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Magnetically coupled hybrid quantum systems enable robust quantum state control through
Landau-Zener transitions. Here, we show that an ultracold atomic sample magnetically coupled
to a nanomechanical resonator can be used to cool the resonator’s mechanical motion, to measure
the mechanical temperature, and to enable entanglement of more than one of these mesoscopic
objects. We calculate the expected coupling for both permanent-magnet and current-conducting
nanostring resonators and describe how this hybridization is attainable using recently developed
fabrication techniques, including SiN nanostrings and atom chips.

Hybrid quantum systems serve to bring the advan-
tages of multiple quantum technologies together [1, 2].
Currently, no individual platform is ideal – all systems
have advantages for performing some tasks, while retain-
ing less-desirable properties in other realms. Whether
it is coherence time, facility for exchanging quantum in-
formation, or data processing speeds, the reason for an
advantage is usually fundamentally tied to a difficulty.
For ultracold atoms, isolation from the environment en-
ables excellent coherence and state control, but hinders
information transmission to conventional read-out tech-
nologies. Combining platforms to exploit the advantages
and make irrelevant the disadvantages can lead the way
to viable hybrid quantum technologies.

Along with ultracold atoms, nanomechanical solid-
state devices are among the leading candidates as compo-
nents of hybrid systems [3–5]; unlike quantum gases, they
have good readout but poor coherence times. Quantum
correlations can be transferred between these very differ-
ent platforms using electric and magnetic field couplings.
Ultracold atoms and solid state device hybridization was
demonstrated in a variety of systems: with optical fields
to cavity modes [6, 7] or vibrating membranes [8–10],
and with magnetic fields via nanomechanical magnetic
resonators [11–13]. As we will explain in detail, coherent
coupling between the atomic and mechanical systems can
be used to cool the mechanical motion of the resonators,
to measure the mechanical system’s temperature, and to
transfer correlations between mechanical devices to real-
ize entanglement.

Here, we focus on systems where oscillating magnetic
fields are used to drive transitions between long-lived
ground states. While these transitions are inherently
weaker than those from optical fields, the states’ lifetimes
are appealing for coherent quantum state control and re-
versible transfer of quantum coherence between systems.
Furthermore, temporal “Landau-Zener” sweeps of an ex-
ternal magnetic field [14, 15] can be used to flip atomic
spins while changing the phonon occupation in coupled
systems. Unlike previously implemented cantilever de-
signs that have been used to couple to ultracold atoms,

we consider here SiN nanostring resonators [16–19] fab-
ricated with high-tensile stress. For these devices, the
mechanical behaviour is dominated by the stress in the
string [20] and not the material properties, ultimately
leading to high quality factors Q for the resonators, even
at room-temperature.

In this work, we frame our discussion in terms of the
magnetic-field mediated coupling between neutral alkali
metal atoms and a nanomechanical resonator whose mag-
netic field is generated either by a current [18] or by a per-
manent magnet [21] (Fig. 1a and b.) In a magnetic field,
the Zeeman effect lifts the degeneracy within the ground
states, which we describe using the generalized spin oper-
ator F̂ = (F̂x, F̂y, F̂z). For the ground states |F,mF 〉, the

Zeeman Hamiltonian is ĤZ = −µ̂ ·B = gFµB(F̂ ·B)/~,
where gF is the Landé g-factor and µB is the Bohr mag-
neton, and we assume the weak-field limit of the Zee-
man effect. Near a nanomechanical magnetic resonator
with resonant frequency ωm, the associated oscillating
magnetic field Bm(r, t) = Bm,0(r) cosωmt drives transi-
tions between ground states. In a static magnetic field,
the oscillating field couples to the electronic spin, and
the magnetic dipole operator is µ̂ = −gFµBF̂/~. For
levels |FmF 〉 and |F ′m′F 〉 separated by the atomic en-
ergy level spacing ~ωa due to a static magnetic field
along ez, an oscillating magnetic field with amplitude
Bm,0 = Bm,0{sin θ, 0, cos θ} and frequency ωm = ωa re-
sults in the resonant coupling element

~Ω =
gFµBBm,0

~
〈F ′m′F | F̂x sin θ + F̂z cos θ |FmF 〉 . (1)

The first term in the matrix element corresponds to tran-
sitions with m′F = mF ± 1. For two levels with the same
F , in the rotating-wave approximation, the coupling pa-
rameter is

~Ω

2
=
gFµBBm,0

4

√
F (F + 1)−mF (mF ± 1). (2)

The second term in Eq. 1 describes transitions that pre-
serve mF but change F , corresponding to transitions be-
tween hyperfine levels, which are allowed, but are typi-
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FIG. 1. Nanomechanical magnetic resonator schematics with
(a) a permanent magnetic dipole, µm and (b) a current car-
rying wire. Calculated magnetic field (left axes) and coupling
parameters for 87Rb atoms with F = 1 (right axes) from (c) a
nanostring with a permanent magnet with µm = 0.067 nJ/T
and (d) a current-carrying wire (calculated to give the per-
Ampere coupling). The blue curves indicate the magnitude
of the time-independent field component B0z,d, while other
colours show time-dependent parts bdα for amplitudes α =
10 nm (light blue), 5 nm (red), and 1 nm (green). Dashed
curves show numerical comparisons.

cally at significantly higher frequencies, and are not dis-
cussed here.

One method for creating magnetic coupling between a
nanostring and atoms is to deposit a permanent magnet
on a small region of the nanostring [21] (Fig. 1a). If the
permanent magnet is treated as a point-like dipole µm
oriented along ex, the field created at a distance r0 above
the centre of the nanostring vibrating along ez with an
amplitude α is [22]

Bd(t) =
µ0µm
4πr4

0

[r0 − 3α cos(ωmt)]

≡ B0x,d + bdα cos(ωmt). (3)

Here, we have separated the magnetic field into station-
ary B0,xd and time-dependent bdα amplitudes, where the
gradient of the field bd = 3µmµ0/(4πr

4
0) determines the

strength of the spin-flipping field component. In general,
the static part is a few orders of magnitude larger than
oscillatory part (see Fig. 1c), which leads to additional
challenges in experimental design [23].

A second method for implementing magnetic cou-
pling between a nanostring and atoms is to pass current
through a conductive nanostring [24–26]. The magnetic
field created by a long wire carrying current I0 along ey
and vibrating along ez is

BI,dc(t) =
µ0I0
2πr2

0

[r0 − α cos(ωmt)]

≡ B0x,I + bIα cos(ωmt). (4)

Here, the spin-flipping amplitude bI scales with dis-
tance as 1/r2

0, which differs from the permanent mag-
netic dipole moment where bd ∝ 1/r4

0. Compared to
cantilever geometries, nanostrings facilitate conduction
and can take advantage of this improved scaling. Com-
parisons of this analytical model (Eq. 4) to a numerical
simulation show good agreement (see Fig. 1) [27].

If an alternating, out-of-phase current Iac = I0 sinωdrt
passes through the nanostring and ωac differs from the
atomic resonance frequency, the atoms experience a field

BI,ac(t) =
µ0I

2πr2
0

[r0 sinωact+
α

2
sin(ωac + ωm)t

+
α

2
sin(ωac − ωm)t]. (5)

The first term arises from the alternating current itself,
while the second and third are due to motion of the
resonator. If the wire is driven into mechanical oscil-
lation at ωdr and resonant with the atomic sample at
ωdr + ωm = ωa, only terms proportional to the mechan-
ical amplitude α address the atoms. This separation of
frequencies differentiates transitions driven by mechan-
ical motion from transitions due to fields generated by
currents in other parts of the device [12].

Cryogenically cooling the mechanics can reduce energy
scales to the level at which quantization of mechanical
motion matters [29–32]. To describe this, we promote the
resonator’s displacement to an operator: α→ α0(â+ â†),
where α0 =

√
~/2meffωm is the zero-point motion of the

resonator, meff is its effective mass, and â and â† are
mechanical-mode phonon annihilation and creation op-
erators of the mechanical system. By isolating two lev-
els in the atomic system, where for example |↑〉 and |↓〉
represent two states with mF↑ and mF↓, the operator

F̂x becomes σ̂x = σ̂+ + σ̂−. In the rotating-wave ap-
proximation, this yields a Hamiltonian analogous to the
Jaynes-Cummings model [33]

Ĥat = ~ωmâ
†â+

~ωa

2
σ̂z +

~g0

2
(σ̂+â+ σ̂−â†), (6)

where σ̂z = σ̂+σ̂− − σ̂−σ̂+, and ~g0 = gFµBbα0[F (F +
1)−mF↑mF↓]

1/2/2 is the single-atom-single-phonon cou-
pling parameter.

One of the great advantages of hybridizing systems
with ultracold atoms is the ability to couple single ex-
citations collectively to an ensemble of N atoms [34–
36], such that the collective spin operators are ˆ̃σ+ =
(1/
√
N)
∑
i σ̂

+
i and ˆ̃σ− = (1/

√
N)
∑
i σ̂
−
i , where the

sums run over all N atoms. This many-atom system has
an enhanced effective coupling parameter: geff =

√
Ng0,

and Eq. 6 is transformed to the Tavis-Cummings Hamil-
tonian [33]. To generalize, we simplify notation for the
coupled system: |n,mF 〉 → |n, s〉 where n is the number
of phonons excited in the resonator and s = (↑, ↓) is the
spin-state of the two-level atomic system.
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Quantum state manipulation becomes possible when
control over both the resonator’s phonon occupation and
the atoms’ spin (either collective or single-atom) are
possible. Consider a basis of single-spin-atomic states
dressed by the phonon-occupation states, where the
dressed-state energies are magnetic-field dependent, as
shown in Fig. 2(a). In the presence of coupling between
the mechanical mode and the atomic spin, magnetic field
values B0 for which |n+ 1, ↓〉 cross |n, ↑〉 are avoided, and
coupled eigenstates [Fig. 2(b)] connect different phonon
occupations.

With this connection, we introduce a scheme that
uses magnetic-field sweeps across resonance to manipu-
late quantum states. An adiabatic magnetic field sweep
from B1 < B0 to B2 > B0 transfers atoms from one spin
state to the other as it transfers the resonator from one
phonon-number occupation state to a neighboring one.
Landau-Zener (LZ) theory [14, 15] gives the probability
of complete state transfer

pLZ(n) = 1− exp

[
− π~ng2

0

2gFµB(∆B/∆t)

]
, (7)

where we assume a linear sweep of the magnetic field
∆B in a time ∆t (which is sufficiently long). Here, g0

refers to either the single atom or collective coupling, as
the situation dictates, and the n-dependence reflects the
amplitude dependence of the coupling, as is well-known
in a Jaynes-Cummings ladder. In general, states trans-
form from |n, ↑〉 → [

√
pLZ |n+ 1, ↓〉 +

√
1− pLZe

iφ |n, ↑〉]
or |n, ↓〉 → [

√
pLZ |n− 1, ↑〉 +

√
1− pLZe

−iφ |n, ↓〉]. By
varying the coupling strength and field-sweep duration,
we can control pLZ and φ to create different states of the
system. Efficient state transfer is limited by the available
coupling g0, though the collective-spin

√
N -enhancement

of g0 → geff and the ability to bring atoms into close
proximity to the resonator with atom-chip trapping tech-
niques facilitates this control over the quantum states.

A significant advantage to hybridizing mechanical de-
vices with atoms is the wide range of opportunities in
applications for quantum state control. Here we discuss
cooling a resonator’s mechanical motion, nanomechani-
cal thermometry, and entangling multiple resonators. In
all cases, these protocols are robust to technical noise
that can arise due to magnetic field fluctuations, so long
as the sweep’s beginning and ending points are far from
resonance.

The proficiency with which atoms can shed energy
though the emission of electromagnetic radiation enables
the cooling of coupled mechanical systems. In previous
work, optical coupling between atoms and a membrane
cooled mechanical motion [10, 37]. Here, we propose a
scheme to remove phonon excitations from the mechan-
ics by selectively flipping the spins of the atomic system
using a series of magnetic field sweeps and optical pump-
ing pulses (Fig. 2). We describe the process for a single
spin, but imagine the process proceeding in parallel for
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FIG. 2. Mechanical cooling scheme. (a) Ladder of uncoupled
phonon-spin dressed states. (b) Coupled phonon-spin states
(black), with thick lines indicating magnetic field sweeps I,
III and V, and optical-pumping spin-flip purification II and
IV. (c) Conceptual timing sequence for magnetic field sweeps
(blue shaded regions) and optical pumping (OP) pulses (white
regions) I through V. (d) Reduction in mean phonon number,
per spin, as the cooling sequence progresses, for an initial
n̄ = 50 and pLZ(1) = 1 (red), 0.5 (blue), and 0.1 (green).
Each “step” is one sweep and one OP pulse.

many spins. To begin, the spin must be optically pumped
into the low-field seeking state |↓〉. Next, the sequence of
sweeps and pulses begins. First, a magnetic field sweeps
across the resonance from B1 to B2 to transfer the atom
to the high-field seeking state |↑〉, and onto the branch
with one less phonon (I). Second, an optical pumping
pulse resonant at this higher field B2 flips any |↑〉 spins
to |↓〉 (II). Third, the magnetic field sweeps back from
B2 to B1 to put the spin into |↑〉, on the branch with
one less phonon (III). Fourth, an optical pumping pulse
resonant at B1 flips |↑〉 spin to |↓〉 (IV). From this point,
the sequence repeats, and the number of phonons in the
mechanical resonator is sequentially reduced. The use
of optical pumping pulses serves to “reset” the system
after each LZ sweep, and ensures that spins do not get
on the wrong branch, upon which they would act heat
the resonator. Furthermore, the spontaneous emission
associated with these pulses carries entropy out of the
system.

Even if the probability pLZ of a spin-flipping transi-
tion for each individual process is small, that fraction
of an ensemble is active in the cooling process. In the
high-temperature limit (n̄� 1), each sweep across reso-
nance with LZ probability pLZ in a system with N atomic
spins and a mean number n̄ of mechanical phonons re-
moves as many phonons as atoms that undergo a spin
flip: ∆n̄ = pLZ(n̄)N , and each sweep (assuming no ther-
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FIG. 3. An atomic thermometer for mechanics. (a) Near the
bottom of the phonon-occupation ladder, the probability of
spin-state transfer from |↑〉 → |↓〉 depends on the LZ probabil-
ity pLZ, except for the lowest state, for which pLZ(0) = 0. (b,
upper) Assuming Bose-Einstein statistics of phonon-number
occupation in the mechanical mode, the probability of a spin-
flip from |↓〉 depends on temperature for all pLZ (darkest
curve is pLZ(1) = 1.0, with pLZ(1) = 0.75, 0.50, 0.25 also
shown with respectively fainter curves.) (b, lower) The ratio
of transfer probability pflip,↓ from |↓〉 to pflip,↑ from |↑〉 is is
independent of pLZ(n) and depends strongly on temperature
below n̄ ≈ 10, making this atomic-state probability measure-
ment a good temperature indicator.

malization) yields ∆T = ~ωmN∆n̄/kB, where this tem-
perature is associated with the phonon occupation of me-
chanical modes. For ωm/2π = 850 kHz and N = 105, this
change in temperature is ∆T = pLZ(n̄) × 4.1 K for each
sweep. Though this cooling may be modest for room-
temperature systems, this scheme does not lose efficacy
until the n = 0 mode is significantly occupied, as seen
in the calculation of the phonon number reduction in
Fig. 2d (which does not assume the high-temperature
limit). This type of cooling should have a significant im-
pact on cryogenically cooled systems requiring the tran-
sition from 4 K to lower temperatures. For a single 87Rb
atom in its F = 1 ground state and a nanostring fre-
quency with ωm/2π = 850 kHz (B0 = 1.43 T) and
meff = 8.4×10−13 kg, if the atom is a distance r0 = 1 µm,
we find g0 = 21 s−1 and magnetic field ramps over 1 mG
must last about 1 s to provide efficient of cooling at the
lowest phonon occupations [23], though this time scales
as 1/n and these times may be faster for higher phonon
occupations. Further, cooling must happen faster than
rethermalization in order to be effective, which is viable
for the high-Q, high-frequency nanostrings we consider
here (Q ≈ 106) [17, 18].

The asymmetry of state transfer at low phonon num-
bers [29, 38] offers a unique opportunity for mechanical
thermometry. For single sweeps across resonance, spin
flip probability pflip depends on the occupation of the
n = 0 phonon mode. Consider sweeps from high-to-low
field (Fig. 3a): atomic spins prepared in |↑〉 (through op-

tical pumping, for instance) will all experience spin flips
with the probability pflip,↑ = pLZ, while atomic spins pre-
pared in |↓〉 will undergo transfer with pflip,↓ = pLZ only
if the phonon occupation n > 0. Fig. 3b shows the prob-
ability of spin flip in this second case, for phonon oc-
cupations at mechanical temperatures T assuming Bose-
Einstein statistics [23]. The ratio of spin transfer be-
tween initial states |↑〉 and initial states |↓〉 [measured
either using several measurements in single- or low-atom
number experiments, or in an ensemble measurement
for large-atom-number experiments] is independent of
pLZ and depends only on the ground state population,
given by the Boltzmann factor such that pflip↓/pflip↑ =
exp(−~ωm/kBT ). As shown, this ratio of probabilities is
strongly temperature-dependent below a mean phonon
occupation of approximately 10, enabling sensitive ther-
mometry in a difficult-to-access regime [29–32, 40, 41]
using LZ sweeps.

Another avenue for quantum control using these LZ
sweeps is to entangle spatially separated resonators by
individually coupling to the same atomic ensemble at
different times (for example, by transporting the atoms
from one location to the other in a magnetic or optical
trap). Consider the initial state of two Fock-like res-
onators |ψi〉 = |n1, n2, ↑〉. A two-step procedure starts
with the atoms near the first mechanical system (with
n1 phonons) that first undergoes a sweep with probabil-
ity pLZ = p1. Next, the atoms are moved to the second
mechanical system (with n2 phonons) and a second sweep
with probability of pLZ = p2 results in a final state of the
combined system

|ψf 〉 =
[√
p1p2 |n1 + 1, n2 − 1, ↑〉+

√
p̄1p̄2 |n1, n2, ↑〉

]
+
[√
p1p̄2 |n1 + 1, n2, ↓〉+

√
p̄1p2 |n1, n2 + 1, ↓〉

]
,

where p̄ = 1− p. In the case where p1 = p2 = 1/2, a spin
measurement will project the two resonators in an entan-
gled state: either |ψf 〉 = (|n1 + 1, n2〉+ |n1, n2 + 1〉)/

√
2

upon making an atomic measurement |↑〉 or |ψf 〉 =
(|n1, n2〉 + |n1 + 1, n2 − 1〉)/

√
2 if the atomic measure-

ment yields |↓〉. Near the ground state, when n1 or
n2 = 0, a sweep across resonance cannot flip the spin
(|0, ↓〉 → |0, ↓〉). In the case where n1 = n2 = 0 and
the initial state is |ψi〉 = |0, 0, ↑〉, the final state in
the protocol described above results in the state |ψf 〉 =√
p1 |1, 0, ↓〉+

√
p̄1p2 |0, 1, ↓〉+

√
p̄1p̄2 |0, 0, ↑〉. When p1 =

(1− p1)p2, the resonators are left in an equal-amplitude
entangled state upon a |↓〉 measurement of the atomic
spin. The special case where p1 = 1/2 and p2 = 1 yields
the state [|ψf 〉 = (|1, 0〉+|0, 1〉)/

√
2] in the resonator even

without measuring the atoms.
Through this protocol, the atoms act as a coherent

bus for quantum correlations, such that unconnected
nanomechanical devices can be entangled. Upon expand-
ing this protocol to many nanostrings, this can be used
to create a network of coupled resonators.
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FIG. 4. (a) Schematic atom chip design, with grey nanos-
tring. Wires at the bottom form a Z-shaped structure with
current IZ for magnetic trapping. Bias wires at the top are
placed close to the nanostring to aid magnetic transport and
to cancel the nanostring’s offset, B0x. (b,c,d) Magnetic trap
cross-section for |F = 1,mF = −1〉 87Rb atoms in three spa-
tial directions during magnetic transport towards the z = 0
surface, from IZ = 10A (red) to 6 A (green) to 2 A(blue), all
with parallel bias wire current IB = −5 A.

Finally, we consider an architecture optimized for hy-
bridizing ultracold atoms and a nanostring resonator,
including the atoms’ location and overall trapping po-
tential; nanostring geometry; and fabrication consider-
ations. For atom trapping, we consider two different
technologies. The most integrated method is to use an
atom-chip [42]. A Z-shaped wire deposited on the chip’s
bottom surface (Fig. 4) magnetically traps atoms a dis-
tance 0.5 mm from the top surface of a 0.5 mm thick
chip, with IZ = 10 A and equal currents IB = 5 A in two
parallel wires separated by d = 1 mm that create a bias
field. Atoms can be brought closer to the nanostring by
ramping the trapping current IZ down to 2 A (Fig. 4).
While magnetic traps are the most convenient for mi-
crofabricated integration, they permit only magnetically
trappable atoms (mF gF > 0); an optical dipole trap [43]
is necessary for other states. The integration of atom
chips and optical traps has been done, both by main-
taining a sufficient distance from the chip surface [44], or
including reflective elements on the chip surface [45] or
waveguided optical fields [46].

High-tensile stress SiN nanostring resonators are a
promising technology for these systems, where the
string’s fundamental mode ωm can be matched to atomic
resonance ωa by tuning the Zeeman splitting. As an
example, a 200 µm long-string, with width of 2.75 µm
and thickness of 350 µm has effective mass meff =
8.4× 10−13 kg and room-temperature Q factor 1.6× 105

for the fundamental mode ωm/2π = 850 kHz [18]. For
moderately larger frequencies ωm, shorter strings can be
fabricated without dramatically affecting Q. Estimat-

ing the decoherence rate γdec = kBTs/~Q (where Ts is
the substrate temperature) [11], the room-temperature
decoherence of these nanostrings will be approximately
γdec/2π = 39 MHz, whereas at 4 K, this improves to
γdec,4K/2π = 520 kHz and at 10 mK, γdec,10mK/2π =
1.3 kHz. We expect improvement over the type of can-
tilever design previously implemented with a hot vapour
of atoms (Q = 103) [12] and with trapped, laser-cooled
atoms (Q = 104 at r0 = 100 µm [13].) The perfor-
mance of these nanostrings is similar carbon nanotubes
that use surface effects as the coupling mechanism be-
tween the mechanical motion of the atoms and the res-
onator [47, 48], with Q = 2.5×105, and γdec/2π = 2.2 Hz
at a distance 1.67 µm, giving a collective coupling Ω =
710 s−1 [19].

In conclusion, the magnetic coupling in a hybrid quan-
tum systems of ultracold atoms and magnetic mechanical
resonators provides a means for quantum control through
adiabatic magnetic field sweeps. With the advantages
of large Q-factors in SiN nanostring resonators, the con-
trolled transfer of quanta between atomic and mechanical
systems provides a new pathway to mechanical cooling,
a new technique for determining the temperature of me-
chanical resonators near their ground states, and the en-
tanglement of mesoscopic objects. As work progresses to-
wards understanding and harnessing quantum mechanics
on meso- and macroscopic scales in mechanical systems,
the relative ease with which quantum degrees of freedom
in atomic systems can be controlled lends many advan-
tages for manipulating and measuring the mechanical de-
grees of freedom, as demonstrated here. Together, these
hybrid systems will provide a path towards a fundamen-
tal understanding of the quantum-to-classical transition,
and, especially with cryogenic cooling and superconduct-
ing elements [28], will offer possibilities for exploiting the
richness of quantum coherence in practical technologies.
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Supplement to: Magnetic-field-mediated coupling and control for hybrid
atomic-nanomechanical systems

A. Tretiakov1, L. J. LeBlanc1,2

1Department of Physics, University of Alberta, Edmonton AB, Canada
2Canadian Institute for Advanced Research, Toronto, ON, Canada

Temperature probe calculations

To determine the spin-population dependence for the
temperature probe application we consider the occupa-
tion of phonon modes of the mechanical oscillator at var-
ious temperatures, as determined by the Bose-Einstein
statistics for a thermal distribution

Pω(n) =
e−n~ωm/kBT∑
n e
−n~ωm/kBT

= e−n~ωm/kBT
(

1− e−~ωm/kBT
)
.

Next, we consider the action of the Landau-Zener
sweeps. For n > 0:

|n, ↑〉 →
[√

pLZ(n+ 1) |n+ 1, ↓〉+√
1− pLZ(n+ 1) eiφ |n, ↑〉

]
|n, ↓〉 →

[√
pLZ(n) |n− 1, ↑〉+

√
1− pLZ(n) e−iφ |n, ↓〉

]
and for n = 0

|0, ↑〉 →
[√

pLZ(1) |1, ↓〉+
√

1− pLZ(1) eiφ |0, ↑〉
]

|0, ↓〉 → |0, ↓〉

where pLZ(n) is the phonon-dependent Landau-Zener
(LZ) probability of making an adiabatic transition across
the level crossing. The phonon dependence comes from
the amplitude dependence of coupling strength, such
that the avoided crossings have a separation

√
ng0 in

any Jaynes-Cummings ladder. The calculated phonon-
number-dependence of the probability for adiabatic
Landau-Zener transitions is shown in Fig. S1.

To determine the probability of spin flip after a sweep
from one state to another, we determine the probability
of occupation for each phonon number state for a ther-
mal distribution at temperature T , and then apply the
LZ sweep to a single state of this form. These states
are numerically represented and include phonon number
states up to 40 times their average phonon number in the
basis |ψ〉 →

[√
Pω(0) ↓,

√
Pω(0) ↑,

√
Pω(1) ↓,

√
Pω(1) ↑,√

Pω(2) ↓,
√
Pω(2) ↑, . . .

]
. The L-Z sweep can be im-
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FIG. S1. (a) Calculated Landau-Zener probability for adia-
batic transition for different average phonon numbers n̄ vs.
rate of the sweep ∆B/∆T . Blue: n = 5, green: n = 20, red:
n = 50, cyan: n = 100.

plemented as a matrix operation on this state

L̂Z =



1 0 0 0 0 0
0 p̃(1) p̄(1) 0 0 0
0 p̄(1) p̃(1) 0 0 0 . . .
0 0 0 p̃(2) p̄(2) 0
0 0 0 p̄(2) p̃(2) 0
0 0 0 0 0 p̃(3)

...
. . .


where p̄(n) =

√
pLZ(n) and p̃(n) =

√
1− pLZ(n). The

resulting state is then analyzed in terms of the spin pop-
ulation to determine how many spins flipped and how
many stayed the same by finding the expectation value
〈ψf | Ŝ↑ |ψf〉 if the originally atom was in spin-down state

and 〈ψf | Ŝ↓ |ψf〉 if the atom was with spin up, where |ψf〉
is the wave function after the sweep and the spin opera-
tors are given by

Ŝ↓ =



1 0 0 0 0
0 0 0 0 0
0 0 1 0 0 . . .
0 0 0 0 0
0 0 0 0 1

...
. . .


Ŝ↑ =



0 0 0 0 0
0 1 0 0 0
0 0 0 0 0 . . .
0 0 0 1 0
0 0 0 0 0

...
. . .


.

Using this formalism, we can determine the probability
for spin state transfer (“spin flipping”) for a particular
distribution of energies among the phonon number states,
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FIG. S2. (a) Calculated energy change per Landau-Zener
sweep, for initial states |ψinit〉 = |↑〉 (red) and |ψinit〉 = |↓〉
(blue). Calculation are performed for sweeps where the lowest
Landau-Zener probability is pLZ(n = 1) = p1 = 1.0, 0.5, 0.1,
and 0.01.

and the ratio of these probabilities for different initial
states. While the above methodology will work for any
distribution, we consider here the Bose-Einstein thermal
distribution of phonon modes, for which we can also ob-
tain analytic expressions. Starting in the atomic spin
state |ψi,at〉 = |↑〉, the a measurement of the final spin

expectation value is pflip,↓ = 〈ψf | Ŝ↑ |ψf〉 =
∑
n=0 pLZ(n+

1)xn(1 − x), and starting with the atomic spin state
|ψi,at〉 = |↑〉 results in a measurement of the spin-flipping

probability pflip,↑ = 〈ψf | Ŝ↓ |ψf〉 =
∑
n=1 pLZ(n)xn(1−x),

where x = exp(−~ωm/kBT ). The ratio of these probabil-
ities is simply the Boltzmann factor for the zero-phonon
state pflip↓/pflip↑ = exp(−~ωm/kBT ), and a measure of
the ratio of spins flipped gives a measure of the ground
state occupation, and thus, a measure of temperature.

For estimates of temperature at higher phonon num-
ber occupations, one could use the amplitude dependence
of the coupling parameter together with the LZ spin-flip
probability’s exponential dependence on the coupling pa-
rameter. By measuring the probability of a spin flip, ex-
tracting the coupling parameter, and relating this to the
amplitude, the temperature can be found through the
relationship

〈α̂2〉 =
~

2meffωm

(
1 + e−~ωm/kBT

1− e−~ωm/kBT

)
.

where the nanostring’s displacement operator is α̂ =
α0(â+ â†).

The temperature dependence of the cooling scheme
also depends on the occupation of the ground phonon
state (which is not active in cooling). Fig. S2 shows the
change in energy for a single sweep starting in either the
atomic spin state |ψi,at〉 = |↑〉 (red) or |ψi,at〉 = |↓〉 (blue)
for several different nph = 1 LZ probabilities for high-to-
low magnetic field sweeps.
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FIG. S3. Local bias field (dashed, right axis) produced by
two long on-chip wires (width of 10 µm, thickness 4 µm, sep-
arated by 10 µm) carrying a current of 1 A, and corresponding
coupling parameters for a nanostring with permanent magnet
(blue) and dc current (green), where the permanent magnet’s
moment and current are chosen to create constant offset equal
to the corresponding bias field. The nanostring is located
at 4 µm above the chip’s surface. Inset: the ratio of cou-
pling constant Ω to the maximum possible coupling constant
Ωmax = ΩB0/χBosc, as a function of oscillating-field-to-bias-
field ratio, showing a maximum value when the oscillating
field magnitude is large. For a fixed available B0, this sets a
limit for the coupling strength.

Calculating effective cooling

The calculation of effective cooling (as measured by the
reduction of n̄) in Fig. 2d is found by assuming the above
dynamics of the LZ sweeps, and by simulating optical
pumping as an incoherent process that transfers popu-
lations (as opposed to amplitudes, as above). After a
series of one-LZ-sweep, one-OP-pulse steps, n̄ is deter-
mined, and this is plotted.

Limits on coupling strength

As described in the main text, both the permanent-
magnet and direct-current coupling schemes result in
an inconvenient stationary magnetic field B0x (B0x,d

or B0x,I). Estimates of the coupling parameter above
(Eq. 2) assume the external quantization field B0z is
perpendicular to the oscillating field Bm,0, but the sta-
tionary component of the resonator’s field is parallel.
Since the relevant quantization field is the quadrature
sum of these components, Ω is reduced because the oscil-
lating field orthogonal to the effective quantization axis
is Bm,⊥ = B0zBm,0/[B

2
0z + χ2B2

m,0]1/2, where the pa-
rameter fixing the ratio of oscillating to constant field is
χ = r0/3α or χ = r0/α, in the case of the permanent-
magnet or the direct-current nanostrings, respectively
[Eqs. (3) and (4)]. In an experiment where the ex-
ternal field is technically limited to B0z, attempts to
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increase the coupling strength (e.g. by putting more
magnetic material in one case and running larger cur-
rent in the other) shift the quantization axis towards
ex and, the coupling parameter is limited to ~Ωmax =
(gFµBΩB0z/~χ) 〈F ′m′F | F̂x sin θ + F̂z cos θ |FmF 〉. One
solution to this unwanted bias field is to use a compensat-
ing field created by permanent magnetic elements [35][49]
or in a simpler, tunable design, with two parallel wires

on a chip surface to create bias fields (see Fig. S3). While
the ac-current method does not suffer from this accompa-
nying bias field, this current will drive oscillation in the
resonator [18] and prevent attempts to reach the lowest
temperatures.

[49] Y. F. Leung et al., Rev Sci Instrum 85, 053102
(2014).
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