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Spontaneous symmetry breaking is a universal concept throughout science. For instance, 

the Landau-Ginzburg paradigm of translational symmetry breaking underlies the 

classification of nearly all quantum phases of matter and explains the emergence of crystals, 

insulators, and superconductors1. Usually, the consequences of translational invariance are 

studied in large systems to suppress edge effects which cause undesired symmetry breaking2. 

While this approach works for investigating global properties, studies of local observables 

and their correlations require access and control of the individual constituents. Periodic 

boundary conditions, on the other hand, could allow for translational symmetry in small 

systems where single particle control is achievable. Here, we crystallize up to fifteen 40Ca+ 

ions in a microscopic ring with inherent periodic boundary conditions. We show the ring’s 

translational symmetry is preserved at millikelvin temperatures by delocalizing the Doppler 

laser cooled ions. This establishes an upper bound for undesired symmetry breaking at a 
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level where quantum control becomes feasible. These findings pave the way towards 

studying quantum many-body physics with translational symmetry at the single particle 

level in a variety of disciplines from simulation of Hawking radiation3 to exploration of 

quantum phase transitions4. 

Engineered quantum systems with periodic boundary conditions have led to observation of many 

interesting physical phenomena and enabled important applications over the past decades5-7. 

However, quantum control of the individual constituents remains very challenging in such 

systems. Atomic trapped ions, on the other hand, offer a large degree of control down to the 

single-particle level8-10. In light of this, the unique properties of trapped ion rings open up novel 

opportunities to study diverse topics. For instance, the ring geometry confines topological defects 

while still allowing them to move freely. This property extends the lifetime of the quasiparticles 

relevant for studies of the Kibble-Zureck mechanism11,12 and dynamics of kink solitons13,14. The 

ring topology also allows one to study the Aharanov-Bohm effect in the quantum regime15 and 

symmetry breaking with indistinguishable particles16,17. A rotating ion ring lends itself to studies 

of the acoustic analogue of Hawking radiation by introducing a controlled phonon dispersion3. 

Additionally, because each ion experiences the same potential, the system could be advantageous 

in quantum computation18, frequency metrology19, and allow one to study quantum frictions20 

and quantum phase transitions4 in a homogeneous setting. 

Ion rings have been previously implemented by concatenating conventional linear ion trap 

designs into a circle21-24. In these experiments, the ion-electrode distances have been much 

smaller than the ion ring diameters, making the ring crystals sensitive to complex stray electric 

fields from nearby surfaces. Although the stray fields do not significantly affect high-energy ion 
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rings23, they substantially disrupt the translational symmetry at low temperatures where many 

interesting quantum phenomena can be observed. Hence it is desirable to reduce the ion-ring 

diameter while keeping the ions far away from the electrodes, such that stray fields from 

imperfections vary on length scales larger than the ring diameter. This strategy avoids local 

distortions of the ion ring crystal. Here, using a novel trap design25,26, we crystallize 40Ca+ ions in 

a 90 μm diameter ring with 390 μm ion-electrode distance, a 60-fold increase of the ratio between 

ion-electrode distance and the ring diameter. The new design allows compensation of the 

unavoidable stray fields with primarily homogeneous fields in order to achieve a high degree of 

translational symmetry. 

Our ring trap consists of three concentric circular electrodes surrounded by eight static-voltage 

compensation electrodes, as shown in Fig. 1a. Applying a radio-frequency (rf) voltage to the 

innermost and outermost circular electrodes with all other electrodes held at a dc voltage 

generates a time-averaged circular potential minimum above the trap surface26 (Fig. 1b). The trap 

is fabricated from Boron doped Silicon anodically bonded on borofloat glass (SiO2), as shown in 

Fig. 2a. The electrodes are formed using photolithography followed by deep dry etching of 

silicon (Fig. 2b). The deep electrode trenches (Fig. 2c) ensure that stray fields from bound 

charges in the glass are well shielded. Hydrofluoric acid (HF) etching of the glass underneath the 

trenches is performed to increase the distance between the electrodes through the glass surface. 

This process prevents surface breakdown when a high voltage is applied between neighboring 

electrodes27. In the interest of leaving the potential above the trap undisturbed, electrical vias are 

created on the backside by HF etching of the glass substrate, followed by Gold deposition and a 

lift-off process.  
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The ring trap is operated by applying a 220 V amplitude, 2π × 5.81 MHz signal to the rf 

electrodes. A flux of neutral Calcium atoms generated from a heated atom oven travels parallel to 

the trap surface in the x-direction, as shown in Fig. 2d. The neutral Calcium is then ionized inside 

the trapping region through a two-photon process at 422 nm and 375 nm. A red detuned 397 nm 

laser beam incident from the y-direction cools the ions while an 866 nm laser beam repumps the 

ions out of the dark D-state28. The fluorescence of the ions at 397 nm is collected with a custom 

objective29 and imaged upon an electron multiplying charge coupled device (EMCCD) camera. 

When captured by the trapping potential, the ions crystallize into a ring because of their mutual 

Coulomb repulsion, as shown in Fig. 3. With no compensating fields applied, the ions are 

typically pinned to one side of the ring by stray electric fields. The strength of the stray fields in 

the x-y plane is measured to be ~ 3 V/m by recording the compensating field required to 

reposition the ion crystal to be first x then y axis symmetric. The measured radial trapping 

frequency is 2π × 390 kHz (Fig. 3a). The trapping potential is able to hold up to fifteen ions in a 

ring before the ion crystal forms a zig-zag configuration when pinned.  

The presence of external electric fields in the trapping plane creates an asymmetry in the ring 

potential, resulting in a finite tangential trapping frequency (Fig. 3a). We gauge the asymmetry 

by measuring the tangential trapping frequency of the ion crystal. In the measurement, we apply a 

sinusoidal voltage to one compensation electrode and observe the excitation of the collective 

tangential mode with the EMCCD camera30. Figures 3e and 3f present the observed dependence 

of the tangential trapping frequency on the total external dipole field strength Ey and the ion 

number N, respectively. As the ion number becomes larger, the increased Coulomb repulsion 

resulting from the reduced ion-ion spacing enforces a more uniform charge distribution in the 
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ring, as shown in Figs. 3a and 3c. For such a homogeneous charge distribution, an external 

electric field exerts a smaller restoring torque when the ion crystals deviate from the equilibrium 

position. Therefore, we expect the tangential trapping frequencies to decrease with increasing ion 

number and better compensation of the stray field. 

The potential energy of the ion crystals can be modeled by considering only a homogeneous 

external field and the coulomb repulsion of the ions confined to a ring. This results in a potential 

energy of the form 
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diameter, θi the angular position of the i th ion, e the elementary charge and ε0 the vacuum 

permittivity. We calculate the frequencies of the collective tangential motion by expanding the 

potential energy of the ion crystals to quadratic order of the ion displacements relative to 

equilibrium. The results are presented in Fig. 3e and 3f. The calculation agrees with the 

experimental results over the full extent of the measurement without free fitting parameters. This 

result confirms that homogeneous electric fields are the dominant symmetry breaking mechanism 

at the energy scales of our measurement. 

In order to quantify the scale at which the symmetry is broken, we use the magnitude of the 

perturbations of the potential that causes the localization of the ion ring, defined as the rotational 

energy barrier. To obtain the rotational energy barrier, we numerically vary the position of the 

final ion in the chain and use the model confirmed above to solve for the lowest potential energy 

configuration of the remaining ions, as described by Figs. 4a-c. The calculated potential energy of 

a ten-ion crystal versus the final ion position is plotted in Fig. 4d. The two minimum energy 

locations correspond to the original equilibrium configuration of the crystal and the energy peak 
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represents the rotational energy barrier VB. For ten ions, we observe localized ring crystals with 

in-plane electric fields larger than (2.0 ± 0.1) V/m (Fig. 3e). At this electric field, the rotational 

energy barrier is calculated to be VB/kB = (10 ± 4) mK, where kB is the Boltzmann constant. 

By decreasing the external field or increasing the ion number, the rotational energy barrier can be 

reduced to the point where the ion ring delocalizes, as shown in Fig. 3d. For a ten-ion crystal, 

delocalization occurs at Ey = - (1.9 ± 0.1) V/m (Fig. 4e), corresponding to a rotational energy 

barrier of VB/kB = (6 ± 3) mK. We find that the rotational energy barrier at which the ion ring 

starts to delocalize is independent of the number of ions, as shown in Fig. 4f. In addition, we 

determine the tangential temperature of the ions to be ~ 3 mK by measuring the Doppler-

broadened width of the 729 nm 42S1/2–32D5/2 transition27. The proximity of the ion temperature to 

VB/kB suggests that delocalization occurs when the thermal energy of the ions is large enough to 

overcome the rotational energy barriers.  

Ultimate control of the ion ring requires translational symmetry of its rotational ground state in 

the picokelvin regime. In the future, we look to explore what mechanism could break the 

symmetry at energy scales below the Doppler limit studied here. So far we have found that the 

main symmetry breaking mechanism is homogeneous fields. From our model, we estimate that 

with our achieved control of ~ 0.1 V/m, homogeneous fields will not affect the symmetry of a 

ten-ion ring even at the 10-12 K level. Approaching these small energies, we expect that higher 

order multipole fields will become relevant. To explore these effects, further cooling of the 

rotational degree-of-freedom is required.  

 



7 

 

Methods 

Deep dry etching of the silicon was performed with a STS deep reactive ion etching system, 

using SPR-220 photoresist. Before etching of the vias, the glass substrate was thinned down from 

175 μm to 70 μm using HF, and a metal etching mask consisting of 60 nm Chromium and 200 

nm Gold was patterned by photolithography. Before assembling in the ultra-high vacuum 

chamber, the trap was coated with thin a thin layer of Silver using electron-beam evaporation 

from the top and was bonded to a printed circuit board with solder paste. The SEM image of the 

trap cross-section was recorded with an LEO 1550 microscope. 
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Figure 1 

 

Figure 1 | Schematics of the surface-electrode ring trap. a, The trap consists of three circular 

electrodes and eight static voltage electrodes in a plane. The outer radius of the three circular 

electrodes are 125 μm, 600 μm, and 1100 μm, respectively. The gap between the innermost and 

the next circular electrode is 15 μm, and the gaps between other electrodes are 25 μm. The whole 

electrode pattern possesses a diameter of 6 mm, outside of which is ground. Applying rf voltages 

to the innermost and outermost circular electrodes generates a time-averaged ring shaped 

electrical potential which enables the formation of the ring ion crystals. b, Cross-sectional electric 

fields at an instant when the applied rf potential is positive relative to ground.  
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Figure 2 

 

Figure 2 | Trap fabrication and experiment setup. a, Cross-sectional schematics of the 

fabricated trap. The doped silicon electrodes coated with Silver are mechanically supported by an 

insulating SiO2 substrate. The resistivity of the doped silicon is < 0.005 ohm∙cm. The thickness of 

the Ag, Si, and SiO2 layers are 100 nm, 250 μm, and 70 μm, respectively. Electrical vias through 

the SiO2 layer are coated with a 800 nm layer of Gold. b, Stitched optical image of the trap 

electrodes illuminated with yellow light. c, Scanning electron microscope image of the trap cross-

section. The deep trench in silicon separates two electrodes. The cut beneath the trench prevents 

surface flashover when high voltage is applied between the electrodes. d, Experimental setup for 

observing the ion crystals. The neutral atom flux generated by a heated atom oven travels parallel 

to the trap surface in the x-direction and then ionized with a two-photon process in the trapping 

regime. The cooling beam parallel to the trap surface comes from the y-direction. 



13 

 

Figure 3 

 

Figure 3 | Fluorescence images of ring ion crystals and measurement of tangential trapping 

frequencies. a-c, Images of ion crystals composed of four ions (a) and ten ions (b and c). In a, 

the red and blue arrows depict radial (ωr) and tangential (ωt) trapping directions. d, Image of a 

delocalized ten-ion ring when the total external dipole field is close to zero (exposure time 200 

ms). In a-d, the scale bars are 20 μm. The flourescence inhomogeneity of the images is caused by 

the size of the Gaussian cooling beam of ~ 70 μm full width at half maximum. e, f, Dependence 

of the tangential trapping frequency on the total external dipole field strength Ey and ion number 

N, respectively. Error bars are smaller than the sizes of the data points. The lines correspond to 

the calculated collective tangential frequencies using the electric potential model considering 

only a homogeneous electric field and the Coulomb repulsion of the ions confined to a ring. The 
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agreement between the calculated results and the experimental data confirms that the 

homogenous electric fields are the dominant symmetry breaking mechanism. 

Figure 4 

 

Figure 4 | Analysis of the rotational energy barrier. a-c, Lowest potential energy 

configurations of the remaining nine ions varying with the position of the final ion (marked in red) 

in a ten-ion crystal. The original equilibrium configuration is shown in a. When the final ion 

moves from right to left, the crystal recovers the original equilibrium configuration, as shown in c. 

d, Calculated potential energy of ten ions as a function of the final ion position angle θ, where the 

difference between the minimum and the maximum is the rotational energy barrier VB. Points A, 
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B, and C correspond to the equilibrium configurations shown in a, b, and c, respectively. In a-d, 

Ey = - 2.0 V/m. e, f, Total external electric field strength (e) and corresponding rotational energy 

barrier VB/kB (f) at which the ion crystals are observed to delocalize as a function of the ion 

number. The errors of the electric fields in e are  0.1 V/m. The gray line in f denotes the 

measured tangential temperature ~ 3 mK of the ions, which is close to VB/kB, and suggests that 

the delocalization occurs when the thermal energy of the ions is large enough to overcome the 

rotational energy barrier.  

 


