and Weihs, 2014):

Xj =

n∑
i=1

ρ

4π

∫
Li

S′i(xi)

U2
i + U2

j

∫
Lj

S′i(xi)Tj(xj)σijdxj

dxjdxi, (3)

Yj =
n∑

i=1

ρUjηij
4π

∫
Li

(2Uj − Ui)S
′
i(xi)

∫
Lj

Tj(xj)dxjdxi, (4)

Nj =

n∑
i=1

ρUjηij
4π

∫
Li

[
xi(2Uj − Ui)S

′
i(xi) + 2UjSi(xi)

] ∫
Lj

Tj(xj)dxjdxidxi. (5)

where n is the school size, j = 1, 2, ..., n, and

Tj(xj) = S ′j(xj)
(
σ2
ij + η2ij

)−3/2
σij = (xj − xi − ξij); Sj(xj) = Sj(0)

(
1− 4x2j/L

2
j

)
where Sj(xj) is chosen to be a simple sectional area distribution of parabolic
form; Sj(0) is a constant related to the cross-sectional area of the j-th body
and Sj(xj) = πr2j ; and rj is the radius of the cross-sectional area. For nondi-
mensional representation we define

FXj
≡ XjL

2/ρU2S2; FYj
≡ YjL

2/ρU2S2; MNj
≡ NjL/ρU

2S2.
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2.2 Data collection and analysis

A total of 48 photos and eight videos (total duration: 300 seconds) of fish
schools from 11 different species were examined for analysis. Data presented
in Fig. 2 was processed from a movie (MPEG-4 format) recorded movement
and distribution of fish in a school for 00.59.36 min. The video was converted
to TIF file formats (at 15 frames per second giving a total of 894 frames) using
the tool iMovie (Mac). Positions (x and y coordinates) of fish were determined
at three different frames (71, 86 and 104), corresponding to movement at times
00.04.00, 00.05.44 and 00.06.59 min, respectively, using image analysis software
(SigmaScan Pro 5.0).

2.3 Numerical calculations

In the case of Figs. 3 and 4, the velocities and lengths of the fish were consid-
ered unity, and the slenderness parameter ε = 0.1. For the diamond pattern
cases the longitudinal and lateral distances between each two neighbouring fish
rows and columns are ξ0 = 1.1, and η0 = 0.12, respectively. In the case of a ran-
dom pattern mode, the same amount of fish were randomly distributed within
a similar domain size; the longitudinal and lateral distances were calculate
based on a Monte Carlo algorithm as presented in the statistical guidelines.
In the case of Fig. 5, the algorithm was extended to three-dimensions.

2.4 Statistical guidelines

The random pattern data presented in Fig. 3 were obtained by carrying out
a Monte Carlo algorithm. Each data point represents an average of repeated
random computations of a size of at least a hundred repetitions. For each
school size, n × n, the length and width of the computation domain, l × w,
are given by l = n×Li, and w = n× d. The location of the fish are generated
randomly, such that no overlaps are allowed. The longitudinal and later forces,
and yawing moments between each two fish are computed using Eqs. (3), (4),
and (5). Note that the random pattern data presented in subplots (a)-(j) of
Fig. 4, are for a single calculation (no repetition). The (layer) school size is
20× 20.
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Fig. 3. Nondimensional hydrodynamic forces and moments as function of fish (square
root) school size; for random (∗) and diamond (�) patterns. Top: longitudinal forces.
Middle: lateral forces. Bottom: yawing moments

3 Results

The analysis presented here considers two structure mode patterns, diamond
and random. The mean longitudinal and lateral forces acting on a fish in
a random pattern mode is larger than those in a diamond mode, whereas
the mean moments are similar in both modes (Fig. 3). In this respect, a
diamond-shaped swimming pattern is optimal in terms of energy saving which
supports previous findings by Weihs and Webb (1983). Such mode might be
observed in schools migrating in ‘safe’ zones, or in large fish or mammals,
e.g. dolphins (Weihs, 2004; Kadri, 2005), that use the saved energy for extra
thrust during escape. However, smaller fish counts on their manoeuvrability
for survival, which increases with the total hydrodynamic forces (Wu, 1981;
Liu et. al, 2011). Table 1 compares between the mean total hydrodynamic

forces, Ftot =
√
F 2
X + F 2

Y , of the two patterns. It indicates that the mean total
force in random patterns is two to five times larger than in diamond patterns.
Swimming in a random pattern mode enables fish to interact more intensely

with remote fish members, resulting in a faster and more efficient ‘information’
transfer, from a hydrodynamic perspective. This can be easily seen by the
following example. Assume a (layered) rectangular fish school of the size of
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Fig. 4. The hydrodynamic force effect of the upper fish row (presented by •) on the
remaining fish school. interaction intensity: blue (low) to red (high). Upper subplot:
diamond pattern. Remaining subplots: random patterns.

20 × 20 (Fig. 4), the fish on the sides of the rectangle represent an envelope
that separates the remaining fish from the surrounding. If , for the sake of
brevity, the whole upper fish row (presented by (•) encounters a danger, then
the survivability of the whole school depends on how fast this information is
transferred through the whole school, again from a hydrodynamic perspective.
In other words, we are interested in the distribution of the total hydrodynamic
effect of the first fish row on the remaining fish school. In a diamond pattern
mode (upper subplot) the effect on each row is almost homogeneous. While the
lateral forces experienced by the second row are relatively small, due to the fact
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School size Diamond Random

2× 2 0.3974 2.0754

3× 3 0.9302 2.6132

4× 4 1.4072 3.1733

5× 5 1.1768 3.0591

6× 6 1.1690 2.9400

7× 7 0.9532 3.3220

8× 8 0.9422 3.1863

9× 9 0.8139 3.3187

10× 10 0.7812 3.3280

11× 11 0.6810 3.2530

12× 12 0.6641 3.1084

13× 13 0.5921 3.1943

14× 14 0.5734 3.0777

Table 1
Calculations of the mean total forces per school size for diamond and random pat-
terns. In the case of a random pattern, the mean total forces are factor of two to
five times larger.

that ξij is large, the effect is largest on the third row and the general trend is
that the information (hydrodynamic interaction) decreases with the (double)
rows. However, for random pattern modes (subplots (a)-(j)) the information
penetrates through the rows, which can be seen in the figure by the differences
in colour gradients across the vertical layers (i.e. orange yellow and green
compared to blue). Thus, the reaction at the next time instant would occur at
multilevel rows simultaneously, which enhances the overall manoeuvrability of
the fish as a school.

4 Discussion

Within a random pattern a manoeuvring fish experiences, on average, larger
centripetal forces, and thus can reach larger angular velocities (ω ∝ Ftot

1/2).
Since each fish, within a random pattern, applies on average larger hydro-
dynamic forces on the school, its manoeuvring, e.g as a response to danger,
results in larger impact on the fish school and in particular on its proximate
neighbours. Therefore, the hydrodynamic changes within the school as a whole
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Fig. 5. The hydrodynamic force effect of the upper fish layer (presented by dark
blue •) on the remaining fish school. interaction intensity: blue (low) to red (high).
Left: side views (fish move to the right). Middle: front views (fish move into page).
Right: Isometric view. First row: 27 fish, in a 6 × 3 × 3 box. Second row: 64 fish,
in a 8× 4× 4 box. Third row: 125 fish, in a 10× 5× 5 box. Fourth row: 216 fish, in
a 12× 6× 6 box.

are larger in case of random pattern mode, which enhances its survivability.
Note that the mathematical analysis presented in Fig. 4 considers discrete
layers of the school, an assumption which is rarely met in nature (Breder,
1965; Oshima, 1950; Partridge and Pitcher, 1979). However, it is easy to show
that the three dimensional fish school analysis would result in larger hydro-
dynamic forces, which in turn, further enhances the school manoeuvrability,
and alertness. Such an analysis is carried out in Fig. 5. Here, we examined the
three-dimensional effect of the upper fish group (presented in dark blue •) on
the remaining school members. We considered four different school sizes, 27,
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64, 125, and 216, within boxes of dimensions 6×3×3, 8×4×4, 10×5×5, and
12 × 6 × 6, respectively. The fish swim from left to right relative to the side
view. It is notable here that the hydrodynamic effects made by the upper fish
group on the remaining school members is somewhat disordered, which can
be seen by the inhomogeneous distribution of colours. In reality, the analyses
of the videos show that the different fishes, of each school, may have differ-
ent lengths, speeds, and orientations, as well as locomotion techniques, which
would all add to the disordered behaviour of transferring the hydrodynamic
“information” among the school members, both spatially and temporally.

The analysis made here has been described in the context of specific fish school-
ing species, though similar analysis can be carried out for other fishes, swarm-
ing behaviour in general, and bird flocking in particular, e.g. by a straight for-
ward extension of the work by Higdon and Corrsin (1978), and Higdon (1975).
These support the general hypothesis that a disordered and non-trivial collec-
tive behaviour of individuals within a nonlinear dynamical system is essential
for optimising transfer of information - an optimisation that might be cru-
cial for survival. The work presented here can also be applied for interaction
between multiple AUV’s with a submarine, e.g. Leong et. al (2015).
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