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We are interested in the connection between a metastable continuous state space Markov pro-
cess (satisfying e.g. the Langevin or overdamped Langevin equation) and a jump Markov process
in a discrete state space. More precisely, we use the notion of quasi-stationary distribution within
a metastable state for the continuous state space Markov process to parametrize the exit event
from the state. This approach is useful to analyze and justify methods which use the jump Markov
process underlying a metastable dynamics as a support to efficiently sample the state-to-state
dynamics (accelerated dynamics techniques). Moreover, it is possible by this approach to quan-
tify the error on the exit event when the parametrization of the jump Markov model is based on
the Eyring-Kramers formula. This therefore provides a mathematical framework to justify the use
of transition state theory and the Eyring-Kramers formula to build kinetic Monte Carlo or Markov
state models.

1 Introduction and motivation
Many theoretical studies and numerical methods in materials sci-
ence1, biology2 and chemistry, aim at modelling the dynamics
at the atomic level as a jump Markov process between states.
Our objective in this article is to discuss the relationship between
such a mesoscopic model (a Markov process over a discrete state
space) and the standard microscopic full-atom description (typi-
cally a Markov process over a continuous state space, namely a
molecular dynamics simulation).

The objectives of a modelling using a jump Markov process
rather than a detailed microscopic description at the atomic level
are numerous. From a modelling viewpoint, new insights can be
gained by building coarse-grained models, that are easier to han-
dle. From a numerical viewpoint, the hope is to be able to build
the jump Markov process from short simulations of the full-atom
dynamics. Moreover, once the parametrization is done, it is pos-
sible to simulate the system over much longer timescales than the
time horizons attained by standard molecular dynamics, either by
using directly the jump Markov process, or as a support to accel-
erate molecular dynamics3–5. It is also possible to use dedicated
algorithms to extract from the graph associated with the jump
Markov process the most important features of the dynamics (for
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example quasi-invariant sets and essential timescales using large
deviation theory6), see for example7,8.

In order to parametrize the jump Markov process, one needs to
define rates from one state to another. The concept of jump rate
between two states is one of the fundamental notions in the mod-
elling of materials. Many papers have been devoted to the rig-
orous evaluation of jump rates from a full-atom description. The
most famous formula is probably the rate derived in the harmonic
transition state theory9–15, which gives an explicit expression for
the rate in terms of the underlying potential energy function (see
the Eyring-Kramers formula (7) below). See for example the re-
view paper16.

Let us now present the two models: the jump Markov model,
and the full-atom model, before discussing how the latter can be
related to the former.

1.1 Jump Markov models

Jump Markov models are continuous-time Markov processes with
values in a discrete state space. In the context of molecular
modelling, they are known as Markov state models2,17 or kinetic
Monte Carlo models1. They consist of a collection of states that
we can assume to be indexed by integers, and rates (ki, j)i6= j∈N
which are associated with transitions between these states. For
a state i ∈ N, the states j such that ki, j 6= 0 are the neighboring
states of i denoted in the following by

Ni = { j ∈ N, ki, j 6= 0}. (1)
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One can thus think of a jump Markov model as a graph: the states
are the vertices, and an oriented edge between two vertices i and
j indicates that ki, j 6= 0.

Starting at time 0 from a state Y0 ∈ N, the model consists in
iterating the following two steps over n ∈ N: Given Yn,

• Sample the residence time Tn in Yn as an exponential random
variable with parameter ∑ j∈NYn

kYn, j:

∀t ≥ 0, P(Tn ≥ t|Yn = i) = exp

(
−
[

∑
j∈Ni

ki, j

]
t

)
. (2)

• Sample independently from Tn the next visited state Yn+1

starting from Yn using the following law

∀ j ∈Ni, P(Yn+1 = j|Yn = i) =
ki, j

∑ j∈Ni
ki, j

. (3)

The associated continuous-time process (Zt)t≥0 with values in N
defined by:

∀n≥ 0, ∀t ∈
[

n−1

∑
m=0

Tm,
n

∑
m=0

Tm

)
, Zt = Yn (4)

(with the convention ∑
−1
m=0 = 0) is then a (continous-time) jump

Markov process.

1.2 Microscopic dynamics

At the atomic level, the basic ingredient is a potential energy func-
tion V : Rd →R which to a set of positions of atoms in x ∈Rd (the
dimension d is typically 3 times the number of atoms) associates
an energy V (x). In all the following, we assume that V is a smooth
Morse function: for each x∈Rd , if x is a critical point of V (namely
if ∇V (x) = 0), then the Hessian ∇2V (x) of V at point x is a non-
singular matrix. From this function V , dynamics are built such as
the Langevin dynamics:

dqt = M−1 pt dt

d pt =−∇V (qt)dt− γM−1 pt dt +
√

2γβ−1dWt

(5)

or the overdamped Langevin dynamics:

dXt =−∇V (Xt)dt +
√

2β−1dWt . (6)

Here, M ∈ Rd×d is the mass matrix, γ > 0 is the friction param-
eter, β−1 = kBT > 0 is the inverse temperature and Wt ∈ Rd is a
d-dimensional Brownian motion. The Langevin dynamics gives
the evolution of the positions qt ∈ Rd and the momenta pt ∈ Rd .
The overdamped Langevin dynamics is in position space: Xt ∈Rd .
The overdamped Langevin dynamics is derived from the Langevin
dynamics in the large friction limit and using a rescaling in time:
assuming M = Id for simplicity, in the limit γ → ∞, (qγt)t≥0 con-
verges to (Xt)t≥0 (see for example Section 2.2.4 in18).

1.3 From a microscopic dynamics to a jump Markov dynam-
ics

Let us now discuss how one can relate the microscopic dynam-
ics (5) or (6) to the jump Markov model (4). The basic obser-
vation which justifies why this question is relevant is the fol-
lowing. It is observed that, for applications in biology, material
sciences or chemistry, the microscopic dynamics (5) or (6) are
metastable. This means that the stochastic processes (qt)t≥0 or
(Xt)t≥0 remain trapped for a long time in some region of the con-
figurational space (called a metastable region) before hopping to
another metastable region. Because the system remains for very
long times in a metastable region before exiting, the hope is that
it loses the memory of the way it enters, so that the exit event
from this region can be modelled as one move of a jump Markov
process such as (4).

Let us now consider a subset S⊂Rd of the configurational space
for the microscopic dynamics. Positions in S are associated with
one of the discrete state in N of (Zt)t≥0, say the state 0 without
loss of generality. If S is metastable (in a sense to be made pre-
cise), it should be possible to justify the fact that the exit event
can be modeled using a jump Markov process, and to compute
the associated exit rates (k0, j) j∈N0 from the state 0 to the neigh-
boring states using the dynamics (5) or (6). The aim of this paper
is precisely to discuss these questions and in particular to prove
rigorously under which assumption the Eyring-Kramers formula
can be used to estimate the exit rates (k0, j) j∈N0 , namely:

∀ j ∈N0, k0, j = ν0, j exp(−β [V (z j)−V (x1)]) (7)

where ν0, j > 0 is a prefactor, x1 = argminx∈S V (x) and z j =

argminz∈∂S j
V (z) where ∂S j ⊂ ∂S denotes the part of the boundary

∂S which connects the state S (numbered 0) with the subset of Rd

associated with state numbered j ∈N0. See Figure 1.

The Quasi-Stationary Distribution Parallel Replica kMC and HTST Conclusion

The Eyring Kramers law and HTST
In practice, kMC models are parameterized using HTST.

x1

z1

z2

z3

z4

∂S1

∂S2

∂S3∂S4

We assume in the following V (z1) < V (z2) < . . . < V (zI ).

Eyring Kramers law (HTST): k(i) = Ai exp (−β(V (zi ) − V (x1)))
where Ai is a prefactor depending on V at zi and x1.

Fig. 1 The domain S. The boundary ∂S is divided into 4 subdomains
(∂Si)1≤i≤4, which are the common boundaries with the neighboring
states.

The prefactor ν0, j depends on the dynamic under consideration
and on V around x1 and z j. Let us give a few examples. If S is
taken as the basin of attraction of x1 for the dynamics ẋ =−∇V (x)
so that the points z j are order one saddle points, the prefactor
writes for the Langevin dynamics (5) (assuming again M = Id for
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simplicity):

ν
L
0, j =

1
4π

(√
γ2 +4|λ−(z j)|− γ

) √
det(∇2V )(x1)√
|det(∇2V )(z j)|

(8)

where, we recall, ∇2V is the Hessian of V , and λ−(z j) denotes
the negative eigenvalue of ∇2V (z j). This formula was derived
by Kramers in14 in a one-dimensional situation. The equivalent
formula for the overdamped Langevin dynamics (6) is:

ν
OL
0, j =

1
2π
|λ−(z j)|

√
det(∇2V )(x1)√
|det(∇2V )(z j)|

. (9)

Notice that limγ→∞ γνL
0, j = νOL

0, j , as expected from the rescaling in
time used to go from Langevin to overdamped Langevin (see Sec-
tion 1.2). The formula (9) has again been obtained by Kramers
in14, but also by many authors previously, see the exhaustive re-
view of the literature reported in16. In Section 4.1 below, we
will review mathematical results where formula (8)–(9) are rig-
orously derived.

In practice, there are thus two possible approaches to deter-
mine the rates (ki, j). On the one hand, when the number of
states is not too large, one can precisely study the transitions
between metastable states for the microscopic dynamics using
dedicated algorithms19,20: the nudged elastic band21, the string
method22,23 and the max flux approach24 aim at finding one typ-
ical representative path. Transition path sampling methods25,26

sample transition paths starting from an initial guessed trajectory,
and using a Metropolis Hastings algorithm in path space. Other
approaches aim at sampling the ensemble of paths joining two
metastable states, without any initial guess: see the Adaptive Mul-
tilevel Splitting method27,28, transition interface sampling29,30,
forward flux sampling31,32, milestoning techniques33–35 and the
associated Transition Path Theory which gives a nice mathemati-
cal framework36–38. On the other hand, if the number of states is
very large, it may be too cumbersome to sample all the transition
paths, and one can use instead the Eyring-Kramers formula (7),
which requires to look for the local minima and the order one
saddle points of V , see for example7. Algorithms to look for sad-
dle points include the dimer method39,40, activation relaxation
techniques41,42, or the gentlest ascent dynamics43, for example.

The aim of this paper is threefold. First, we would like to give
a mathematical setting to quantify the metastability of a domain
S⊂Rd for a microscopic dynamics such as (5) or (6), and to rigor-
ously justify the fact that for a metastable domain, the exit event
can be modeled using a jump process such as (4). This question is
addressed in Section 2, where we introduce the notion of quasi-
stationary distribution. Second, we explain in Section 3 how this
framework can be used to analyze algorithms which have been
proposed by A.F. Voter, to accelerate the sampling of the state-to-
state dynamics using the underlying jump Markov process. We
will discuss in particular the Parallel Replica algorithm4. Both
these aspects were already presented by the second author in
previous works, see for example the review paper44. The main
novelty of this article is in Section 4, which is devoted to a justi-

fication of the use of the Eyring-Kramers formula (7) in order to
parametrize jump Markov models.

Before getting to the heart of the matter, let us make two pre-
liminary remarks. First, the objective of this paper is to give a self-
contained overview of the interest of using the quasi-stationary
distribution to analyze metastable processes. For the sake of con-
ciseness, we therefore do not provide extensive proofs of the re-
sults we present, but we give the relevant references when nec-
essary. Second, we will concentrate in the following on the over-
damped Langevin dynamics (6) when presenting mathematical
results. All the algorithms presented below equally apply to (and
are actually used on) the Langevin dynamics (5). As will be ex-
plained below, the notion of quasi-stationary distribution which is
the cornerstone of our analysis is also well defined for Langevin
dynamics. However, the mathematical analysis of Section 4 is for
the moment restricted to the overdamped Langevin dynamics (6).

2 Metastable state and quasi-stationary dis-
tribution

The setting in this section is the following. We consider the
overdamped Langevin dynamics (6) for simplicity∗ and a subset
S ⊂ Rd which is assumed to be bounded and smooth. We would
like to first characterize the fact that S is a metastable region for
the dynamics. Roughly speaking, metastability means that the
local equilibration time within S is much smaller than the exit
time from S. In order to approximate the original dynamics by
a jump Markov model, we need such a separation of timescales
(see the discussion in Section 3.4 on how to take into account
non-Markovian features). Our first task is to give a precise mean-
ing to that. Then, if S is metastable, we would like to study the
exit event from S, namely the exit time and the exit point from S,
and to see if it can be related to the exit event for a jump Markov
model (see (2)–(3)). The analysis will use the notion of quasi-
stationary distribution (QSD), that we now introduce.

2.1 Definition of the QSD
Consider the first exit time from S:

τS = inf{t ≥ 0, Xt 6∈ S},

where (Xt)t≥0 follows the overdamped Langevin dynamics (6).
A probability measure νS with support in S is called a QSD for

the Markov process (Xt)t≥0 if and only if

νS(A) =

∫
S
Px(Xt ∈ A, t < τS)νS(dx)∫

S
Px(t < τS)νS(dx)

, ∀t > 0, ∀A⊂ S. (10)

Here and in the following, Px denotes the probability measure
under which X0 = x. In other words, νS is a QSD if, when X0 is
distributed according to νS, the law of Xt , conditional on (Xs)0≤s≤t

remaining in the state S, is still νS, for all positive t.
The QSD satisfies three properties which will be crucial in the

∗The existence of the QSD and the convergence of the conditioned process towards
the QSD for the Langevin process (5) follows from the recent paper 45.
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following. We refer for example to46 for detailed proofs of these
results and to47 for more general results on QSDs.

2.2 First property: definition of a metastable state

Let (Xt)t≥0 follow the dynamics (6) with an initial condition X0

distributed according to a distribution µ0 with support in S. Then
there exists a probability distribution νS with support in S such
that, for any initial distribution µ0 with support in S,

lim
t→∞

Law(Xt |τS > t) = νS. (11)

The distribution νS is the QSD associated with S.
A consequence of this proposition is the existence and unique-

ness of the QSD. The QSD is the long-time limit of the law of the
(time marginal of the) process conditioned to stay in the state S: it
can be seen as a ‘local ergodic measure’ for the stochastic process
in S.

This proposition gives a first intuition to properly define a
metastable state. A metastable state is a state such that the typ-
ical exit time is much larger than the local equilibration time,
namely the time to observe the convergence to the QSD in (11).
We will explain below how to quantify this timescale discrep-
ancy (see (15)) by identifying the rate of convergence in (11)
(see (14)).

2.3 Second property: eigenvalue problem

Let L = −∇V ·∇+β−1∆ be the infinitesimal generator of (Xt)t≥0

(satisfying (6)). Let us consider the first eigenvalue and eigen-
function associated with the adjoint operator L† = div(∇V +

β−1∇) with homogeneous Dirichlet boundary condition on ∂S:
L†u1 =−λ1u1 on S,

u1 = 0 on ∂S.
(12)

Then, the QSD νS associated with S satisfies

dνS =
u1(x)dx∫
S

u1(x)dx

where dx denotes the Lebesgue measure on S.
Notice that L† is a negative operator in L2(eβV ) so that λ1 > 0.

Moreover, it follows from general results on the first eigenfunc-
tion of elliptic operators that u1 has a sign on S, so that one can
choose without loss of generality u1 > 0.

The QSD thus has a density with respect to Lebesgue measure,
which is simply the ground state of the Fokker–Planck operator
L† associated with the dynamics with absorbing boundary condi-
tions. This will be crucial in order to analyze the Eyring-Kramers
formula in Section 4.

2.4 Third property: the exit event

Finally, the third property of the QSD concerns the exit event
starting from the QSD. Let us assume that X0 is distributed ac-
cording to the QSD νS in S. Then the law of the pair (τS,XτS) (the
first exit time and the first exit point) is fully characterized by

the following properties: (i) τS is exponentially distributed with
parameter λ1 (defined in (12)); (ii) τS is independent of XτS ; (iii)
The law of XτS is the following: for any bounded measurable func-
tion ϕ : ∂S→ R,

EνS(ϕ(XτS)) =−

∫
∂S

ϕ ∂nu1 dσ

βλ1

∫
S

u1(x)dx
, (13)

where σ denotes the Lebesgue measure on ∂S and ∂nu1 = ∇u1 ·n
denotes the outward normal derivative of u1 (defined in (12)) on
∂S. The superscript νS in EνS indicates that the initial condition
X0 is assumed to be distributed according to νS.

2.5 Error estimate on the exit event

We can now state a result concerning the error made when ap-
proximating the exit event of the process which remains for a
long time in S by the exit event of the process starting from the
QSD. The following result is proven in46. Let (Xt)t≥0 satisfy (6)
with X0 ∈ S. Introduce the first two eigenvalues −λ2 <−λ1 < 0 of
the operator L† on S with homogeneous Dirichlet boundary con-
ditions on ∂S (see Section 2.3). Then there exists a constant C > 0
(which depends on the law of X0), such that, for all t ≥ C

(λ2−λ1)
,

‖L (τS− t,XτS |τS > t)−L (τS,XτS |X0 ∼ νS)‖TV ≤Ce−(λ2−λ1)t

(14)
where

‖L (τS− t,XτS |τS > t)−L (τS,XτS |X0 ∼ νS)‖TV

= sup
f ,‖ f‖L∞≤1

∣∣E( f (τS− t,XτS)|τS > t)−EνS( f (τS,XτS))
∣∣

denotes the total variation norm of the difference between the
law of (τS− t,XτS) conditioned to τS > t (for any initial condition
X0 ∈ S), and the law of (τS,XτS) when X0 is distributed according
to νS. The supremum is taken over all bounded functions f :
R+×∂S→ R, with L∞-norm smaller than one.

This gives a way to quantify the local equilibration time men-
tioned in the introduction of Section 2, which is the typical time to
get the convergence in (11): it is of order 1/(λ2−λ1). Of course,
this is not a very practical result since computing the eigenvalues
λ1 and λ2 is in general impossible. We will discuss in Section 3.3
a practical way to estimate this time.

As a consequence, this result also gives us a way to de-
fine a metastable state: the local equilibration time is of order
1/(λ2−λ1), the exit time is of order 1/λ1 and thus, the state S is
metastable if

1
λ1
� 1

λ2−λ1
. (15)

2.6 A first discussion on QSD and jump Markov model

Let us now go back to our discussion on the link between the
overdamped Langevin dynamics (6) and the jump Markov dy-
namics (4). Using the first property 2.2, if the process remains in
S for a long time, then it is approximately distributed according to
the QSD, and the error can be quantified thanks to (14). There-
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fore, to study the exit from S, it is relevant to consider a process
starting from the QSD νS in S. Then, the third property 2.4 shows
that the exit event can indeed be identified with one step of a
Markov jump process since τS is exponentially distributed and in-
dependent of XτS , which are the basic requirements of a move of
a Markov jump process (see Section 1.1).

In other words, the QSD νS is the natural initial distribution to
choose in a metastable state S in order to parametrize an under-
lying jump Markov model.

In order to be more precise, let us assume that the state S is sur-
rounded by I neighboring states. The boundary ∂S is then divided
into I disjoint subsets (∂Si)i=1,...,I , each of them associated with an
exit towards one of the neighboring states, which we assume to
be numbered by 1, . . . , I without loss of generality: N0 = {1, . . . , I}
(see Figure 1 for a situation where I = 4). The exit event from S is
characterized by the pair (τS,I ), where I is a random variable
which gives the next visited state:

for i = 1, . . . , I, {I = i}= {XτS ∈ ∂Si}.

Notice that τS and I are by construction independent random
variables. The jump Markov model is then parametrized as fol-
lows. Introduce (see Equation (13) for the exit point distribution)

p(i) = P(XτS ∈ ∂Si) =−

∫
∂Si

∂nu1 dσ

βλ1

∫
S

u1(x)dx
, for i = 1, . . . , I. (16)

For each exit region ∂Si, let us define the corresponding rate

for i = 1, . . . , I, k0,i = λ1 p(i). (17)

Now, one can check that

• The exit time τS is exponentially distributed with parameter
∑i∈N0 k0,i, in accordance with (2).

• The next visited state is I , independent of τS and with law:
for j ∈N0, P(I = j) = k0, j

∑i∈N0
k0,i

, in accordance with (3).

Let us emphasize again that τS and XτS are independent random
variables, which is a crucial property to recover the Markov jump
model (in (2)–(3), conditionally on Yn, Tn and Yn+1 are indeed
independent).

The rates given by (17) are exact, in the sense that starting
from the QSD, the law of the exit event from S is exact using this
definition for the transitions to neighboring states. In Section 4,
we will discuss the error introduced when approximating these
rates by the Eyring-Kramers formula (7).

As a comment on the way we define the rates, let us mention
that in the original works by Kramers14 (see also48), the idea is to
introduce the stationary Fokker-Planck equation with zero bound-
ary condition (sinks on the boundary of S) and with a source term
within S (source in S), and to look at the steady state outgoing
current on the boundary ∂S. When the process leaves S, it is
reintroduced in S according to the source term. In general, the
stationary state depends on the source term of course. The dif-
ference with the QSD approach (see (12)) is that we consider the
first eigenvalue of the Fokker-Planck operator. This corresponds

to the following: when the process leaves S, it is reintroduced in
S according to the empirical law along the path of the process in
S. The interest of this point of view is that the exit time distribu-
tion is exactly exponential (and not approximately exponential in
some small temperature or high barrier regime).

2.7 Concluding remarks

The interest of the QSD approach is that it is very general and
versatile. The QSD can be defined for any stochastic process: re-
versible or non-reversible, with values in a discrete or a continous
state space, etc, see47. Then, the properties that the exit time is
exponentially distributed and independent of the exit point are
satisfied in these very general situations.

Let us emphasize in particular that in the framework of the
two dynamics (5) and (6) we consider here, the QSD gives a
natural way to define rates to leave a metastable state, without
any small temperature assumption. Moreover, the metastability
may be related to either energetic barriers or entropic barriers
(see in particular49 for numerical experiments in purely entropic
cases). Roughly speaking, energetic barriers correspond to a sit-
uation where it is difficult to leave S because it corresponds to
the basin of attraction of a local minimum of V for the gradient
dynamics ẋ = −∇V (x): the process has to go over an energetic
hurdle (namely a saddle point of V ) to leave S. Entropic barriers
are different. They appear when it takes time for the process to
leave S because the exit doors from S are very narrow. The po-
tential within S may be constant in this case. In practice, entropic
barriers are related to steric constraints in the atomic system. The
extreme case for an entropic barrier is a Brownian motion (V = 0)
reflected on ∂S \Γ, Γ ⊂ ∂S being the small subset of ∂S through
which the process can escape from S. For applications in biology
for example, being able to handle both energetic and entropic
barriers is important.

Let us note that the QSD in S is in general different from the
Boltzmann distribution restricted to S: the QSD is zero on the
boundary of ∂S while this is not the case for the Boltzmann dis-
tribution.

The remaining of the article is organized as follows. In Sec-
tion 3, we review recent results which show how the QSD can
be used to justify and analyze accelerated dynamics algorithms,
and in particular the parallel replica algorithm. These techniques
aim at efficiently sample the state-to-state dynamics associated
with the microscopic models (5) and (6), using the underlying
jump Markov model to accelerate the sampling of the exit event
from metastable states. In Section 4, we present new results con-
cerning the justification of the Eyring-Kramers formula (7) for
parametrizing a jump Markov model. The two following sections
are essentially independent of each other and can be read sepa-
rately.

3 Numerical aspects: accelerated dynam-
ics

As explained in the introduction, it is possible to use the underly-
ing Markov jump process as a support to accelerate molecular dy-
namics. This is the principle of the accelerated dynamics methods
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introduced by A.F. Voter in the late nineties3–5. These techniques
aim at efficiently simulate the exit event from a metastable state.

Three ideas have been explored. In the parallel replica algo-
rithm4,50, the idea is to use the jump Markov model in order
to parallelize the sampling of the exit event. The principle of
the hyperdynamics algorithm3 is to raise the potential within the
metastable states in order to accelerate the exit event, while being
able to recover the correct exit time and exit point distributions.
Finally, the temperature accelerated dynamics5 consists in simu-
lating exit events at high temperature, and to extrapolate them at
low temperature using the Eyring-Kramers law (7). In this paper,
for the sake of conciseness, we concentrate on the analysis of the
parallel replica method, and we refer to the papers51,52 for an
analysis of hyperdynamics and temperature accelerated dynam-
ics. See also the recent review44 for a detailed presentation.

3.1 The parallel replica method
In order to present the parallel replica method, we need to in-
troduce a partition of the configuration space Rd to describe the
states. Let us denote by

S : Rd → N (18)

a function which associates to a configuration x ∈Rd a state num-
ber S (x). We will discuss below how to choose in practice this
function S . The aim of the parallel replica method (and actually
also of hyperdynamics and temperature accelerated dynamics) is
to generate very efficiently a trajectory (St)t≥0 with values in N
which has approximately the same law as the state-to-state dy-
namics (S (Xt))t≥0 where (Xt)t≥0 follows (6). The states are the
level sets of S . Of course, in general, (S (Xt))t≥0 is not a Markov
process, but it is close to Markovian if the level sets of S are
metastable regions, see Sections 2.2 and 2.5. The idea is to check
and then use metastability of the states in order to efficiently gen-
erate the exit events.

As explained above, we present for the sake of simplicity the al-
gorithm in the setting of the overdamped Langevin dynamics (6),
but the algorithm and the discussion below can be generalized to
the Langevin dynamics (5), and actually to any Markov dynamics,
as soon as a QSD can be defined in each state.

The parallel replica algorithm consists in iterating three steps:

• The decorrelation step: In this step, a reference replica
evolves according to the original dynamics (6), until it
remains trapped for a time tcorr in one of the states
S −1({n}) = {x ∈ Rd , S (x) = n}, for n ∈ N. The parameter
tcorr should be chosen by the user, and may depend on the
state. During this step, no error is made, since the reference
replica evolves following the original dynamics (and there is
of course no computational gain compared to a naive direct
numerical simulation). Once the reference replica has been
trapped in one of the states (that we denote generically by
S in the following two steps) for a time tcorr, the aim is to
generate very efficiently the exit event. This is done in two
steps.

• The dephasing step: In this preparation step, (N− 1) config-

urations are generated within S (in addition to the one ob-
tained form the reference replica) as follows. Starting from
the position of the reference replica at the end of the decor-
relation step, some trajectories are simulated in parallel for
a time tcorr. For each trajectory, if it remains within S over
the time interval of length tcorr, then its end point is stored.
Otherwise, the trajectory is discarded, and a new attempt to
get a trajectory remaining in S for a time tcorr is made. This
step is pure overhead. The objective is only to get N config-
urations in S which will be used as initial conditions in the
parallel step.

• The parallel step: In the parallel step, N replicas are evolved
independently and in parallel, starting from the initial con-
ditions generated in the dephasing step, following the orig-
inal dynamics (6) (with independent driving Brownian mo-
tions). This step ends as soon as one of the replica leaves
S. Then, the simulation clock is updated by setting the resi-
dence time in the state S to N (the number of replicas) times
the exit time of the first replica which left S. This replica
now becomes the reference replica, and one goes back to
the decorrelation step above.

The computational gain of this algorithm is in the parallel step,
which (as explained below) simulates the exit event in a wall
clock time N times smaller in average than what would have been
necessary to see the reference walker leaving S. This of course
requires a parallel architecture able to handle N jobs in parallel†.
This algorithm can be seen as a way to parallelize in time the
simulation of the exit event, which is not trivial because of the
sequential nature of time.

Before we present the mathematical analysis of this method,
let us make a few comments on the choice of the function S . In
the original papers4,50, the idea is to define states as the basins
of attraction of the local minima of V for the gradient dynamics
ẋ = −∇V (x). In this context, it is important to notice that the
states do not need to be defined a priori: they are numbered as
the process evolves and discovers new regions (namely new local
minima of V reached by the gradient descent). This way to de-
fine S is well suited for applications in material sciences, where
barriers are essentially energetic barriers, and the local minima
of V indeed correspond to different macroscopic states. In other
applications, for example in biology, there may be too many local
minima, not all of them being significant in terms of macroscopic
states. In that case, one could think of using a few degrees of
freedom (reaction coordinates) to define the states, see for ex-
ample53. Actually, in the original work by Kramers14, the states
are also defined using reaction coordinates, see the discussion
in16. The important outcome of the mathematical analysis below
is that, whatever the choice of the states, if one is able to define a
correct correlation time tcorr attached to the states, then the algo-
rithm is consistent. We will discuss in Section 3.2 how large tcorr

should be theoretically, and in Section 3.3 how to estimate it in

† For a discussion on the parallel efficiency, communication and synchronization, we
refer to the papers 4,46,49,50.
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practice.

Another important remark is that one actually does not need a
partition of the configuration space to apply this algorithm. In-
deed, the algorithm can be seen as an efficient way to simulate
the exit event from a metastable state S. Therefore, the algorithm
could be applied even if no partition of the state space is avail-
able, but only an ensemble of disjoint subsets of the configuration
space. The algorithms could then be used to simulate efficiently
exit events from these states, if the system happens to be trapped
in one of them.

3.2 Mathematical analysis

Let us now analyze the parallel replica algorithm described above,
using the notion of quasi-stationary distribution. In view of the
first property 2.2 of the QSD, the decorrelation step is simply a
way to decide wether or not the reference replica remains suffi-
ciently long in one of the states so that it can be considered as
being distributed according to the QSD. In view of (14), the error
is of the order of exp(−(λ2−λ1) tcorr) so that tcorr should be chosen
of the order of 1/(λ2−λ1) in order for the exit event of the refer-
ence walker which remains in S for a time tcorr to be statistically
close to the exit event generated starting from the QSD.

Using the same arguments, the dephasing step is nothing but
a rejection algorithm to generate many configurations in S inde-
pendently and identically distributed with law the QSD νS in S.
Again, the distance to the QSD of the generated samples can be
quantified using (14).

Finally, the parallel step generates an exit event which is ex-
actly the one that would have been obtained considering only one
replica. Indeed, up to the error quantified in (14), all the replica
are i.i.d. with initial condition the QSD νS. Therefore, according
to the third property 2.4 of the QSD, their exit times (τn

S )n∈{1,...N}
are i.i.d. with law an exponential distribution with parameter λ1

(τn
S being the exit time of the n-th replica) so that

N min
n∈{1,...,N}

(τn
S )

L
= τ

1
S . (19)

This explains why the exit time of the first replica which leaves
S needs to be multiplied by the number of replicas N. This also
shows why the parallel step gives a computational gain in terms
of wall clock: the time required to simulate the exit event is di-
vided by N compared to a direct numerical simulation. Moreover,
since starting from the QSD, the exit time and the exit point are
independent, we also have

X I0

τ
I0
S

L
= X1

τ1
S
,

where (Xn
t )t≥0 is the n-th replica and I0 = argminn∈{1,...,N}(τn

S ) is
the index of the first replica which exits S. The exit point of the
first replica which exits S is statistically the same as the exit point
of the reference walker. Finally, by the independence property of
exit time and exit point, one can actually combine the two former
results in a single equality in law on couples of random variables,

which shows that the parallel step is statistically exact:(
N min

n∈{1,...,N}
(τn

S ),X
I0

τ
I0
S

)
L
= (τ1

S ,X
1
τ1

S
).

As a remark, let us notice that in practice, discrete-time pro-
cesses are used (since the Langevin or overdamped Langevin
dynamics are discretized in time). Then, the exit times
are not exponentially but geometrically distributed. It is
however possible to generalize the formula (19) to this
setting by using the following fact: if (σn)n∈{1,...N} are
i.i.d. with geometric law, then N (min(σ1, . . . ,σN)−1) +

min(n ∈ {1, . . . ,N}, σn = min(σ1, . . . ,σN))
L
= σ1. We refer to54 for

more details.
This analysis shows that the parallel replica is a very versatile

algorithm. In particular it applies to both energetic and entropic
barriers, and does not assume a small temperature regime (in
contrast with the analysis we will perform in Section 4). The
only errors introduced in the algorithm are related to the rate of
convergence to the QSD of the process conditioned to stay in the
state. The algorithm will be efficient if the convergence time to
the QSD is small compared to the exit time (in other words, if
the states are metastable). Formula (14) gives a way to quan-
tify the error introduced by the whole algorithm. In the limit
tcorr → ∞, the algorithm generates exactly the correct exit event.
However, (14) is not very useful to choose tcorr in practice since it
is not possible to get accurate estimates of λ1 and λ2 in general.
We will present in the next section a practical way to estimate
tcorr.

Let us emphasize that this analysis gives some error bound on
the accuracy of the state-to-state dynamics generated by the par-
allel replica algorithm, and not only on the invariant measure, or
the evolution of the time marginals.

3.3 Recent developments on the parallel replica algorithm
In view of the previous mathematical analysis, an important prac-
tical question is how to choose the correlation time tcorr. In the
original papers4,50, the correlation time is estimated assuming
that an harmonic approximation is accurate. In49, we propose
another approach which could be applied in more general set-
tings. The idea is to use two ingredients:

• The Fleming-Viot particle process55, which consists in N
replicas (X1

t , . . . ,X
N
t )t≥0 which are evolving and interacting

in such a way that the empirical distribution 1
N ∑

N
n=1 δXn

t is
close (in the large N limit) to the law of the process Xt con-
ditioned on t < τS.

• The Gelman-Rubin convergence diagnostic56 to estimate the
correlation time as the convergence time to a stationary state
for the Fleming-Viot particle process.

Roughly speaking, the Fleming-Viot process consists in following
the original dynamics (6) independently for each replica, and,
each time one of the replicas leaves the domain S, another one
taken at random is duplicated. The Gelman-Rubin convergence
diagnostic consists in comparing the average of a given observ-
able over replicas at a given time, with the average of this observ-
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able over time and replicas: when the two averages are close (up
to a tolerance, and for well chosen observables), the process is
considered at stationarity.

Then, the generalized parallel replica algorithm introduced
in49 is a modification of the original algorithm where, each time
the reference replica enters a new state, a Fleming-Viot particle
process is launched using (N− 1) replicas simulated in parallel.
Then the decorrelation step consists in the following: if the ref-
erence replica leaves S before the Fleming-Viot particle process
reaches stationarity, then a new decorrelation step starts (and the
replicas generated by the Fleming-Viot particle are discarded); if
otherwise the Fleming-Viot particle process reaches stationarity
before the reference replica leaves S, then one proceeds to the
parallel step. Notice indeed that the final positions of the repli-
cas simulated by the Fleming-Viot particle process can be used as
initial conditions for the processes in the parallel step. This pro-
cedure thus avoids the choice of a tcorr a priori: it is in some sense
estimated on the fly. For more details, discussions on the correla-
tions included by the Fleming-Viot process between the replicas,
and numerical experiments (in particular in cases with purely en-
tropic barriers), we refer to49.

3.4 Concluding remarks

We presented the results in the context of the overdamped
Langevin dynamics (6), but the algorithms straightforwardly ap-
ply to any stochastic Markov dynamics as soon as a QSD exists
(for example Langevin dynamics for a bounded domain, see45).

The QSD approach is also useful to analyze the two other accel-
erated dynamics: hyperdynamics51 and temperature accelerated
dynamics52. Typically, one expects better speed up with these al-
gorithms than with parallel replica, but at the expense of larger
errors and more stringent assumptions (typically energetic bar-
riers, and small temperature regime), see44 for a review paper.
Let us mention in particular that the mathematical analysis of the
temperature accelerated dynamics algorithms requires to prove
that the distribution for the next visited state predicted using the
Eyring-Kramers formula (7) is correct, as explained in52. The
next section is thus also motivated by the development of an er-
ror analysis for temperature accelerated dynamics.

Let us finally mention that in these algorithms, the way to re-
late the original dynamics to a jump Markov process is by looking
at (S (Xt))t≥0 (or (S (qt))t≥0 for (5)). As already mentioned, this
is not a Markov process, but it is close to Markovian if the level
sets of S are metastable sets, see Sections 2.2 and 2.5. In partic-
ular, in the parallel replica algorithm above, the non-Markovian
effects (and in particular the recrossing at the boundary between
two states) are taken into account using the decorrelation step,
where the exact process is used in these intermediate regimes
between long sojourns in metastable states. As already men-
tioned above (see the discussion on the map S at the end of
Section 3.1), another idea is to introduce an ensemble of disjoint
subsets (Mi)i≥0 and to project the dynamics (Xt)t≥0 (or (qt)t≥0)
onto a discrete state-space dynamics by considering the last visited
milestone35,57. Notice that these subsets do not create a partition
of the state space. They are sometimes called milestones33, tar-

get sets or core sets35 in the literature. The natural parametriza-
tion of the underlying jump process is then to consider, starting
from a milestone (say M0), the time to reach any of the other
milestones ((M j) j 6=0) and the index of the next visited milestone.
This requires us to study the reactive paths among the milestones,
for which many techniques have been developed, as already pre-
sented in the introduction. Let us now discuss the Markovianity
of the projected dynamics. On the one hand, in the limit of very
small milestones‡, the sequence of visited states (i.e. the skeleton
of the projected process) is naturally Markovian (even though the
transition time is not necessarily exponential), but the description
of the underlying continuous state space dynamics is very poor
(since the information of the last visited milestone is not very in-
formative about the actual state of the system). On the other
hand, taking larger milestones, the projected process is close to
a Markov process under some metastability assumptions with re-
spect to these milestones. We refer to17,58,59 for a mathematical
analysis.

4 Theoretical aspects: transition state the-
ory and Eyring-Kramers formula

In this section, we explore some theoretical counterparts of the
QSD approach to study metastable stochastic processes. We con-
centrate on the overdamped Langevin dynamics (5). The gener-
alization of the mathematical approach presented below to the
Langevin dynamics would require some extra work.

We would like to justify the procedure described in the intro-
duction to build jump Markov models, and which consists in (see
for example1,7,60): (i) looking for all local minima and saddle
points separating the local minima of the function V ; (ii) connect-
ing two minima which can be linked by a path going through a
single saddle point, and parametrizing a jump between these two
minima using the rate given by the Eyring-Kramers formula (7).
More precisely, we concentrate on the accuracy of the sampling
of the exit event from a metastable state using the jump Markov
model. The questions we ask are the following: if a set S con-
taining a single local minimum of V is metastable for the dynam-
ics (6) (see the discussion in Section 2.2 and formula (15)), is
the exit event predicted by the jump Markov model built using
the Eyring-Kramers formula correct? What is the error induced
by this approximation?

As already explained in Section 2.6, if S is metastable, one can
assume that the stochastic process (Xt)t≥0 satisfying (6) starts un-
der the QSD νS (the error being quantified by (14)) and then,
the exit time is exponentially distributed and independent of the
exit point. Thus, two fundamental properties of the jump Markov
model are satisfied. It only remains to prove that the rates asso-
ciated with the exit event for (Xt)t≥0 (see formula (17)) can be
accurately approximated by the Eyring-Kramers formulas (7). As
will become clear below, the analysis holds for energetic barriers
in the small temperature regime β → ∞.

In this section, we only sketch the proofs of our results, which

‡ One could think of one-dimensional overdamped Langevin dynamics, with mile-
stones defined as points: in this case the sequence of visited points is Markovian.
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are quite technical. For a more detailed presentation, we refer
to61.

4.1 A review of the literature

Before presenting our approach, let us discuss the mathematical
results in the literature aiming at justifying the Eyring-Kramers
rates. See also the review article62.

Some authors adopt a global approach: they look at the spec-
trum associated with the infinitesimal generator of the dynamics
on the whole configuration space, and they compute the small
eigenvalues in the small temperature regime β → ∞. It can be
shown that there are exactly m small eigenvalues, m being the
number of local minima of V , and that these eigenvalues satisfy
the Eyring-Kramers law (7), with an energy barrier V (zk)−V (xk).
Here, the saddle point zk attached to the local minimum xk is de-
fined by§

V (zk) = inf
γ∈P(xi,Bi)

sup
t∈[0,1]

V (γ(t))

where P(xi,Bi) denotes the set of continuous paths from [0,1] to
Rd such that γ(0) = xi and γ(1) ∈ Bi with Bi the union of small
balls around local minima lower in energy than xi. For the dy-
namics (6), we refer for example to the work63 based on semi-
classical analysis results for Witten Laplacian and the articles64–66

where a potential theoretic approach is adopted. In the latter re-
sults, a connexion is made between the small eigenvalues and
mean transition times between metastable states. Let us also
mention the earlier results67,68. For the dynamics (5), similar
results are obtained in69. These spectral approaches give the cas-
cade of relevant time scales to reach from a local minimum any
other local minimum which is lower in energy. They do not give
any information about the typical time scale to go from one local
minimum to any other local minimum (say from the global min-
imum to the second lower minimum). These global approaches
can be used to build jump Markov models using a Galerkin pro-
jection of the infinitesimal generator onto the first m eigenmodes,
which gives an excellent approximation of the infinitesimal gen-
erator. This has been extensively investigated by Schütte¶ and his
collaborators17, starting with the seminal work70.

In this work, we are interested in a local approach, namely in
the study of the exit event from a given metastable state S. In
this framework, the most famous approach to analyze the exit
event is the large deviation theory6. In the small temperature
regime, large deviation results provide the exponential rates (7),
but without the prefactors and without error bounds. It can also
be proven that the exit time is exponentially distributed in this
regime, see71. For the dynamics (6), a typical result on the exit
point distribution is the following (see6 Theorem 5.1): for all
S′ ⊂⊂ S, for any γ > 0, for any δ > 0, there exists δ0 ∈ (0,δ ] and

§ It is here implicitly assumed that the inf sup value is attained at a single saddle
point zk .

¶ In fact, Schütte et al. look at the eigenvalues close to 1 for the so-called transfer
operator Pt = etL (for a well chosen lag time t > 0), which is equivalent to looking at
the small positive eigenvalues of −L

β0 > 0 such that for all β ≥ β0, for all x ∈ S′ and for all y ∈ ∂S,

e−β (V (y)−V (z1)+γ) ≤ Px(XτS ∈ Vδ0
(y))≤ e−β (V (y)−V (z1)−γ) (20)

where Vδ0
(y) is a δ0-neighborhood of y in ∂S. Besides, let us

also mention formal approaches to study the exit time and the
exit point distribution that have been proposed by Matkowsky,
Schuss and collaborators in48,72,73 and by Maier and Stein in74,
using formal expansions for singularly perturbed elliptic equa-
tions. Some of the results cited above actually consider more
general dynamics than (6) (including (5)), see also75 for a recent
contribution in that direction. One of the interests of the large
deviation approach is actually to be sufficiently robust to apply to
rather general dynamics.

Finally, some authors prove the convergence to a jump Markov
process using a rescaling in time. See for example76 for a one-
dimensional diffusion in a double well, and77,78 for a similar
problem in larger dimension. In79, a rescaled in time diffusion
process converges to a jump Markov process living on the global
minima of the potential V , assuming they are separated by saddle
points having the same heights.

There are thus many mathematical approaches to derive the
Eyring-Kramers formula. In particular, a lot of works are devoted
to the computation of the rate between two metastable states, but
very few discuss the use of the combination of these rates to build
a jump Markov model between metastable states. To the best of
our knowledge, none of these works quantify rigorously the er-
ror introduced by the use of the Eyring-Kramers formulas and a
jump Markov process to model the transition from one state to
all the neighboring states. Our aim in this section is to present
such a mathematical analysis, using local versions of the spectral
approaches mentioned above. Our approach is local, justifies the
Eyring-Kramers formula with the prefactors and provides error es-
timates. It uses techniques developed in particular in the previous
works80,81. These results generalize the results in dimension 1 in
Section 4 of52.

4.2 Mathematical result

Let us consider the dynamics (6) with an initial condition dis-
tributed according to the QSD νS in a domain S. We assume the
following:

• The domain S is an open smooth bounded domain in Rd .

• The function V : S → R is a Morse function with a single
critical point x1. Moreover, x1 ∈ S and V (x1) = minS V .

• The normal derivative ∂nV is strictly positive on ∂S, and V |∂S
is a Morse function with local minima reached at z1, . . . ,zI

with V (z1)<V (z2)< .. . <V (zI).

• The height of the barrier is large compared to the saddle
points heights discrepancies: V (z1)−V (x1)>V (zI)−V (z1).

• For all i ∈ {1, . . . I}, consider Bzi ⊂ ∂S the basin of attraction
for the dynamics in the boundary ∂S: ẋ = −∇TV (x) (where
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∇TV denotes the tangential gradient of V along the bound-
ary ∂S). Assume that

inf
z∈Bc

zi

da(z,zi)>V (zI)−V (z1) (21)

where Bc
zi
= ∂S\Bzi .

Here, da is the Agmon distance:

da(x,y) = inf
γ∈Γx,y

∫ 1

0
g(γ(t))|γ ′(t)|dt

where g =


|∇V | in S

|∇TV | in ∂S
, and the infimum is over the set Γx,y of

all piecewise C1 paths γ : [0,1]→ S such that γ(0) = x and γ(1) = y.
The Agmon distance is useful in order to measure the decay of
eigenfunctions away from critical points. These are the so-called
semi-classical Agmon estimates, see82,83.

Then, in the limit β → ∞, the exit rate is (see also80)

λ1 =

√
β

2π
∂nV (z1)

√
det(∇2V )(x1)√

det(∇2V|∂S)(z1)
e−β (V (z1)−V (x1))(1+O(β−1)).

Moreover, for any open set Σi containing zi such that Σi ⊂ Bzi ,∫
Σi

∂nu1 dσ∫
S

u1(x)dx
=−Ai(β )e−β (V (zi)−V (x1))(1+O(β−1)), (22)

where

Ai(β ) =
β 3/2
√

2π
∂nV (zi)

√
det(∇2V )(x1)√

det(∇2V |∂S)(zi)
.

Therefore,

p(i) = PνS(XτS ∈ Σi)

=
∂nV (zi)

√
det(∇2V |∂S)(z1)

∂nV (z1)
√

det(∇2V |∂S)(zi)
e−β (V (zi)−V (z1))(1+O(β−1))

(23)

and (see Equation (17) for the definition of the exit rates)

k0,i = λ1 p(i)

= ν̃
OL
0,i e−β (V (zi)−V (x1))(1+O(β−1)) (24)

where the prefactors ν̃OL
0,i are given by

ν̃
OL
0,i =

√
β

2π
∂nV (zi)

√
det(∇2V )(x1)√

det(∇2V|∂S)(zi)
. (25)

We refer to61 for more details, and other related results.

As stated in the assumptions, these rates are obtained assuming
∂nV > 0 on ∂S: the local minima z1, . . . ,zI of V on ∂S are there-
fore not saddle points of V but so-called generalized saddle points
(see80,81). In a future work, we intend to extend these results to

the case where the points (zi)1≤i≤I are saddle points of V , in which
case we expect to prove the same result (24) for the exit rates,

with the prefactor ν̃OL
0,i being

1
π
|λ−(z j)|

√
det(∇2V )(x1)√
|det(∇2V )(z j)|

(this for-

mula can be obtained using formal expansions on the exit time
and the Laplace’s method). Notice that the latter formula differs
from (9) by a multiplicative factor 1/2 since λ1 is the exit rate
from S and not the transition rate to one of the neighboring state
(see the remark on page 408 in64 on this multiplicative factor 1/2
and the results on asymptotic exit times in74 for example). This
factor is due to the fact that once on the saddle point, the pro-
cess has a probability one half to go back to S, and a probability
one half to effectively leave S. This multiplicative factor does not
have any influence on the law of the next visited state which only
involves ratio of the rates k0,i, see Equation (3).

4.3 Discussion of the result
As already discussed above, the interest of these results is that
they justify the use of the Eyring-Kramers formula to model the
exit event using a jump Markov model. They give in particular the
relative probability to leave S through each of the local minima
zi of V on the boundary ∂S. Moreover, we obtain an estimate of
the relative error on the exit probabilities (and not only on the
logarithm of the exit probabilities as in (20)): it is of order β−1,
see Equation (23).

The importance of obtaining a result including the prefactors in
the rates is illustrated by the following result, which is also proven
in61. Consider a simple situation with only two local minima z1

and z2 on the boundary (with as above V (z1) < V (z2)). Compare
the two exit probabilities:

• The probability to leave through Σ2 such that Σ2 ⊂ Bz2 and
z2 ∈ Σ2;

• The probability to leave through Σ such that Σ ⊂ Bz1 and
infΣ V =V (z2).

By classical results from the large deviation theory (see for exam-
ple (20)) the probability to exit through Σ and Σ2 both scale like
a prefactor times e−β (V (z2)−V (z1)): the difference can only be read
from the prefactors. Actually, it can be proven that, in the limit
β → ∞,

PνS(XτS ∈ Σ)

PνS(XτS ∈ Σ2)
= O(β−1/2).

The probability to leave through Σ2 (namely through the gen-
eralized saddle point z2) is thus much larger than through Σ,
even though the two regions are at the same height. This re-
sult explains why the local minima of V on the boundary (namely
the generalized saddle points) play such an important role when
studying the exit event.

4.4 Sketch of the proof
In view of the formulas (16) and (17), we would like to identify
the asymptotic behavior of the small eigenvalue λ1 and of the
normal derivative ∂nu1 on ∂S in the limit β → ∞. We recall that
(λ1,u1) are defined by the eigenvalue problem (12). In order to
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work in the classical setting for Witten Laplacians, we make a
unitary transformation of the original eigenvalue problem. Let us
consider v1 = u1 exp(βV ), so thatL(0)v1 =−λ1v1 on S,

v1 = 0 on ∂S,
(26)

where L(0) = β−1∆ − ∇V · ∇ is a self adjoint operator on
L2(exp(−βV )). We would like to study, in the small temperature
regime ∂nu1 = ∂nv1e−βV on ∂S (since u1 = 0 on ∂S). Now, observe
that ∇v1 satisfies

L(1)
∇v1 =−λ1∇v1 on S,

∇T v1 = 0 on ∂S,

(β−1div−∇V ·)∇v1 = 0 on ∂S,

(27)

where
L(1) = β

−1
∆−∇V ·∇−Hess(V )

is an operator acting on 1-forms (namely on vector fields). There-
fore ∇v1 is an eigenvector (or an eigen-1-form) of the operator
−L(1) with tangential Dirichlet boundary conditions (see (27)),
associated with the small eigenvalue λ1. It is known (see for ex-
ample80) that in our geometric setting −L(0) admits exactly one
eigenvalue smaller than β−1/2, namely λ1 with associated eigen-
function v1 (this is because V has only one local minimum in S)
and that −L(1) admits exactly I eigenvalues smaller than β−1/2

(where, we recall, I is the number of local minima of V on ∂S).
Actually, all these small eigenvalues are exponentially small in the
regime β → ∞, the larger eigenvalues being bounded from below
by a constant in this regime. The idea is then to construct an
appropriate basis (with eigenvectors localized on the generalized
saddle points, see the quasi-modes below) of the eigenspace as-
sociated with small eigenvalues for L(1), and then to decompose
∇v1 along this basis.

The second step (the most technical one actually) is to build
so-called quasi-modes which approximate the eigenvectors of L(0)

and L(1) associated with small eigenvalues in the regime β → ∞.
A good approximation of v1 is actually simply ṽ = Z χS′ where S′

is an open set such that S′ ⊂ S, χS′ is a smooth function with com-
pact support in S and equal to one on S′, and Z is a normalization
constant such that ‖ṽ‖L2(e−βV ) = 1. The difficult part is to build

an approximation of the eigenspace Ran
(

1[0,β−1/2](−L(1))
)

, where

1[0,β−1/2](−L(1)) denotes the spectral projection of (−L(1)) over

eigenvectors associated with eigenvalues in the interval [0,β−1/2].
Using auxiliary simpler eigenvalue problems and WKB expansions
around each of the local minima (zi)i=1,...,I , we are able to build
1-forms (ψi)i=1,...,I such that Span(ψ1, . . . ,ψI) is a good approxi-

mation of Ran
(

1[0,β−1/2](−L(1))
)

. The support of ψi is essentially

in a neighborhood of zi and Agmon estimates are used to prove
exponential decay away from zi.

The third step consists in projecting the approximation of ∇v1

on the approximation of the eigenspace Ran
(

1[0,β−1/2](−L(1))
)

using the following result. Assume the following on the quasi-

modes:

• Normalization: ṽ ∈ H1
0 (e
−βV ) and ‖ṽ‖L2(e−βV ) = 1. For all i ∈

{1, . . . , I}, ψi ∈ H1
T (e
−βV ) and ‖ ‖ψi‖L2(e−βV ) = 1.

• Good quasi-modes:

– ∀δ > 0,‖∇ṽ‖2
L2(e−βV )

= O(e−β (V (z1)−V (x1)−δ )),

– ∃ε > 0, ∀i ∈ {1, . . . , I}, ‖1[β−1/2,∞)(−L(1))ψi‖2
H1(e−βV )

=

O(e−β (V (zI)−V (z1)+ε))

• Orthonormality of quasi-modes: ∃ε0 > 0, ∀i < j ∈ {1, . . . , I},

〈ψi,ψ j〉L2(e−βV ) = O( e−
β

2 (V (z j)−V (zi)+ε0) ).

• Decomposition of ∇ṽ: ∃(Ci)1≤i≤I ∈ RI , ∃p > 0, ∀i ∈ {1, . . . , I},

〈∇ṽ,ψi〉L2(e−βV ) =Ci β
−pe−

β

2 (V (zi)−V (x1)) (1+O(β−1) ).

• Normal components of the quasi-modes: ∃(Bi)1≤i≤I ∈RI , ∃m>

0, ∀i, j ∈ {1, . . . , I},

∫
Σi

ψ j ·n e−βV dσ =

{
Bi β−m e−

β

2 V (zi) ( 1 +O(β−1) ) if i = j,

0 if i 6= j.

Then for i = 1, ...,n, when β → ∞∫
Σi

∂nv1 e−βV dσ =CiBi β
−(p+m) e−

β

2 (2V (zi)−V (x1)) (1+O(β−1)).

The proof is based on a Gram-Schmidt orthonormalization proce-
dure. This result applied to the quasi-modes built in the second
step yields (22).

4.5 On the geometric assumption (21)

In this section, we would like to discuss the geometric assump-
tion (21). The question we would like to address is the following:
is such an assumption necessary to indeed prove the result on the
exit point density?

In order to test this assumption numerically, we consider the
following simple two-dimensional setting. The potential function
is V (x,y) = x2 + y2− ax with a ∈ (0,1/9) on the domain S repre-
sented on Figure 2. The two local minima on ∂S are z1 = (1,0)
and z2 = (−1,0). Notice that V (z2)−V (z1) = 2a > 0. The subset of
the boundary around the highest saddle point is the segment Σ2

joining the two points (−1,−1) and (−1,1). Using simple lower
bounds on the Agmon distance, one can check that all the above
assumptions are satisfied in this situation.

We then plot on Figures 3 (a = 1/10) and 4 (a =

1/20) the numerically estimated probability f (β ) = PνS(XτS ∈
Σ2), and compare it with the theoretical result g(β ) =
∂nV (z2)

√
det(∇2V |∂S)(z1)

∂nV (z1)
√

det(∇2V |∂S)(z2)
e−β (V (z2)−V (z1)) (see Equation (23)). The

‖The functional space H1
T (e
−βV ) is the space of 1-forms in H1(e−βV ) which satisfy the

tangential Dirichlet boundary condition, see (27).
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Discussion on the assumptions (2/5)
Let us consider the potential function V (x , y) = x2 + y2 − ax with
a ∈ (0, 1/9) on the domain W . Two saddle points: z1 = (1, 0) and
z2 = (−1, 0) (and V (z2) − V (z1) = 2a). One can check that the
above assumptions are satisfied.

Σ2

z2 z1

The domain W

x1

Fig. 2 The domain S is built as the union of the square with corners
(−1,−1) and (1,1) and two half disks of radius 1 and with centers (0,1)
and (0,−1).

probability PνS(XτS ∈ Σ2) is estimated using a Monte Carlo proce-
dure, and the dynamics (5) is discretized in time using an Euler-
Maruyama scheme with timestep ∆t. We observe an excellent
agreement between the theory and the numerical results.

4 5 6 7 8 9 10 11
Beta

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

g
f

Fig. 3 The probability PνS (XτS ∈ Σ2): comparison of the theoretical result
(g) with the numerical result ( f , ∆t = 5.10−3); a = 1/10.

Now, we modify the potential function V in order not to satisfy
assumption (21) anymore. More precisely, the potential function
is V (x,y) = (y2−2 a(x))3 with a(x) = a1x2+b1x+0.5 where a1 and
b1 are chosen such that a(−1+δ ) = 0, a(1) = 1/4 for δ = 0.05. We
have V (z1) = −1/8 and V (z2) = −8(a(−1))3 > 0 > V (z1). More-
over, two ’corniches’ (which are in the level set V−1({0}) of V , and
on which |∇V | = 0) on the ’slopes of the hills’ of the potential V
join the point (−1+δ ,0) to Bc

z2
so that inf

z∈Bc
z2

da(z,z2)<V (z2)−V (z1)

(the assumption (21) is not satisfied). In addition V |∂S is a Morse
function. The function V is not a Morse function on S, but an ar-
bitrarily small perturbation (which we neglect here) turns it into
a Morse function. When comparing the numerically estimated
probability f (β ) = PνS(XτS ∈ Σ2), with the theoretical result g(β ),
we observe a discrepancy on the prefactors, see Figure 5.

Therefore, it seems that the construction of a jump Markov pro-
cess using the Eyring-Kramers law to estimate the rates to the
neighboring states is correct under some geometric assumptions.
These geometric assumptions appear in the proof when estimat-
ing rigorously the accuracy of the WKB expansions as approxima-
tions of the quasi-modes of L(1).

2 3 4 5 6 7
Beta

0.7

0.6

0.5

0.4

0.3

0.2

0.1

g
f

Fig. 4 The probability PνS (XτS ∈ Σ2): comparison of the theoretical result
(g) with the numerical result ( f , ∆t = 2.10−3); a = 1/20.

0 2 4 6 8 10 12
Beta

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

g
f, dt=0.002
f, dt=0.0005

Fig. 5 The probability PνS (XτS ∈ Σ2): comparison of the theoretical result
(g) with the numerical result ( f , ∆t = 2.10−3 and ∆t = 5.10−4).

4.6 Concluding remarks

In this section, we reported about some recent results obtained
in61. We have shown that, under some geometric assumptions,
the exit distribution from a state (namely the law of the next
visited state) predicted by a jump Markov process built using
the Eyring-Kramers formula is correct in the small temperature
regime, if the process starts from the QSD in the state. We recall
that this is a sensible assumption if the state is metastable, and
Equation (14) gives a quantification of the error associated with
this assumption. Moreover, we have obtained bounds on the error
introduced by using the Eyring-Kramers formula.

The analysis shows the importance of considering (possibly
generalized) saddle points on the boundary to identify the sup-
port of the exit point distribution. This follows from the precise
estimates we obtain, which include the prefactor in the estimate
of the probability to exit through a given subset of the boundary.

Finally, we checked by numerical experiments the fact that
some geometric assumptions are indeed required in order for all
these results to hold. These assumptions appear in the mathemat-
ical analysis when rigorously justifying WKB expansions.

As mentioned above, we intend to generalize the results to the
case when the local minima of V on ∂S are saddle points.
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