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Stability of soliton families in nonlinear Schrödinger equations with

non-parity-time-symmetric complex potentials

Jianke Yang and Sean Nixon
Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05401, USA

Stability of soliton families in one-dimensional nonlinear Schrödinger equations with non-parity-
time (PT )-symmetric complex potentials is investigated numerically. It is shown that these solitons
can be linearly stable in a wide range of parameter values both below and above phase transition.
In addition, a pseudo-Hamiltonian-Hopf bifurcation is revealed, where pairs of purely-imaginary
eigenvalues in the linear-stability spectra of solitons collide and bifurcate off the imaginary axis,
creating oscillatory instability, which resembles Hamiltonian-Hopf bifurcations of solitons in Hamil-
tonian systems even though the present system is dissipative and non-Hamiltonian. The most
important numerical finding is that, eigenvalues of linear-stability operators of these solitons appear
in quartets (λ,−λ, λ∗,−λ∗), similar to conservative systems and PT -symmetric systems. This quar-
tet eigenvalue symmetry is very surprising for non-PT -symmetric systems, and it has far-reaching
consequences on the stability behaviors of solitons.

I. INTRODUCTION

Parity-time (PT ) symmetry is currently at the fore-
front of research in physics and applied mathematics (see
[1, 2] for reviews). This concept started out in quantum
mechanics, where it was observed that complex poten-
tials with parity-time symmetry could still exhibit all-
real spectra even though the underlying Schrödinger op-
erator is non-Hermitian [3]. Later, this concept spread
to optics, where it was realized that optical waveguides
with even refractive-index profiles and odd gain-loss dis-
tributions constitute PT -symmetric systems [4]. In this
optical setting, PT symmetry was observed for the first
time [5–7]. In addition, it has been introduced into many
other physical disciplines such as Bose-Einstein conden-
sates, electronic circuits and mechanical systems [8–13].
PT systems feature a unique property — phase transi-
tion, where the linear spectrum changes from all-real to
partially-complex when the system parameters cross a
certain threshold [3, 4, 14, 15]. This phase transition
has led to interesting applications such as single-mode
PT lasers and unidirectional reflectionless optical devices
[16–18]. A surprising property of PT systems is that,
even though they are dissipative due to the gain and
loss, they exhibit many properties of conservative sys-
tems, such as all-real linear spectra and continuous fami-
lies of stationary nonlinear modes [3, 4, 9, 14, 15, 19–25].
Thus, PT systems break the boundary between conserva-
tive and dissipative systems and offer novel wave-guiding
possibilities. In addition, PT systems make loss useful,
which is enlightening.

The downside of PT symmetry stems from the re-
strictive conditions set on the gain-loss profile, which
must be odd. To overcome this restriction, non-PT -
symmetric dissipative systems sharing the properties of
PT -symmetric systems have been pursued. For instance,

wide classes of non-PT -symmetric potentials with all-
real spectra were reported in [26–30]. In addition, it
was discovered that in a certain class of such potentials
with the form g2(x) + ig′(x), where g(x) is an arbitrary
real function, solitons also appear as continuous fami-
lies, which is very counter-intuitive [29, 31–33]. Further-
more, it was argued in [33] that potentials of the form
g2(x) + ig′(x) are the only one-dimensional (1D) non-
PT -symmetric potentials which support soliton families.
However, stability properties of these soliton families are
still largely unknown, except for some evolution simu-
lations of perturbed simple-shaped solitons in a certain
non-PT -symmetric potential below a phase transition in
[29], which suggest that those simple solitons could be
stable.

In this paper, we systematically study the linear stabil-
ity of various soliton families in 1D nonlinear Schrödinger
(NLS) equations with non-PT -symmetric complex po-
tentials both below and above phase transition. This
study is performed by numerically computing the linear-
stability spectra of these solitons. We show that both
simple-shaped and multi-humped soliton families can be
linearly stable in a wide range of parameter values below
and above a phase transition. In addition, a pseudo-
Hamiltonian-Hopf bifurcation is revealed, where pairs
of purely-imaginary eigenvalues in the linear-stability
spectra of solitons collide and bifurcate off the imagi-
nary axis, creating oscillatory instability, which resem-
bles Hamiltonian-Hopf bifurcations of solitons in Hamil-
tonian systems even though the present system is non-
Hamiltonian. Our most important numerical finding is
that, eigenvalues of the linear-stability operator of these
solitons appear in quartets (λ,−λ, λ∗,−λ∗), similar to
conservative systems and PT -symmetric systems. This
quartet eigenvalue symmetry is very surprising for non-
PT -symmetric dissipative systems, and its consequences
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on the linear stability of these solitons are explained.

II. PRELIMINARIES

The mathematical model we consider is the following
potential NLS equation

iΨt +Ψxx + V (x)Ψ + σ|Ψ|2Ψ = 0, (1)

where V (x) is a complex potential, and σ = ±1 is the
sign of nonlinearity. This model governs nonlinear light
propagation in an optical medium with gain and loss
[4, 34, 35], as well as dynamics of Bose-Einstein conden-
sates in a double-well potential with atoms injected into
one well and removed from the other well [11, 12, 36].
If the potential V (x) is real, Eq. (1) is conservative and
Hamiltonian, and its properties have been investigated in
numerous articles for many decades [34, 35]. If V (x) is
complex but PT -symmetric, i.e., V ∗(x) = V (−x), where
the superscript * represents complex conjugation, then
this PT -symmetric system has been heavily studied in
the last eight years [1, 2]. If V (x) is complex and non-
PT -symmetric, this equation is currently at the fron-
tier of research. For non-PT -symmetric potentials of the
form

V (x) = g2(x) + 2γg(x) + ig′(x), (2)

where g(x) is a real asymmetric function and γ a real
constant, the linear spectrum of the potential can be all-
real, which is unusual [29, 30]. Note that this form of
the potential is equivalent to g2(x) + ig′(x) under a shift
g(x) + γ → g(x) and a gauge transformation to Eq. (1).
It is used in this article since it is more convenient to
induce a phase transition by varying the parameter γ
while keeping the function g(x) fixed. A more important
phenomenon with the potential (2) is that, Eq. (1) un-
der this potential admits continuous families of solitons
[29, 32, 33]. This is surprising since, in typical dissipative
systems, solitons exist as isolated solutions with discrete
power levels due to the requirement of balance between
gain and loss [37]. Dissipative but PT -symmetric sys-
tems admit soliton families with continuous power levels,
which is interesting [9, 14, 19–24]. However, the exis-
tence of such soliton families can be easily understood
due to the PT symmetry, which assures the balancing of
gain and loss for all PT -symmetric solitons [38]. Soli-
ton families in non-PT -symmetric systems, on the other
hand, are much less obvious, and their existence has yet
to be fully understood.
Solitons in Eq. (1) are of the form

Ψ(x, t) = e−iµtψ(x), (3)

where µ is a real propagation constant, and ψ(x) is a
localized function satisfying the equation

ψxx + µψ + V (x)ψ + σ|ψ|2ψ = 0. (4)

For the complex non-PT -symmetric potential (2), these
solitons exist as continuous families, and they can be
computed by various numerical methods such as the
squared-operator method and the Newton-conjugate-
gradient method [34]. To study their linear stability, we
perturb these solitons by infinitesimal normal modes,

Ψ(x, t) = e−iµt
[

ψ(x) + f1(x)e
λt + f∗

2
(x)eλ

∗t
]

, (5)

where |f1|, |f2| ≪ |ψ|. Substituting this perturbation
into Eq. (1) and linearizing, we obtain a linear-stability
eigenvalue problem

L

(

f1
f2

)

= λ

(

f1
f2

)

, (6)

where

L =

(

L11 L12

L∗
12

L∗
11

)

, (7)

and

L11 = i
[

∂xx + µ+ V (x) + 2σ|ψ|2
]

, L12 = iσψ2.

This eigenvalue problem can be computed by the Fourier
collocation method (for the full spectrum) or the Newton-
conjugate-gradient method (for individual discrete eigen-
values) [34]. If eigenvalues with positive real parts exist,
the soliton is linearly (spectrally) unstable; otherwise it
is linearly (spectrally) stable.
Symmetry properties of the linear-stability operator

L and its eigenvalues are important since they strongly
influence the stability results. If the potential V (x) is
real [i.e., when Eq. (1) is Hamiltonian], then L satisfies
the following two symmetry relations,

L∗ = σ1Lσ
−1

1
, (8)

L† = −σ3Lσ
−1

3
, (9)

where the superscript † represents the Hermitian (conju-
gate transpose) of a matrix operator, and

σ1 =

[

0 1
1 0

]

, σ3 =

[

1 0
0 −1

]

are the first and third Pauli spin matrices. The similarity
relation (8) shows that L∗ and L share the same spec-
trum. Then, since the spectrum of L∗ is also the complex
conjugate of the spectrum of L, we see that eigenvalues
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of L must come in conjugate pairs (λ, λ∗). The symme-
try relation (9) shows that the spectrum of L† is negative
of the spectrum of L. Since the spectrum of L† is also
complex conjugate of the spectrum of L, eigenvalues of
L then must come in pairs of (λ,−λ∗). Combining these
two eigenvalue symmetries, we conclude that for real po-
tentials (Hamiltonian systems), complex eigenvalues of L
must come in quartets (λ,−λ, λ∗,−λ∗), which is a well-
known fact. In the special case when the eigenvalue λ is
real or purely-imaginary, this quartet symmetry reduces
to a pair symmetry (λ,−λ).
If the potential V (x) is complex but PT -symmetric,

then the symmetry relation (8) persists, but the other
relation (9) breaks down. In this case, if the soliton ψ(x)
is also PT -symmetric, i.e., ψ∗(x) = ψ(−x), then another
symmetry relation

L∗ = −PLP−1 (10)

is valid, where P is the parity operator, i.e., Pf(x) ≡
f(−x). Utilizing the two symmetry relations (8) and
(10) and repeating the above arguments, we conclude
that for PT -symmetric solitons in PT -symmetric poten-
tials, complex eigenvalues of Lmust also come in quartets
(λ,−λ, λ∗,−λ∗). This fact has been pointed out in [39]
although it may not be widely known.
If the potential V (x) is complex and non-PT -

symmetric, the symmetry relation (8) still holds, but we
cannot see any additional symmetry for L. This sug-
gests that in this case, complex eigenvalues of L may
only appear in conjugate pairs (λ, λ∗), but not in quar-
tets. However, a remarkable discovery from our numerics
in the later text is that for non-PT -symmetric potentials
of the form (2), eigenvalues of L still appear as quar-
tets (λ,−λ, λ∗,−λ∗), just as in Hamiltonian and PT -
symmetric systems. This quartet eigenvalue symmetry
has important consequences on the stability of solitons,
which will be described later in this article.
Our stability analysis will be performed by numeri-

cally computing the spectrum of the linear-stability op-
erator L. This spectrum will be obtained by the Fourier-
collocation method [34]. Discrete eigenvalues in this
spectrum are further checked by the Newton-conjugate-
gradient method [34]. Both methods can yield eigen-
values with accuracy of 10−10 or higher. These linear-
stability results will also be corroborated by direct evo-
lution simulations of these solitons under initial random-
noise perturbations using the pseudo-spectral method
[34]. In our numerical examples, we take

g(x) = tanh 2(x+ 2.5)− tanh(x− 2.5), (11)

which is an asymmetric single-hump function. For this
choice of g(x), a phase transition occurs at γ = γc ≈
−0.1806, where the linear spectrum of the potential is

all-real when γ > γc and becomes partially complex when
γ < γc.

III. LINEAR STABILITY OF SOLITONS

BELOW PHASE TRANSITION

First, we consider the linear stability of soliton families
below phase transition. For this purpose, we take γ = 0.
The resulting potential V (x) and its linear spectrum are
displayed in Fig. 1. Notice that the real part of V (x)
is not even, and its imaginary part not odd, thus this
potential is non-PT -symmetric, but its spectrum is all-
real. In addition, this spectrum contains three discrete
eigenvalues,

µ1 ≈ −3.4484, µ2 ≈ −2.1899, µ3 ≈ −0.7044.
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FIG. 1: (Color online) The complex potential (2) with g(x)
given in (11) and γ = 0 (left) and its linear spectrum (right).

Continuous families of solitons can bifurcate out from
each of these three discrete eigenvalues under either sign
of nonlinearity. We first consider the soliton family bi-
furcating from the first (lowest) eigenvalue µ = µ1 under
focusing nonlinearity (σ = 1). Defining the power of
a soliton as P =

∫∞

−∞
|ψ|2dx, the power curve of this

soliton family is plotted in Fig. 2(a). At the marked
point of this power curve (with µ = −5), the ampli-
tude profile of the soliton is displayed in Fig. 2(b). It is
seen that this amplitude profile is single-humped. Since
this soliton family bifurcates from the lowest eigenvalue
µ1, we call this family of solitons fundamental solitons.
We have computed the linear-stability spectra for these
fundamental solitons, and found that their eigenvalues
all lie on the imaginary axis. Thus, these fundamental
solitons are linearly stable. As an example, the linear-
stability spectrum for the soliton of Fig. 2(b) is shown in
Fig. 2(c). This spectrum consists of three pairs of discrete
non-zero eigenvalues and the continuous spectrum, all on
the imaginary axis. Time evolution of this soliton for 200
time units under initial 1% random noise perturbations is
plotted in Fig. 2(d). It is seen that this soliton is robust
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FIG. 2: (Color online) (a) Power curve of fundamental soli-
tons (bifurcating from the eigenvalue µ1) below phase transi-
tion under focusing nonlinearity. (b) Amplitude profile of the
soliton at the marked point of the power curve. (c) Linear-
stability spectrum for the soliton in (b). (d) Time evolution
of the soliton in (b) under 1% random-noise perturbations.

against perturbations, consistent with its linear-stability
result.
Next, we consider the soliton family bifurcating from

the second eigenvalue µ = µ2 under focusing nonlinear-
ity. The power curve of this soliton family is displayed in
Fig. 3(a). At the marked points ‘c, d’ of this power curve
(with µ = −2.34 and −2.55 respectively), amplitude pro-
files of the solitons are shown in Fig. 3(b). These profiles
are double-humped, indicating that this family of soli-
tons are excited states. At low powers, these solitons are
linearly stable. This is evidenced by the linear-stability
spectrum shown in Fig. 3(c) for the lower-power soliton
in Fig. 3(b), where all eigenvalues are purely imaginary.
However, at higher powers, these excited-state solitons
become linearly unstable. This can be seen from the
linear-stability spectrum in Fig. 3(d) for the higher-power
soliton in Fig. 3(b). In this spectrum, a quartet of com-
plex eigenvalues appear, creating oscillatory instability.
To corroborate these linear-stability results, we have sim-
ulated the evolutions of the two solitons in Fig. 3(b) un-
der 1% random-noise perturbations, and the simulation
results are displayed in Fig. 3(e,f). The panel (e) shows
robust (stable) propagation, while the panel (f) shows
the onset of oscillatory instability, consistent with the
linear-stability results.
The change of linear stability in this family of excited-

state solitons occurs at µ = µc ≈ −2.440, where Pc ≈
0.925. This instability arises when two pairs of imaginary
eigenvalues bifurcate into a complex quartet. Below the
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FIG. 3: (Color online) (a) Power curve of excited-state soli-
tons (bifurcating from the eigenvalue µ2) below phase transi-
tion under focusing nonlinearity (solid blue indicates stability,
and dashed red indicates instability). (b) Amplitude profiles
of solitons at the marked points ‘c, d’ of the power curve
(lower for ‘c’ and upper for ‘d’). (c, d) Linear-stability spec-
tra for the lower and upper solitons in panel (b) respectively.
(e, f) Time evolutions of the lower and upper solitons in panel
(b) under 1% random-noise perturbations respectively.

critical power Pc, the stability spectrum of the soliton
contains two pairs of imaginary eigenvalues (±iω1,±iω2)
[see Fig. 3(c)]. As the soliton’s power increases to Pc,
eigenvalues ±iω1 and ±iω2 approach each other on the
imaginary axis. At the critical power Pc, these imag-
inary eigenvalues coalesce and form exceptional points
with geometric multiplicity one and algebraic multiplic-
ity two. Above the critical power Pc, these exceptional
points bifurcate off the imaginary axis, creating a quartet
of complex eigenvalues (and hence oscillatory instability)
[see Fig. 3(d)]. This instability mechanism is remarkably
similar to Hamiltonian-Hopf bifurcations in Hamiltonian
systems [such as when the potential V (x) in Eq. (1)
is real] [40, 41], even though the present system is non-
Hamiltonian. Thus, we call this change of linear stability
pseudo-Hamiltonian-Hopf bifurcation.

We note that pseudo-Hamiltonian-Hopf bifurcations
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can appear in PT -symmetric systems as well. This fact
has not been reported in the literature yet, but we have
seen it in our numerics of PT -symmetric systems [such
as in Eq. (1) with a PT -symmetric potential].
A remarkable feature in the above stability results

is that, although Eq. (1) in our consideration is non-
Hamiltonian and non-PT -symmetric, and the gain and
loss in the system are rather large, stability behaviors of
solitons in our system are analogous to those in Hamil-
tonian systems. Examples include the stability of fun-
damental solitons and pseudo-Hamiltonian-Hopf bifur-
cations of excited-state solitons [40–42]. However, dif-
ferences in behaviors between our system and Hamilto-
nian systems also exist. For instance, in our system, low-
amplitude fundamental solitons can be linearly unstable,
and pseudo-Hamiltonian-Hopf bifurcations can occur on
fundamental solitons at higher powers. These phenom-
ena would not happen in Hamiltonian systems. These
differences will be shown in the next section.

IV. LINEAR STABILITY OF SOLITONS ABOVE

PHASE TRANSITION

Now we consider the stability of solitons above phase
transition. For this purpose, we take γ = −0.3. The
resulting potential (2) is displayed in Fig. 4. Clearly, this
potential is also non-PT -symmetric. When compared to
the potential in Fig. 1, the real part of this potential is
significantly lower, while its imaginary part remains the
same. The linear spectrum of this potential, displayed
also in Fig. 4, shows the presence of a pair of complex
eigenvalues, indicating that this potential is above phase
transition. It is noted that for complex potentials of the
form (2), complex eigenvalues in the linear spectrum of
the potential appear as conjugate pairs (µ, µ∗) [30]. This
eigenvalue symmetry is clearly visible in Fig. 4.
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FIG. 4: (Color online) The complex potential (2) with g(x)
given in (11) and γ = −0.3 (left) and its linear spectrum
(right).

In addition to the pair of complex eigenvalues, the
spectrum in Fig. 4 also contains two discrete real eigen-

values,

µ1 ≈ −2.2740, µ2 ≈ −1.0787.

From these real eigenvalues, soliton families can bifurcate
out under either sign of nonlinearity. Here, we consider
the soliton family bifurcating from the lowest eigenvalue
µ1 under focusing nonlinearity (σ = 1). The power curve
of this soliton family is plotted in Fig. 5(a), and the soli-
tons at the marked points ‘c, d’ of the power curve, with
µ = −2.5 and −3.3 respectively, are shown in Fig. 5(b).
These solitons have a single-hump amplitude profile, and
are fundamental solitons due to their bifurcation from
the lowest eigenvalue µ1.
At low powers, these solitons are linearly unstable be-

cause the underlying potential is above phase transition.
This is evidenced in Fig. 5(c), where the linear-stability
spectrum for the lower-power soliton in Fig. 5(b) is dis-
played. This instability is due to a quartet of complex
eigenvalues (λ0, λ

∗
0
,−λ0,−λ

∗
0
), which are directly related

to the pair of complex eigenvalues in the linear spectrum
of the potential in Fig. 4. However, at higher powers,
these solitons become linearly stable. This is evidenced
in Fig. 5(d), where the linear-stability spectrum for the
higher-power soliton of Fig. 5(b) is plotted. All eigenval-
ues in this spectrum are on the imaginary axis, indicating
this soliton is linearly stable. The change of stability oc-
curs at µ = µc ≈ −2.86, where Pc ≈ 1.74.
The reason for this stabilization of solitons at higher

powers is that, as the power increases toward the
critical power Pc, the quartet of complex eigenvalues
(λ0, λ

∗
0
,−λ0,−λ

∗
0
) move toward the imaginary axis. At

the critical power Pc, these complex eigenvalues collide
on the imaginary axis and create a pair of exceptional
points. Above the critical power, these exceptional points
split along the imaginary axis and become two pairs of
imaginary eigenvalues {±iω1,±iω2}, thus the solitons be-
come linearly stable. This stabilization process is more
clearly depicted in Fig. 5(e,f), where the real and imagi-
nary parts of the relevant linear-stability eigenvalues are
plotted versus the propagation constant µ. This stabi-
lization is a reverse pseudo-Hamiltonian-Hopf bifurcation
as the power rises.
In this example, fundamental solitons at low powers

are linearly unstable, and a reverse pseudo-Hamiltonian-
Hopf bifurcation is seen. These phenomena will not oc-
cur in Hamiltonian systems, such as Eq. (1) with a
real potential. In such Hamiltonian systems, fundamen-
tal solitons at low amplitudes are always linearly and
nonlinearly stable because their Hamiltonian-Krein index
is zero [42]. In addition, Hamiltonian-Hopf bifurcations
cannot occur on fundamental solitons of any powers, be-
cause there are no imaginary eigenvalues with negative
Krein signatures, but such imaginary eigenvalues are nec-
essary for Hamiltonian-Hopf bifurcations [42].
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FIG. 5: (Color online) (a) Power curve of fundamental soli-
tons (bifurcating from the eigenvalue µ1) above phase transi-
tion under focusing nonlinearity (solid blue indicates stability,
and dashed red indicates instability). (b) Amplitude profiles
of solitons at the marked points ‘c, d’ of the power curve
(lower for ‘c’ and upper for ‘d’). (c, d) Linear-stability spec-
tra for the lower and upper solitons in panel (b) respectively.
(e, f) Real and imaginary parts of linear-stability eigenvalues
λ versus the propagation constant µ (the continuous spectrum
is shown in light blue).

V. QUARTET EIGENVALUE SYMMETRY AND

ITS CONSEQUENCES

The most surprising finding of the above stability
analysis is that, linear-stability eigenvalues of solitons
in non-PT -symmetric potentials (2) appear in quartets
(λ, λ∗,−λ,−λ∗), i.e., if λ is an eigenvalue of the opera-
tor L, so are λ∗,−λ and −λ∗. As we have pointed out
in Sec. II, in non-PT -symmetric potentials (2), linear-
stability eigenvalues still appear in pairs (λ, λ∗), i.e., the
spectrum is symmetric with respect to the real axis. But
we cannot see another symmetry of the operator L which
assures the appearance of eigenvalues in (λ,−λ∗) pairs,
i.e., the spectrum’s symmetry with respect to the imag-
inary axis. Because of this, we do not anticipate the
quartet eigenvalue symmetry in the spectrum of L. How-
ever, our numerical results in the earlier text show that

these eigenvalues do come in quartets of (λ, λ∗,−λ,−λ∗),
which is very remarkable.
The visual evidence of this quartet eigenvalue symme-

try can already be seen in the stability spectra of Figs.
2, 3 and 5, where the spectra are always symmetric with
respect to both the real and imaginary axes. Here, we
establish this eigenvalue symmetry quantitatively. Since
the (λ, λ∗) symmetry is already known, we focus on the
(λ,−λ∗) symmetry below. To establish this latter sym-
metry, we first consider the two upper complex eigenval-
ues in Fig. 3(d). Numerical computations give these two
eigenvalues (accurate to all twelve digits) as

λ1 = −0.08220738069...+ 1.43969109965...i, (12)

λ2 = 0.08220738069...+ 1.43969109965...i. (13)

Clearly, λ2 = −λ∗
1
to numerical accuracy. Using multi-

precision computation, we have further checked that λ2
and −λ∗

1
match each other to many more digits. The

eigenfunctions (f1, f2) of these two eigenvalues are plot-
ted in Fig. 6. Notice that these two eigenfunctions are
not related to each other by any obvious symmetry. How-
ever, their eigenvalues are related as λ2 = −λ∗

1
, which is

quite intriguing.
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FIG. 6: (Color online) Eigenfunctions (f1, f2) for the upper
two complex eigenvalues in the spectrum of Fig. 3(d), with
λ = λ1 in (a) and λ = λ2 in (b), where λ1,2 are given in
(12)-(13). Solid blue lines are |f1| and dashed red lines |f2|.

As another example, we consider the two upper com-
plex eigenvalues in the spectrum of Fig. 5(c). Numerical
computations give these two eigenvalues (accurate to all
twelve digits) as

λ1 = −0.12447936624...+ 2.57218047717...i,

λ2 = 0.12447936624...+ 2.57218047717...i.

Again, λ2 = −λ∗
1
to numerical accuracy.

We have examined the other eigenvalues in the spectra
of Figs. 2, 3 and 5, and found them to lie exactly on the
imaginary axis (to high numerical accuracy). Thus, these
spectra are indeed symmetric with respect to both the
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real and imaginary axes, confirming the quartet eigen-
value symmetry of (λ, λ∗,−λ,−λ∗).

In addition to the stability spectra in Figs. 2, 3 and 5,
we have examined the spectra of solitons in other non-
PT -symmetric potentials of the form (2), which are not
included in this article. Those stability spectra respect
the quartet eigenvalue symmetry as well.

This quartet eigenvalue symmetry in the linear-
stability spectrum has far reaching consequences on the
linear-stability behaviors of solitons. First, it assures the
linear stability of low-power fundamental solitons (bifur-
cating from the lowest discrete eigenvalue of the poten-
tial) as long as the potential is below phase transition.
This follows from the fact that a potential which is below
phase transition has all-real spectra and its discrete non-
zero eigenvalues can be assumed to be all simple (which
is the generic case). Then, in the limit of zero ampli-
tude of fundamental solitons, the linear-stability spec-
trum (of operator L) is purely imaginary, and all dis-
crete non-zero eigenvalues of L are simple. In addition,
no discrete eigenvalues are embedded inside the contin-
uous spectrum. When the amplitude of the soliton is
non-zero but small, by virtue of the eigenvalue continu-
ity and quartet eigenvalue symmetry, the simple discrete
imaginary eigenvalues of L cannot move off the imaginary
axis. Meanwhile, the zero eigenvalue and the continuous
spectrum do not change. Thus, the spectrum remains on
the imaginary axis, and low-amplitude fundamental soli-
tons are linearly stable below phase transition. This an-
alytically explains our numerical findings for low-power
solitons in Fig. 2.

By a similar argument, we can also show that, in the
presence of this quartet eigenvalue symmetry, low-power
excited-state solitons (bifurcating from the higher dis-
crete real eigenvalues µk of the potential with k > 1) are
also linearly stable if the potential is below phase transi-
tion, and none of i(µk − µj) (j 6= k) is embedded inside
the continuous spectrum of operator L when ψ(x) = 0.
For the example in Fig. 3, the latter condition means
|µ2−µj | < |µ2| (j = 1, 3), which is satisfied. This analyt-
ically explains the linear stability of low-power excited-
state solitons below phase transition in Fig. 3.

Another consequence of this quartet eigenvalue sym-
metry is that it makes pseudo-Hamiltonian-Hopf bifur-
cation possible in the non-Hamiltonian system (1). If
the linear-stability spectrum contains two pairs of simple
imaginary eigenvalues {±iω1, iω2} for a certain soliton,
then when the propagation constant of the soliton contin-
uously changes, these simple imaginary eigenvalues have
to stay on the imaginary axis due to the quartet eigen-
value symmetry. In this case, if these eigenvalues move
toward each other and collide (ω1 → ω2), they could
leave the imaginary axis and become a quartet of com-
plex eigenvalues, creating a pseudo-Hamiltonian-Hopf bi-

furcation. This is exactly what happens in Figs. 3 and
Fig. 5.
One more consequence of this quartet eigenvalue sym-

metry is that it closely mimics that of solitons in Hamil-
tonian systems and of PT -symmetric solitons in PT -
symmetric systems (see Sec. II). This implies that non-
PT -symmetric solitons in complex potentials (2) are
likely to share many stability properties of those other
systems, as the results of this paper have shown.

VI. SUMMARY AND DISCUSSION

In this paper, we have numerically analyzed the lin-
ear stability of soliton families in 1D NLS equations
(1) with non-PT -symmetric complex potentials (2). We
have shown that these solitons can be linearly stable in
a wide range of parameter values both below and above
phase transition. More importantly, we have discovered
that linear-stability eigenvalues of these solitons appear
in quartets (λ,−λ, λ∗,−λ∗), similar to conservative sys-
tems and PT -symmetric systems. This quartet eigen-
value symmetry is very surprising for non-PT -symmetric
systems, and it facilitates the existence of stable soli-
tons and makes their pseudo-Hamiltonian-Hopf bifurca-
tion possible.
A question closely related to the subject of this pa-

per is the linear stability of asymmetric solitons in PT -
symmetric potentials. Earlier work has shown that in
PT -symmetric potentials of the same form (2) [where
g(x) is now an even function], symmetry breaking of soli-
tons can occur [43]. That is, from the base branch of
PT -symmetric solitons, a branch of asymmetric solitons
can bifurcate out. The linearization operator L of these
asymmetric solitons only admits the symmetry (8), as far
as one can see, similar to the present case. This L sym-
metry only assures its eigenvalue symmetry of (λ, λ∗).
However, our numerical studies (not shown in this arti-
cle) have revealed that, their linear-stability eigenvalues
also appear in quartets of (λ,−λ, λ∗,−λ∗), closely resem-
bling the findings in this article for non-PT -symmetric
potentials (2). This quartet eigenvalue symmetry for
asymmetric solitons in PT -symmetric potentials (2) is
equally surprising.
Another question closely related to the subject of this

paper is the linear stability of two-dimensional solitons
in non-PT -symmetric complex potentials. Earlier work
has shown that in two-dimensional non-PT -symmetric
complex potentials of certain forms, continuous families
of solitons can also bifurcate out from linear modes [39].
Our numerical studies (not included in this article) have
found that linear-stability eigenvalues of those 2D soli-
tons only possess the conjugate-pair symmetry of (λ, λ∗),
but NOT the quartet symmetry of (λ,−λ, λ∗,−λ∗). This
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result echoes that for linear-stability eigenvalues of asym-
metric solitons in 2D partially-PT -symmetric potentials
[39]. These results indicate that the quartet eigenvalue
symmetry depends on the spatial dimension of the prob-
lem.
Many questions are still open regarding the findings

of this paper. The most important question is why the
quartet eigenvalue symmetry appears for linear-stability
eigenvalues of solitons in non-PT -symmetric complex po-
tentials (2). A related question is why this quartet eigen-
value symmetry also appears for asymmetric solitons in
PT -symmetric potentials (2). In both cases, the linear-
stability operator L seems to only admit the symmetry
(8). Whether this operator also admits another hid-
den symmetry which assures the eigenvalue symmetry
of (λ,−λ∗) is an open question. If such a hidden L sym-
metry cannot be found, then how to explain the quartet
eigenvalue symmetry of L remains to be seen.
Another important open question concerns the nonlin-

ear stability of solitons in non-PT -symmetric complex
potentials (2). In this paper, our focus was the linear
(spectral) stability of these solitons, and we showed that
these solitons can be linearly stable in a wide range of pa-
rameter values. However, it is well known that solitons
can be nonlinearly unstable even if they are linearly sta-
ble. For instance, in Hamiltonian systems, linearly-stable
solitons are nonlinearly unstable if their linear-stability
spectrum contains imaginary eigenvalues with negative

Krein signatures [41, 42, 44] (these modes with negative
Krein signatures are often called negative-energy modes
in the physics literature [45]). In our non-Hamiltonian
system (1), whether these linearly-stable solitons are non-
linearly stable or not is still an open question. One might
think that robust evolution simulations of such solitons
under random-noise perturbations in Figs. 2(d) and 3(e)
should indicate that those solitons are also nonlinearly
stable. Such a conclusion is too hasty, since nonlinear in-
stability is often slower and may take longer time to de-
velop [41, 44]. Regarding the issue of nonlinear stability,
we should add that this question is also open for solitons
in PT -symmetric systems. A little progress has been
made in this direction. In a linear Schrödinger equation
with a PT -symmetric potential, which arises when con-
sidering the stability of the zero state in Eq. (1), a PT -
Krein signature theory was developed recently [46]. This
theory can be readily extended to the linear Schrödinger
equation with a non-PT -symmetric potential of the form
(2) [30, 46]. Whether a similar theory can be developed
for solitons in the non-Hamiltonian system (1) remains
to be seen.
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