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In this paper, we investigate the profit-driven team grouping problem in social networks. We consider a

setting in which people possess different skills, and the compatibility between these individuals is captured

by a social network. Moreover, there is a collection of tasks, where each task requires a specific set of skills

and yields a profit upon completion. Individuals may collaborate with each other as teams to accomplish a

set of tasks. We aim to find a group of teams to maximize the total profit of the tasks that they can complete.

Any feasible grouping must satisfy the following conditions: (i) each team possesses all the skills required

by the task assigned to it, (ii) individuals belonging to the same team are socially compatible, and (iii) no

individual is overloaded. We refer to this as the TeamGrouping problem. We analyze the computational

complexity of this problem and then propose a linear program-based approximation algorithm to address it

and its variants. Although we focus on team grouping, our results apply to a broad range of optimization

problems that can be formulated as cover decomposition problems.
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1. Introduction

In this paper, we address the team grouping problem in a networked community of people

with diverse skill sets. We consider a setting where people possess different skills and

the compatibility between these individuals is captured by a social network. We assume

a collection of tasks where each task requires a specific set of skills and yields a profit

upon completion. Individuals may collaborate with each other as teams to accomplish a

set of tasks. We aim to find a grouping method that maximizes the total profit of the

tasks they can complete. Relevant examples are available in the domain of online labor
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markets, such as Freelancer (www.freelancer.com), Upwork (www.upwork.com), and Guru

(www.guru.com). In these online platforms, freelancers with various skills can be hired to

work on different types of projects. Instead of working purely independently, a growing

number of freelancers are realizing the benefit of working as a team, with fellow freelancers

who have complementary skills (Golshan et al. 2014). This allows them to expand their

talent pool and better balance their workload. Many major platforms in this area, such as

Upwork, provide team hiring services to their enterprise customers.

We formalize the profit-driven team grouping problem as follows: we assume a set of m

individuals V and a set of n skills S. Each individual u ∈ V is represented by a subset of

skills possessed by this individual, that is, u⊆ S; these are the skills that the individual

possesses. There is a set of tasks T , and every task t ∈ T can also be represented by the

set of skills required by this task (i.e., t⊆ S). Finally, every task t will yield a profit λt,

which is the benefit that the completion of the task will yield for the platform. The team

grouping problem (labeled TeamGrouping) is to group individuals into different teams

and assign a task to each team in a manner that satisfies the following conditions: (i)

each team possesses all the skills required by the task, (ii) individuals within the same

team have high social compatibility, and (iii) no individual is overloaded. Our goal is to

maximize the sum of profits from all the tasks that can be performed by these teams. Social

compatibility between individuals can be interpreted in many ways. In this work, we model

social compatibility by means of a social network in which the nodes represent individuals

and an edge connecting two nodes denotes a social connection between the corresponding

individuals. One popular indicator of social compatibility is connectivity (Lappas et al.

2009); therefore, each team must form a connected graph. Another important indicator of

social compatibility is diameter, for example, according to (Anagnostopoulos et al. 2012),

the induced graph of each team should have a small diameter. However, our results are not

restricted to any specific indicator of social compatibility. Instead, we propose a general

framework in which a socially compatible team is a subset of nodes of the graph for which

the induced subgraph has some desirable property.

We next present a toy example of our problem. Assume there are three IT projects

requiring different skills: the first task will yield profit λ1 = $50 and requires skills t1 =

{HTML, MySQL, JavaScript, PHP}, the second task will yield profit λ2 = $10 and requires

skills t2 = {JavaScript, HTML}, and the last task will yield profit λ3 = $5 and requires
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Figure 1 Two social networks.

skills t3 = {PHP}. In addition, there are three individuals {a, b, c} with the following skills:

a= {HTML, MySQL}, b= {JavaScript}, and c= {HTML, PHP}. In our basic formulation,

each individual can participate in only one team, and all team members must be connected.

We consider the social networks illustrated in Fig. 1. The most profitable grouping approach

in Fig. 1 (1) is to assign team {a, b} to t2, and team {c} to t3, which yields $15 in profit.

This is because a and b are connected while c is isolated. For the social network in Fig.

1 (2) by contrast, since the induced graph of all three individuals is connected, the most

profitable grouping approach is to assign team {a, b, c} to t1, which yields $50 in profit.

Contributions: To the best of our knowledge, we are the first to define and study the

TeamGrouping problem and its variants. We summarize our contributions as follows:

• We show that this problem is 1/ lnm-hard to approximate; that is, it is NP-hard to

find a solution with approximation ratio larger than 1/ lnm.

• We propose a linear program (LP) based algorithm with approximation ratio

max{µ/∆, µ/2
√
m} where ∆ denotes the size of the largest minimal team and 1/µ is the

approximation ratio of the MincostTeamSelection problem (Definition 1). If there is

no constraint on social compatibility, then this ratio reduces to max{lnn/n, lnn/2
√
m}.

• We consider two extensions of the basic model. In the first extension, we con-

sider a scenario where each task can only be performed a given number of times at

most. We develop a max{µ/(∆ + 1), µ/2(
√
m+ 1)}-approximate algorithm for this exten-

sion. In the second extension, we relax the assumption that each person can partici-

pate in only one task by allowing individuals to have different load limits. We develop a

max{µ/(4∆), µ/(8
√
fmaxm)}-approximate algorithm for this extension, where fmax repre-

sents the largest number of tasks an individual can participate in.

• Although we focus on TeamGrouping, our results apply to other applications, such

as the lifetime maximization problem in wireless networks (Bagaria et al. 2013), resource

allocation and scheduling problems (Pananjady et al. 2014), and supply chain management
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problems (Lu 2011). In this sense, this research contributes fundamentally to any problems

that fall into the family of generalized cover decomposition problem.

The remainder of this paper is organized as follows. In Section 2, we review the literature

on team formation and disjoint set cover. We introduce the formulation of our problem in

Section 3. In Section 4, we present our LP-based approximation algorithms. We conduct

extensive experiments in Section 5. The two extensions of the basic model are studied in

Section 6. We summarize this study in Section 7. Most notations used in this paper are

summarized in Table 1.

Table 1 Symbol table.

Notation Meaning

n,m,k Number of skills, individuals, tasks

∆ Size of the largest minimal team

C Ground set of teams

Ct ∈ C Set of teams covering task t

Cti ∈ Ct ith team in Ct
1/µ Approximation ratio of the MincostTeamSelection problem

x∗ (Approximate) Solution of primal LP

N (C) C’s adjacent teams from CI

C(x∗) C(x∗) = {Cti | x∗ti > 0}

C(x∗)t CHt = C(x∗)∩Ct

2. Related Work

To the best of our knowledge, we are the first to formulate and study the team grouping

problem and its variants. However, our work is closely related to other team formation

and hiring problems. Lappas et al. (2009) introduced the minimum cost team formation

problem. Given a set of skills to be covered and a social network, the objective is to select

a team of experts that can cover all required skills, while ensuring efficient communication

between team members. There is a considerable amount of literature on this topic and its

variants (Kargar et al. 2013, Dorn and Dustdar 2010, Gajewar and Sarma 2012, Kargar

and An 2011, Li and Shan 2010, Sozio and Gionis 2010). Golshan et al. (2014) studied the
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cluster hiring problem, where the objective is to hire a profit-maximizing team of experts

who can complete multiple projects within a fixed budget. The aforementioned studies aim

to select a single team. By contrast, our objective is to group individuals into multiple

teams. Nevertheless, our problem is closely related to the team formation problem, and we

use their solution as a key component of our solution.

Another category of related work is the maximum disjoint set cover (DSCP) problem

(Bagaria et al. 2013). Given a universe, and a set of subsets, the objective of this problem

is to find as many set covers as possible such that all set covers are pairwise disjoint. Our

problem can be considered a generalization of DSCP because every task in our problem may

have different coverage requirements, capacity constraints, and profits. Moreover, every

feasible set cover (team) in our problem must satisfy both coverage requirement and social

compatibility. In addition, the requirement of “disjointness” is relaxed in our problem by

allowing individuals to have different load limits.

3. Problem Formulation

Individuals. Skills. Tasks. Consider a set of n skills S, a set of m individuals V, and

a set of k tasks T . Each individual u ∈ V is represented by a subset of skills possessed by

this individual; that is, u⊆S; these are the skills that the individual possesses. Every task

t∈ T can also be represented by the set of skills needed to complete the task (i.e., t⊆S).

In addition, each task t ∈ T has a profit λt. We assume that each task has an unlimited

number of copies; that is, the same task can be performed by an unlimited number of

teams. We relax this assumption in Section 6 by imposing a capacity constraint on each

task.

Load. Our basic model assumes that each individual can participate in only one task.

In Section 6, we relax this assumption by allowing individuals to have different load limits.

Teams. In practice, social compatibility between individuals plays an important role in

teamwork. For example, low social compatibility or high coordination costs might degrade

the organizational efficiency (Coase 1937). We model social compatibility by means of a

social network G = (V,E), where the nodes in V represent individuals and an edge in E

connecting two nodes denotes the social connection between the corresponding individuals.

Connectivity is a widely known concept that captures the underlying social compatibility

of a team. This follows the approach of Lappas et al. (2009) and requires that each team
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form a connected graph. Another popular indicator of social compatibility is diameter

(Anagnostopoulos et al. 2012); that is, the longest shortest path between team members

in a social network is no longer than a given threshold. Nonetheless, our results are not

restricted to any specific notations of social compatibility.

Problem Formulation. For a team of individuals C ⊆ V, C is deemed to have skill s if

there exists at least one individual u∈C such that u has skill s, that is, s∈ u. For a task

t∈ T , team C is deemed to cover t if C (as a team) has all the skills required by t. A team

of individuals may cover more than one task, but each individual can only participate in

one of those tasks 1. We define the set of qualified teams for a task t ∈ T to be the set of

socially compatible teams covering t. That is,

Ct = {C ⊆V |C is socially compatible ∧C covers t}.

A minimal team for a task is a qualified team for this task that is not a superset of

any other qualified team. In the rest of this paper, we only consider minimal teams. Let

C = ∪t∈T Ct. The objective of the TeamGrouping problem is to select a group of teams

from C such that each individual participates in only one team. We formally define the

TeamGrouping problem in P.1. For each t∈ T and i∈ {0,1, · · · , |Ct|}, let Cti denote the

ith team in Ct. Let xti be an indicator of whether team Cti is selected (xti = 1) or not

(xti = 0).

P.1: Maximize
∑

Cti∈C
(xti ·λt)

subject to:{∑
Cti∈C:Cti3u

xti ≤ 1,∀u∈ V
xti ∈ {0,1},∀Cti ∈ C.

The first constraint specifies that each individual participates in at most one team. Recall

that |V|=m, the following results show that we cannot hope to achieve an approximation

ratio of ω(1/ lnm) for this problem.

Theorem 1. Let m= |V|. P.1 is 1/ lnm-hard to approximate.

Proof: For this proof, we consider a simplified version of P.1. There is only one task,

that is, k = 1, and there is no constraint on social compatibility. We call this problem

s-TeamGrouping. We next prove that the DSCP can be reduced to s-TeamGrouping.

1 As mentioned earlier, this assumption will be relaxed in Section 6.
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The formal definition of DSCP is as follows: Given a universe U and a set of subsets X ,

the goal is to find as many set covers as possible such that all set covers are pairwise

disjoint. We wish to formulate an equivalent s-TeamGrouping with a set of skills S
required to do the task, and a set of individuals V. Let S = U and V =X . Because there is

only one task and no constraint on social compatibility, s-TeamGrouping is equivalent

to grouping V into the maximum number of disjoint teams such that each team can cover

all skills in S. According to Bagaria et al. (2013), it is hard to achieve an approximation

ratio of ω(1/ lnm) unless NP ⊆DTIME(nO(ln lnm)). Thus, P.1, which is a generalization

of s-TeamGrouping, is also 1/ lnm-hard to approximate. �

Bagaria et al. (2013) developed an 1/ lnm-approximate algorithm for DSCP. For the

special case of our problem where there is only one task and no constraint on social

compatibility, we can simply adopt their method to achieve an approximation ratio of

1/ lnm. In the following, we propose an LP-based approximation algorithm to address the

general case.

4. LP-Based Approximation Algorithms

In this section, we give a max{µ/∆, µ/2
√
m}-approximation algorithm for P.1, where 1/µ

is the approximation factor of the algorithm for the MincostTeamSelection problem,

which is formally defined in Definition 1, and ∆ := maxC∈C |C| is the size of the largest

minimal team. Our algorithm consists of two phases: we first solve the LP relaxation of the

original problem to obtain a fractional solution (Section 4.1) and then use this fractional

solution to compute a group of teams (Section 4.2).

4.1. LP Relaxation

We first present the LP relaxation of P.1. We refer to this relaxation as the primal LP.

Primal LP of P.1: Maximize
∑

Cti∈C
(xti ·λt)

subject to: {∑
Cti∈C:Cti3u

xti ≤ 1,∀u∈ V
xti ≥ 0,∀Cti ∈ C.

This LP hasm constraints (excluding the trivial constraints xti ≥ 0). However, its number

of variables is
∑

t∈T |Ct|, which can easily be exponential in the number of individuals.

Hence, standard LP solvers cannot solve this packing LP effectively.

To address this challenge, we rely on the ellipsoid algorithm (Grötschel et al. 1981) and

the dual problem (Dual LP of P.1). On a high level, we use the ellipsoid method to test
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whether a given non-degenerate convex set S is empty or not. Here, S represents the feasi-

bility region of the dual problem. This method starts with an ellipsoid that is guaranteed

to contain S. In each iteration, it determines whether the center of the current ellipsoid

is in S. If the answer is “yes,”, then S is nonempty, which indicates that the current

solution is feasible. In this case, the method tries a smaller ellipsoid that decreases the

objective function. Otherwise, the method finds a violated constraint through an (approx-

imate) separation oracle and tries a smaller ellipsoid whose center satisfies that constraint.

Geometrically, we take a hyperplane through the center of the original ellipsoid such that

S is contained in one of the two half-ellipsoids. We take the smallest ellipsoid completely

containing this half-ellipsoid, whose volume is substantially smaller than the volume of

the previous ellipsoid. This process iterates until the volume of the bounding ellipsoid is

sufficiently small, in which case S is considered empty; that is, we cannot find a feasible

solution with a smaller objective. This process takes a polynomial number of iterations

for solving linear problems. We do not require an explicit description of LP to make this

method work; we only need a polynomial-time (approximate) separation oracle to examine

whether a point lies in S or not and, in the latter case, return a separating hyperplane.

Here, we formally introduce our algorithm. We next present Dual LP of P.1, the dual

to the primal LP. In the dual problem, we assign a price y(u) to each node u∈ V.

Dual LP of P.1: Minimize
∑

u∈V y(u)

subject to:{∑
u∈Cti

y(u)≥ λt,∀Cti ∈ C
y(u)≥ 0,∀u∈ V.

We leverage the ellipsoid method for exponential-sized LP with an (approximate) separa-

tion oracle to solve this problem. In particular, in each iteration of the ellipsoid method, we

solve the MincostTeamSelection problem approximately to obtain a polynomial-time

approximate separation oracle to check the feasibility of the current solution.

Definition 1 (MincostTeamSelection). Assume that there is a set of skills S and

individuals V; each individual u∈ V has a cost and possesses a subset of skills. We indentify

a team of individuals with the minimum cost such that (1) all team members are socially

compatible, and (2) all skills in S can be covered.

MincostTeamSelection has been intensively studied in the literature, using various

indicators of social compatibility. For example, if there is no requirement of social compat-

ibility, then MincostTeamSelection reduces to the classical weighted set cover problem
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(Chvatal 1979), which admits an O(logn)-factor approximation. (Lappas et al. 2009) pro-

posed the use of connectivity as a measure of social compatibility; that is, all team members

must be connected in a social network. In this context, the MincostTeamSelection

problem can be reduced from node weight group steiner tree problem (Khandekar et al.

2012), which admits a performance ratio of O(|E|1/2 ln |E|), where |E| is the number of edges

in the social network. As stated by Anagnostopoulos et al. (2012), a team must have a

bounded diameter. We next present the main theorem of this section. This theorem is not

restricted to any specific indicator of social compatibility.

Theorem 2. If there is a polynomial 1/µ-approximation algorithm for MincostTeam-

Selection, then there exists a polynomial µ-approximation algorithm for Primal LP of

P.1.

Proof: Let A be a 1/µ-approximation algorithm for MincostTeamSelection. We use A

as an approximate separation oracle to examine whether the current solution to the dual

problem is feasible or not. Let S(L) denote the set of y ∈RV+ satisfying that∑
u∈V

y(u)≤L,

∑
u∈Cti

y(u)≥ λt,∀Cti ∈ C.

We implement binary search to find the smallest value of L for which S(L) is nonempty.

For a given L, the method first checks the inequality
∑

u∈V y(u)≤L. Then, it runs algorithm

A, using y(u) as the price function to select the cheapest group Ct ∈ Ct for each task t∈ T .

Suppose A is an exact algorithm, that is, µ= 1. If for all t,
∑

u∈Ct
y(u)≥ λt, then y ∈ S(L).

If there exists some t such that
∑

u∈Ct
y(u) < λt, then y /∈ S(L) and Ct is a separating

hyperplane. However, for general µ≤ 1, Ct ∈ Ct might not be the cheapest team for task

t∈ T . Hence, S(L) might actually be empty even if ∀t,
∑

u∈Ct
y(u)≥ λt. Nonetheless, even

for this general case, 1
µ
· y ∈ S( 1

µ
· L). Let L∗ be the minimum value of L for which the

algorithm decides S(L) is nonempty. We can conclude that S( 1
µ
· L∗) is nonempty and

S(L∗− ε) is empty, where ε is the precision of the algorithm. That is, the value of the dual

LP and thus the value of the primal LP belong to [L∗− ε, 1
µ
·L∗]. Therefore, by finding a

solution of value L∗− ε for the primal LP, we achieve an approximation ratio of µ against

the optimal solution.
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Here, we explain how to compute such a solution using only teams corresponding to

the separating hyperplanes found by the separation oracle. Let CHt denote the subset of

teams in Ct for which the dual constraint is violated in the implementation of the ellipsoid

algorithm on S(L∗− ε). Then,
∑k

t=1 |CHt | is polynomial. Let CH =∪t∈T CHt , and consider the

restricted dual LP.

Minimize
∑

u∈V y(u)

subject to: {∑
u∈Cti

y(u)≥ λt,∀Cti ∈ CH

y(u)≥ 0,∀u∈ V.

The value of the optimal solution to the above restricted dual LP is also at least L∗.

Thus, we solve the following restricted primal LP of polynomial size, which is the dual of

the restricted dual LP:

Maximize
∑

Cti∈CH
(xti ·λt)

subject to:{∑
Cti∈CH :u3Cti

xti ≤ 1,∀u∈ V
xti ≥ 0,∀Cti ∈ CH .

The value of the optimal solution of this restricted LP is at least L∗, which is a µ-

approximation to the original primal LP. �

4.2. Approximation Algorithm

Before presenting our algorithm, we present a deterministic rounding method that converts

any feasible solution of Primal LP of P.1 to a feasible solution of P.1. Later, we use this

rounding method as an essential subroutine to build our final algorithm.

4.2.1. LP Rounding Given any feasible solution x∗ = {x∗ij | Cti ∈ C} of Primal LP

of P.1, let C(x∗) = {Cti | x∗ti > 0} denote the set of all teams whose fractional value in

x∗ is positive. Two teams are considered adjacent if they contain at least one common

individual. N (C,CI) denotes the set of all adjacent teams of C from a set of input teams

CI ⊆C(x∗), that is, N (C,CI) = {C ′ ∈ CI |C ′ 6=C ∧C ∩C ′ 6= ∅}. For simplicity, we use N (C)

to denote N (C,CI) when it is clear from the context.

Our deterministic rounding method (Algorithm 1) takes a set of teams CI ⊆ C(x∗) as

input.

Step 1: Select the team that has the highest profit from CI (e.g., Cti,).
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Step 2: Add Cti to CDR and remove Cti ∪ N (Cti) from CI . This step ensures that no

individual participates in multiple tasks. Go to Step 1 unless there are no teams left.

Output CDR.

Algorithm 1 Deterministic Rounding

Input: CI ⊆C(x∗).

1: CDR = ∅

2: while CI 6= ∅ do

3: Select the team, say Cti, that has the highest profit from CI .

4: CDR = CDR ∪{Cti}.

5: CI = CI \ {Cti ∪N (Cti)}.

6: Return CDR.

Let ρ(CI) = maxCti∈CI |Cti| denote the size of the largest team in CI . We next show that

the profit of CDR is at least 1/ρ(CI) faction of the one obtained from the fractional solution

x∗.

Lemma 1. Given a feasible solution x∗ of Primal LP of P.1, a set of input teams

CI ⊆C(x∗),
∑

Cti∈CDR λt ≥
∑

Cti∈CI (x
∗
ti ·λt)/ρ(CI), where ρ(CI) = maxCti∈CI |Cti|.

Proof: Consider any team Cti ∈ CDR. We have

x∗ti ·λt +
∑

Clj∈N (Cti)

(x∗lj ·λl)≤ x∗ti ·λt +
∑

Clj∈N (Cti)

(x∗lj ·λt) (1)

= λt× (x∗ti +
∑

Clj∈N (Cti)

x∗lj) (2)

≤ λt×
∑
u∈Cti

∑
Clj∈Cti∪N (Cti):Clj3u

x∗lj (3)

≤ λt×
∑
u∈Cti

∑
Clj∈C(x∗):Clj3u

x∗lj (4)

≤ λt×
∑
u∈Cti

1 (5)

≤ ρ(CI) ·λt. (6)

The first inequality is due to Cti having the highest profit among all its adjacent teams; the

second inequality is due to the definition of N (Cti); the fourth inequality is due to x∗ being
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a feasible solution of Primal LP of P.1, indicating that
∑

Clj∈C(x∗):Clj3u x
∗
lj ≤ 1,∀u ∈Cti;

the last inequality is due to ρ(CI) = maxCti∈CI |Cti|.

Therefore, for any Cti ∈ CDR, λt ≥ (x∗ti · λt +
∑

Clj∈N (Cti)
(x∗lj · λl))/ρ(CI). Summation of

this inequality over all teams from CDR gives∑
Cti∈CDR

λt ≥
∑

Cti∈CDR

(x∗ti ·λt +
∑

Clj∈N (Cti)

(x∗lj ·λl))/ρ(CI) =
∑
Cti∈CI

(x∗ti ·λt)/ρ(CI). (7)

That is, the profit of CDR is at least 1/ρ(CI) of the one obtained from the fractional solution

x∗. �

4.3. Algorithm Design and Performance Analysis

We present our final algorithm, Approx-TG. In the rest of this paper, OPT denotes the

profit gained from the optimal grouping. Approx-TG selects the better solution from two

candidates as the final output. We present these two candidate solutions in detail.

Candidate Solution I: In Algorithm 2, we directly apply the deterministic rounding

(Algorithm 1) to C(x∗), that is, we feed CI = C(x∗) as input teams to Algorithm 1. We prove

that if x∗ is a µ-approximate solution of Primal LP of P.1 that is found by the ellipsoid

method, then Algorithm 2 achieves an approximation ratio of µ/∆, where ∆ denotes the

size of the largest minimal team.

Algorithm 2 Candidate Grouping - I
Input: x∗.

1: Apply deterministic rounding (Algorithm 1) to x∗ and output a group of teams.

Lemma 2. Assume that x∗ is a µ-approximate solution of Primal LP of P.1 that is

found by the ellipsoid method. Then Algorithm 2 achieves an approximation ratio of µ/∆

for P.1.

Proof: By Lemma 1, Algorithm 1 takes C(x∗) as input and returns a grouping that achieves

a profit of at least 1
∆

∑
Cti∈C(x∗)(x

∗
ti ·λt), where ∆ is the size of the largest possible team in

C(x∗). By the assumption that x∗ is a µ-approximate solution of Primal LP of P.1, we

have
∑

Cti∈C(x∗)(x
∗
ti ·λt)≥ µ ·OPT . Thus, Algorithm 2 achieves a profit of at least

1

∆

∑
Cti∈C(x∗)

(x∗ti ·λt)≥
µ

∆
·OPT.
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�

Candidate Solution II: Let C(x∗)t = C(x∗) ∩ Ct denote the subset of C(x∗) that is

assigned to task t∈ T . Hence, C(x∗) =∪t∈T C(x∗)t. The framework of the second candidate

solution (Algorithm 3) is summarized as follows:

Step 1: For every task t∈ T , we first partition C(x∗)t into the disjoint subsets C(x∗)1
t and

C(x∗)2
t such that ∀C ∈ C(x∗)1

t : |C| ≤
√
m and ∀C ∈ C(x∗)2

t : |C|>
√
m. That is, C(x∗)1

t (resp.

C(x∗)2
t ) contains all teams with no more (resp. less) than

√
m individuals. Let C(x∗)1 =

∪t∈T C(x∗)1
t and C(x∗)2 =∪t∈T C(x∗)2

t .

Step 2: Apply deterministic rounding (Algorithm 1) to C(x∗)1 to obtain a group of teams

C̃.
Step 3: Select a team from C(x∗)2 whose task tmax has the highest profit λtmax (e.g.,

Ctmax).

Step 4: Output the better solution between C̃ and {Ctmax} as the final output; that is,

the profit of the returned solution is max{
∑

Cti∈C̃ λt, λtmax}.

Algorithm 3 Candidate Grouping - II
Input: x∗.

1: Partition C(x∗) into two subsets C(x∗)1 and C(x∗)2.

2: Apply the deterministic rounding (Algorithm 1) to C(x∗)1 to obtain C̃.

3: Select a team with the highest profit, say Ctmax, from C(x∗)2.

4: Compare C̃ and {Ctmax}, return the one with larger profit.

We next prove that if x∗ is a µ-approximate solution of Primal LP of P.1 that is found

by the ellipsoid method, then the approximation ratio of Algorithm 3 can be bounded by

µ/(2
√
m).

Lemma 3. Assume that x∗ is a µ-approximate solution of Primal LP of P.1 that is

found by the ellipsoid method. Algorithm 3 achieves an approximation ratio of µ/(2
√
m)

for P.1.

Proof: To prove this lemma, we show that max{
∑

Cti∈C̃ λt, λtmax} ≥ 1√
m
· µ

2
·OPT .

We first bound the gap between the profit gained from C̃ and
∑

Cti∈C(x∗)1(x
∗
ti · λt). By

Lemma 1, we have∑
Cti∈C̃

λt ≥
1

ρ
·

∑
Cti∈C(x∗)1

(x∗ti ·λt)≥
1√
m
·

∑
Cti∈C(x∗)1

(x∗ti ·λt), (8)
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where the second inequality is due to the assumption that ρ≤
√
m holds for all teams from

C(x∗)1.

We next bound the gap between the profit gained from Ctmax and
∑

Cti∈C(x∗)2(x
∗
ti ·λt). In

particular, we show that

λtmax ≥
1√
m
·

∑
Cti∈C(x∗)2

(x∗ti ·λt). (9)

The following chain proves this inequality:∑
Cti∈C(x∗)2

(x∗ti ·λt)≤
∑

Cti∈C(x∗)2
(x∗ti ·λtmax) = λtmax ·

∑
Cti∈C(x∗)2

x∗ti ≤ λtmax ·
m√
m
. (10)

The first inequality is due to the assumption that Ctmax delivers the highest profit among

C(x∗)2. We then prove the second inequality. Because x∗ is a feasible solution of Primal

LP of P.1 and C(x∗)2 ⊆C, we have
∑

Cti∈C(x∗)2:Cti3u x
∗
ti ≤ 1,∀u∈ V. Therefore,∑

Cti∈C(x∗)2
(x∗ti · |Cti|)≤m. (11)

All teams in C(x∗)2 contain at least
√
m individuals, so

∑
Cti∈C(x∗)2(x

∗
ti · |Cti|) ≥∑

Cti∈C(x∗)2(x
∗
ti ·
√
m). This, together with (11), implies that

∑
Cti∈C(x∗)2(x

∗
ti ·
√
m)≤m; thus,∑

Cti∈C(x∗)2(x
∗
ti)≤

√
m. This finishes the proof of the second inequality.

By the assumption that x∗ is a µ-approximate solution of Primal LP of P.1, we have∑
Cti∈C(x∗)

(x∗ti ·λt)≥ µ ·OPT ⇒
∑

Cti∈C(x∗)1
(x∗ti ·λt) +

∑
Cti∈C(x∗)2

(x∗ti ·λt)≥ µ ·OPT. (12)

We now prove this theorem.

max{
∑
Cti∈C̃

λt, λtmax} ≥
∑

Cti∈C̃ λt +λtmax

2
(13)

≥ 1√
m
·
∑

Cti∈C(x∗)1(x
∗
ti ·λt) +

∑
Cti∈C(x∗)2(x

∗
ti ·λt)

2
(14)

≥ 1√
m
· µ

2
·OPT (15)

The second inequality is due to (8) and (9), and the third inequality is due to (12). �

Putting It All Together. Given solutions returned from Algorithms 2 and 3, Approx-

TG returns the one with the higher profit as the final output. Lemmas 2 and 3 jointly

imply our main theorem.
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Theorem 3. Approx-TG achieves an approximation ratio of max{µ/∆, µ/2
√
m} for

P.1.

Consider a special case of TeamGrouping where there is no requirement of social

compatibility. In this case, the MincostTeamSelection problem reduces to the classi-

cal weighted set cover problem, which admits an lnn approximation. In addition, ∆≤ n,

because the number of possible skills is at most n, and if there is no constraint on social

compatibility, then any minimal team contains at most n individuals. Corollary 1 holds by

replacing µ with lnn, and ∆ with n in Theorem 3.

Corollary 1. If there is no constraint on social compatibility, Approx-TG achieves an

approximation ratio of max{lnn/n, lnn/2
√
m} for P.1.

In practice, n�m; that is, the number of skills is much smaller than the number of

individuals, so the above approximation ratio can be further rewritten as lnn/n.

Consider a special case that uses connectivity as an indicator of social compatibility. As

discussed in Section 4.1, in this setting, the MincostTeamSelection problem reduces

to a node weight group Steiner tree problem (Khandekar et al. 2012), which admits a

performance ratio of O(|E|1/2 ln |E|). Therefore, we have Corollary 2.

Corollary 2. If all teams are required to be connected, Approx-TG achieves an approx-

imation ratio of max{O(|E|1/2 ln |E|)/∆),O(|E|1/2 ln |E|)/2
√
m)} for P.1.

5. Performance Evaluation

In this section, we conduct simulations to evaluate the performance of our algorithm. All

experiments were run 10 times on a desktop with Intel(R) Xeon(R) Gold 5218R CPU

@ 2.1GHz and 94GB memory, running 64-bit Linux server. We show that our algorithm

outperforms three benchmarks, and we also validate its robustness under various settings.

5.1. Setting

The input of our basic setting is composed of a set of 10 skills, a set of 20 tasks and a set

of 100 individuals. We set the profit of each task to

# skills required by a task × r,

where r is a random number chosen from {1,2,3}. We consider two scenarios as follows:
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Scenario 1: In the first scenario, we assume there is no constraint on social compati-

bility. Hence, MincostTeamSelection reduces to the weighted set cover problem. We

use greedy algorithm (Slavık 1997) to solve this problem to obtain a lnn-approximation

solution, where n is the number of elements to be covered.

Scenario 2: In the second scenario, we incorporate the constraint of social compatibility.

In particular, we use connectivity (Lappas et al. 2009) as an indicator of social compati-

bility; therefore, each team must form a connected graph. We generate a random network

consisting of 1000 edges in the basic setting such that the connecting density of this net-

work is 0.202. We add more edges to the network in the robustness section. In this scenario,

our MincostTeamSelection problem reduces to the group steiner tree problem, and we

use the ImprovAPP algorithm from (Sun et al. 2021) to solve this problem. It has been

shown that this algorithm achieves a (|Γ| − 1)-approximation ratio, where |Γ| denotes the

number of vertex groups.

5.2. Benchmark

We compare our algorithm with three heuristics.

• Random: In each iteration, Random selects a random task, and then builds up a team

randomly to cover this task. We remove all selected individuals from consideration in the

subsequent iterations. This process continues until the individual pool is exhausted or the

remaining individuals can not cover any of the tasks.

• Greedy: Greedy first sorts all tasks in non-increasing order of their profits. Then starting

with the first task (e.g., t), Greedy selects a group of teams that covers t sequentially, where

each team is selected by solving a weighted set cover problem (resp. the group steiner tree

problem) using the greedy algorithm (resp. the ImprovAPP algorithm) in the basic setting

(resp. the general setting). If we can not find more teams to cover t, then we move to the

next task in the list. This process iterates until the individual pool is exhausted or we can

not find more teams to cover the last task in the list.

• Greedy+: Unlike Greedy which ranks tasks according to their profits, Greedy+ ranks

tasks according to λt
|t| , the ratio of profit and the number of skills required by a task t. The

rest of the procedure is identical to Greedy.
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5.3. Results

In this section, we report the performance of four algorithms under the basic setting. Figure

2 shows the statistics of 10-times-running without considering social compatibility, Figure

3 shows the statistics of 10-times-running subject to the constraint of social compatibility.

Approx-TG Random Greedy Greedy+

200

300

400

500

600

To
ta

l p
ro

fit

Figure 2 without social compatibility

Approx-TG Random Greedy Greedy+

100

200

300

400

500

To
ta

l p
ro

fit

Figure 3 with social compatibility

Table 2 lists the mean total profit of 10 times and the improvement of other three

algorithms over random policy.
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Table 2 Profit comparison of four algorithms: mean(improvement against random policy)

Setting Random Greedy Greedy+ Approx-TG

without social compatibility 236.9 331.5(40%) 320.4(35%) 516.3(118%)

with social compatibility 162.9 275.0(69%) 275.2(69%) 441.9(171%)

Our algorithm outperforms three benchmark solutions under all settings. By treating

Random as a baseline, Greedy, Greedy+ and our algorithm increase the total profit by 40%,

35% and 118%, respectively, without considering social compatibility. If we consider the

constraint of social compatibility, Greedy, Greedy+ and our algorithm increase the total

profit by 69%, 69% and 171%, respectively. The absolute profits achieved by all algorithms

decrease as we consider the constraint of social compatibility. This is because considering

social compatibility adds additional constraints for finding a feasible solution.

Table 3 Profit comparison of four algorithms: mean(improvement against random policy) under different

scenarios

index scenario Random Greedy Greedy+ Approx-TG

1○ (-,10,20,100) 236.9 331.5(40%) 320.4(35%) 516.3(118%)

2○ (-,10,20,50) 96.0 165.5 (72%) 150.6(57%) 230.3 (140%)

3○ (-,10,20,200) 464.5 668.5 (43%) 614.8(32%) 973.1(109%)

4○ (-,10,10,100) 215.3 308.0(43%) 286.8(33%) 362.3(68%)

5○ (-,10,50,100) 236.7 348.5(47%) 335.9(42%) 615.4(160%)

6○ (-,20,20,100) 204.1 271.3(32%) 252.5(23%) 337.3(65%)

Table 4 Profit comparison of four algorithms: mean(improvement against random policy) under different

network scenarios

index scenario Random Greedy Greedy+ Approx-TG

7○ (1000,10,20,100) 162.9 275.0(69%) 275.2(69%) 441.9(171%)

8○ (2000,10,20,100) 186.8 353.0(89%) 313.0(68%) 474.5(154%)

9○ (3000,10,20,100) 210.2 385.0(83%) 337.6(61%) 479.8(128%)
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5.4. More Results on Robustness Check

We conduct additional experiments to validate the robustness of our algorithm. We denote

the scenario that involves c1 edges, c2 skills, c3 tasks and c4 individuals as (c1, c2, c3, c4), and

denote with (−, c2, c3, c4) the same scenario without considering the social compatibility.

We vary the number of edges, the number of skills, the number of tasks and the number

of individuals and report the mean total profit of 10-times-running in Tables 3 and 4.

Random performs the worst in all settings, and our algorithm achieves the largest

improvement over Random. Table 3 shows the results without social compatibility. We

report the results under the baseline setting (−,10,20,100) in 1○. We vary the number

of individuals from 50 to 200 and report the results in 2○ and 3○ respectively. As the

same task can be performed by an arbitrary number of teams, a larger pool of individuals

leads to a higher profit. Our algorithm achieves a profit more than twice that of Random,

regardless of the number of individuals. We vary the number of tasks in 4○ and 5○. We

find that the number of tasks has little impact on the performance of three benchmarks.

Both Greedy and Greedy+ tend to select tasks with higher profits. Approx-TG achieves an

improvement of 160% when the number of tasks is large. We increase the number of skills

to 20 in 6○. While the performance of all algorithms decline, our algorithm still performs

the best.

Considering the constraint of social compatibility, we conduct experiments under differ-

ent number of edges and report our results in Table 4. We set the number of edges to 2000

and 3000 in 8○ and 9○, respectively. As we add more edges to the network, it is easier

to form a feasible team for a given task, this improves the profit of all algorithms. Our

algorithm still performs the best, i.e., it achieves a profit more than twice that achieved

by Random.

6. Extensions
6.1. Incorporation of the Capacity Constraint of Each Task

So far, we have assumed that each task can be performed an unlimited number of times.

However, this may not always hold in practice. For example, puzzle assembly can only

be performed once. To this end, we add a group of additional constraints to the original

problem:
∑

Cti∈Ct xti ≤ gt,∀t∈ T , where gt denotes the capacity of task t∈ T ; that is, each

task t∈ T can be performed up to gt times. We formally define this extension in P.2.
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P.2: Maximize
∑

Cti∈C
(xti ·λt)

subject to:
∑

Cti∈C:Cti3u
xti ≤ 1,∀u∈ V∑

Cti∈Ct
xti ≤ gt,∀t∈ T

xti ∈ {0,1},∀Cti ∈ C.

Similar to the LP-Based algorithm developed in Section 4, we propose a LP-Based

algorithm for P.2.

LP Relaxation The primal LP of P.2 can be formulated as follows.

Primal LP of P.2: Maximize
∑

Cti∈C
(xti ·λt)

subject to:
∑

Cti∈C:Cti3u
xti ≤ 1,∀u∈ V∑

Cti∈Ct
xti ≤ gt,∀t∈ T

0≤ xti,∀Cti ∈ C.

The dual to the above primal LP assigns a price y(u) to each node u∈ V and a price p(t)

to each task t∈ T .

Dual LP of P.2: Minimize
∑

u∈V y(u) +
∑

t∈T (p(t) · gt)

subject to:{∑
u∈Cti

y(u) + p(t)≥ λt,∀Cti ∈ C
y(u)≥ 0,∀u∈ V;p(t)≥ 0,∀t∈ T .

Similar to the solution for P.1, we run the ellipsoid algorithm on the dual LP using algo-

rithm A, an approximation algorithm for MincostTeamSelection, as the approximate

separation oracle. More precisely, let S(L) denote the set of y ∈RV+ satisfying that

∑
u∈V

y(u) +
∑
t∈T

(p(t) · gt)≤L,

∑
u∈Cti

y(u) + p(t)≥ λt,∀Cti ∈ C.

We adopt binary search to find the smallest value of L for which S(L) is nonempty. The

separation oracle works as follows: First, it checks the inequality
∑

u∈V y(u) +
∑

t∈T (p(t) ·

gt)≤L. Next, it runs the algorithmA on each task t∈ T and selects a group Cti ∈ Ct,∀t∈ T ,

using y(u) as the price function. If for all Cti, the cost of Cti is larger than λt− p(t), then

y ∈ S(L). If there exists some Cti whose cost is less than λt − p(t), then y /∈ S(L) and

Cti gives us a separating hyperplane. Based on similar analysis in Section 4, we have the

following theorem.
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Theorem 4. If there is a polynomial µ-approximation algorithm for MincostTeamS-

election, then there exists a polynomial µ-approximation algorithm for Primal LP of

P.2.

LP Rounding We present a deterministic rounding algorithm (Algorithm 4). Given a

feasible solution x∗ of Primal LP of P.2, Algorithm 4 takes CI , a subset of C(x∗), as

input, and outputs a group of teams from CI such that (1) each individual participates in

at most one team and (2) the same task t is performed by at most gt teams for each task

t∈ T . We next provide a summary of Algorithm 4:

Initially, let CDR = ∅, z = x∗.

Step 1: Select the team with the highest profit from CI (e.g., Cti).

Step 2: Let CIt = Ct ∩ CI denote the set of all teams in CI that is assigned to task t.

Reduce the value of ztj for some Ctj ∈ CIt \ {Cti} to some non-negative value such that∑
Ctj∈CIt \{Cti}

ztj is reduced by min{
∑

Ctj∈CIt \{Cti}

ztj,1− zti}. (16)

This can be done in an arbitrary way. For example, one can select an arbitrary team, say

Ctq, from CIt \ {Cti}, reduce ztq to its smallest non-negative value (zero, if necessary) such

that the cumulative amount of reduction does not exceed min{
∑

Ctj∈CIt \{Cti} ztj,1 − zti}.
Then we select another team from CIt \ {Cti} and reduce its fractional value in the same

manner. This process iterates until condition (16) is satisfied; that is, we terminate this

process once the cumulative amount of reduction reaches min{
∑

Ctj∈CIt \{Cti} ztj,1− zti}.
Step 3: Recall that N (Cti) denotes the set of all adjacent teams of Cti from CI ⊆ C(x∗).

Remove N (Cti)∪{Cti} and {Ctj ∈ CIt } | ztj = 0} from CI . It will become clear later that this

step ensures that no individual participates in multiple tasks and meanwhile, each task is

assigned to at most gt teams.

Step 4: Go to Step 1 unless CI becomes empty. Output CDR.

Let CDR denote the output of Algorithm 4, we first show that CDR is a feasible solution

to P.2.

Lemma 4. Let CDR denote the set of groups returned from the deterministic rounding

(Algorithm 4). CDR is a feasible solution to P.2.

Proof: First, by the design of Algorithm 4, once a team is selected, we remove all its adjacent

teams from consideration. Hence, in the final solution CDR, each individual participates in
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Algorithm 4 Deterministic Rounding

Input: x∗,CI ⊆C(x∗).

1: CDR = ∅, z = x∗.

2: while CI 6= ∅ do

3: Select the team that has the highest profit from CI (e.g., Cti).

4: CDR = CDR ∪{Cti}.

5: Reduce ztj for some Ctj ∈ CIt \ {Cti} to satisfy condition (16).

6: Remove N (Cti)∪{Cti} and {Ctj ∈ CIt | ztj = 0} from CI .

7: Output CDR.

at most one team. We next show that CDR satisfies the capacity constraint of each task.

To prove this, we show that for each task t∈ T , CIt becomes empty after adding at most gt

number of teams from Ct to CDR, indicating that no more teams from Ct will be added to

the solution. Assume by contradiction that after selecting a group C ′ of gt teams from CIt ,∑
Cti∈CIt \C′

zti > 0 (17)

Recall that after selecting a team Cti, we reduce the value of
∑

Ctj∈CIt \{Cti} ztj by an amount

of min{
∑

Ctj∈CIt \{Cti} ztj,1− zti}. Because of (17), we conclude that the cumulative amount

of reduction in z due to the selection of C ′ is exactly
∑

Cti∈C′(1−x
∗
ti). It follows that

∑
Cti∈Ct

x∗ti ≥
∑
Cti∈C′

1 +
∑

Cti∈CIt \C′
zti (18)

≥ gt +
∑

Cti∈CIt \C′
zti (19)

> gt, (20)

where the second inequality is due to the assumption that |C ′|= gt and the third inequality

is due to (17). This contradicts to the assumption that x∗ is a feasible solution to Primal

LP of P.2; that is, x∗ violates the second set of constraints listed in Primal LP of P.2.

�

We next show that the profit of CDR is at least 1/(ρ+ 1) of the one obtained from the

fractional solution x∗. That is,
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Lemma 5. Given a feasible solution x∗ of Primal LP of P.2, a set of input teams

CI ⊆ C(x∗), let CDR denote the set of groups returned from the deterministic rounding

(Algorithm 4),
∑

Cti∈CDR λt ≥
∑

Cti∈C(x∗)(x
∗
ti ·λt)/(ρ+ 1), where ρ= maxCti∈CI |Cti|.

Proof: Consider an arbitrary team from CDR (e.g., Cti). According to the design of Algo-

rithm 4, after selecting Cti, we perform the following two operations that may cause profit

loss: (a) remove N (Cti)∪{Cti}, and (b) reduce the value of
∑

Ctj∈CIt \{Cti} ztj by an amount

of min{
∑

Ctj∈CIt \{Cti} ztj,1−zti}. We next bound the profit loss due to these two operations

separately.

First, by the design of Algorithm 4, Cti has the highest profit among N (Cti)∪{Cti}. Fol-

lowing the same proof of (6), we can bound the amount of profit loss zti ·λt+
∑

Clj∈N (Cti)
(zli ·

λl) due to the removal of N (Cti)∪{Cti} as follows:

zti ·λt +
∑

Clj∈N (Cti)

(zli ·λl)≤ ρ ·λt. (21)

On the other hand, because all teams in CIt have equal profit λt, the amount of the

reduced profit due to operation (b) is λt×min{
∑

Ctj∈CIt \{Cti} ztj,1−zti}. We next show that

this value is at most λt.

λt×min{
∑

Ctj∈CIt \{Cti}

ztj,1− zti} ≤ λt× (1− zti)≤ λt, (22)

where the third inequality is due to 1− zti ≤ 1.

Eqs. (21) and (22) together imply that

(1 + ρ)λt ≥ (zti ·λt +
∑

Clj∈N (Cti)

(zlj ·λl)) +λt ·min{
∑

Ctj∈CIt \{Cti}

ztj,1− zti}.

It follows that

λt ≥
1

1 + ρ

(zti ·λt +
∑

Clj∈N (Cti)

(zlj ·λl)) +λt ·min{
∑

Ctj∈CIt \{Cti}

ztj,1− zti}

 . (23)

Note that λt represents the profit of Cti and (zti · λt +
∑

Clj∈N (Cti)
(zlj · λl)) + λt ·

min{
∑

Ctj∈CIt \{Cti} ztj,1 − zti} represents the amount of reduced profit due to the selec-

tion of Cti. Hence, (23) indicates that we retain at least 1/(1 + ρ) fraction of the original

profit after selecting Cti. Summing up (23) over all teams from CDR gives
∑

Cti∈CDR λt ≥∑
Cti∈CH (x∗ti ·λt)/(ρ+ 1). �



Tang et al.: Profit-Driven Team Grouping in Social Networks
24 Article submitted to ; manuscript no. 2015

Algorithm Design and Performance Analysis Approx-TG can be naturally adapted to handle

this generalization by replacing its LP rounding method with Algorithm 4. In analogy to

Lemmas 2 and 3, we present two lemmas to prove the performance bounds of the first and

the second candidate solutions, respectively.

Lemma 6. Assume x∗ is a µ-approximate solution of Primal LP of P.2 that is found

by the ellipsoid method, Algorithm 2 (whose LP rounding method is replaced with Algorithm

4) achieves an approximation ratio of µ/(∆ + 1) for P.2.

Proof: By Lemma 5, our deterministic rounding technique (Algorithm 4), taking C(x∗) as

input, returns a grouping that achieves a profit of at least 1
∆+1

∑
Cti∈C(x∗)(x

∗
ti · λt), where

∆ is the size of the largest possible team in C(x∗). By the assumption that x∗ is a µ-

approximate solution of Primal LP of P.2, we have
∑

Cti∈C(x∗)(x
∗
ti · λt) ≥ µ · OPT . It

follows that Algorithm 2 achieves a profit of at least

1

∆ + 1

∑
Cti∈C(x∗)

(x∗ti ·λt)≥
µ

∆ + 1
·OPT.

�

Lemma 7. Assume x∗ is a µ-approximate solution of Primal LP of P.2 that is found

by the ellipsoid method, Algorithm 3 (whose LP rounding method is replaced with Algorithm

4) achieves an approximation ratio of µ/2(
√
m+ 1) for P.2.

Proof: To prove this lemma, it suffices to show that max{
∑

Cti∈C̃ λt, λtmax} ≥ 1√
m+1
· µ

2
·OPT .

We first bound the gap between the profit gained from C̃ and
∑

Cti∈C(x∗)1(x
∗
ti · λt). By

Lemma 5, we have∑
Cti∈C̃

λt ≥
1

ρ(C̃) + 1
·

∑
Cti∈C(x∗)1

(x∗ti ·λt)≥
1√
m+ 1

·
∑

Cti∈C(x∗)1
(x∗ti ·λt) (24)

where the second inequality is due to the assumption that ρ(C̃)≤
√
m holds for all teams

from C(x∗)1.

Adopting the same argument used in the proof of Lemma 3, we can bound the gap

between the profit gained from Ctmax and
∑

Cti∈C(x∗)2(x
∗
ti ·λt) as follows:

λtmax ≥
1√
m
·

∑
Cti∈C(x∗)2

(x∗ti ·λt). (25)
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By the assumption that x∗ is a µ-approximate solution of Primal LP of P.2, we have∑
Cti∈C(x∗)

(x∗ti ·λt)≥ µ ·OPT ⇒
∑

Cti∈C(x∗)1
(x∗ti ·λt) +

∑
Cti∈C(x∗)2

(x∗ti ·λt)≥ µ ·OPT. (26)

Now we are ready to prove this theorem.

max{
∑
Cti∈C̃

λt, λtmax} ≥
∑

Cti∈C̃ λt +λtmax

2
(27)

≥
1√
m+1
·
∑

Cti∈C(x∗)1(x
∗
ti ·λt) + 1√

m
·
∑

Cti∈C(x∗)2(x
∗
ti ·λt)

2
(28)

≥ 1√
m+ 1

·
∑

Cti∈C(x∗)1(x
∗
ti ·λt) +

∑
Cti∈C(x∗)2(x

∗
ti ·λt)

2
(29)

≥ 1√
m+ 1

· µ
2
·OPT (30)

where the second inequality is due to (24) and (25), and the last inequality is due to (43).

�

Lemma 6 and Lemma 12 together imply the following theorem.

Theorem 5. Approx-TG achieves an approximation ratio of max{µ/(∆+1), µ/2(
√
m+

1)} for P.2.

6.2. Incorporation of Heterogenous Load Limits

Our basic model assumes that each individual can only participate in one task. For the

general case when each individual u can participate in up to fu number of tasks, one naive

approach is to simply create fu copies of u with identical skill set for each u. It turns out

we can still apply Approx-TG to this expanded set to achieve an approximation ratio of

max{µ/∆, µ/2
√
m}. However, this is not a polynomial time algorithm if fu is exponential

in the size of input. We next present a polynomial time approximation algorithm based on

LP relaxation.

P.3: Maximize
∑

Cti∈C
(xti ·λt)

subject to:{∑
Cti∈C:Cti3u

xti ≤ fu,∀u∈ V
xti ∈ {0,1},∀Cti ∈ C.

LP Relaxation The primal LP of P.3 can be formulated as follows.

Primal LP of P.3: Maximize
∑

Cti∈C
(xti ·λt)

subject to:{∑
Cti∈C:Cti3u

xti ≤ fu,∀u∈ V
0≤ xti,∀Cti ∈ C.
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In the dual problem, we assign a price y(u) to each node u∈ V:

Dual LP of P.3: Minimize
∑

u∈V fu · y(u)

subject to:{∑
u∈Cti

y(u)≥ λt,∀Cti ∈ C
y(u)≥ 0,∀u∈ V.

We can still adopt the ellipsoid method for exponential-sized LP with an (approximate)

separation oracle to solve Dual LP of P.3 to obtain a fractional solution x∗.

Theorem 6. If there is a polynomial µ-approximation algorithm for MincostTeamS-

election, then there exists a polynomial µ-approximation algorithm for Primal LP of

P.3.

LP Rounding Our randomized rounding (Algorithm 5) consists of two stages: a initial

rounding stage and a conflict resolution stage. In the initial rounding stage, we covert x∗

to a group of teams that might not be feasible; then in the second stage, we remove some

teams to obtain a feasible solution. We next explain each stage in detail. Given a feasible

solution x∗ of Primal LP of P.3, Algorithm 5 takes CI , a subset of C(x∗), as input.

1. For each team Cti ∈ CI , add Cti to CRR with probability
x∗ti
2ρ

, where ρ is the size of the

largest team in CI . We say Cti survives in the first stage if Cti has been added to CRR.

2. Note that CRR might violate the constraint of load limits. This can be resolved as fol-

lows: For each team Cti ∈ CRR, keep Cti in CRR if and only if for all u∈Cti,
∑

Clj∈CRR:Clj3u 1≤

fu. We say Cti survives in the second stage if Cti has been kept in CRR. Return CRR as the

output.

Algorithm 5 Randomized Rounding

Input: x∗,CI ⊆C(x∗).

1: CRR = ∅.

2: for each team Cti in CI do

3: Add Cti to CRR with probability
x∗ti
2ρ

.

4: for each Cti ∈ CRR do

5: Remove Cti from CRR if for some u∈Cti,
∑

Clj∈CRR:Clj3u 1> fu.

6: Return CRR.
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Lemma 8. Given any feasible solution x∗ of Primal LP of P.3 and input teams CI ⊆

C(x∗), for each team Cti ∈ CI , Cti survives in the first stage with probability
x∗ti
2ρ

.

The above lemma can be directly derived from our algorithm description. Next we use

0/1 random variable Xti to indicate whether Cti has survived in the first stage, we can

immediately have E[Xti] =
x∗ti
2ρ

.

Lemma 9. For any team Cti ∈ CI that is having survived in the first stage, the probability

that Cti still survives in the second stage is at least 1
2
.

Proof: For each Cti ∈ CI , let Yti be a 0/1 random variable representing whether Cti has

survived in the second stage. The event that Cti survives in the first phase but removed in

the second stage can be represented as: Yti = 0, under the condition that Xti = 1. And the

probability of this event is Pr[Yti = 0|Xti = 1]. We note that this event can only happen if

for some u∈Cti, ∑
Clj∈CI\Cti:Clj3u

Xlj ≥ fu.

By Markov’s inequality, the probability of this event can be bounded by

Pr[Yti = 0|Xti = 1] ≤
∑
u∈Cti

Pr[
∑

Clj∈CI\Cti:Clj3u

Xlj ≥ fu] (31)

≤
∑
u∈Cti

E[
∑

Clj∈CI\Cti:Clj3uXlj]

fu
. (32)

Based on linearity of expectation and E[Xlj] =
x∗lj
2ρ

, for each u∈Cti, we have

E[
∑

Clj∈CI\Cti:Clj3u

Xlj] =
∑

Clj∈CI\Cti:Clj3u

E[Xlj] =
∑

Clj∈CI\Cti:Clj3u

x∗lj
2ρ
. (33)

By the first constraint of Primal LP of P.3, we further have∑
Clj∈CI\Cti:Clj3u

x∗lj
2ρ

=

∑
Clj∈CI\Cti:Clj3u x

∗
lj

2ρ
≤

∑
Clj∈C:Clj3u x

∗
lj

2ρ
≤ fu

2ρ
. (34)

Hence,

Pr[Yti = 0|Xti = 1] ≤
∑
u∈Cti

E[
∑

Clj∈CI\Cti:Clj3uXlj]

fu
(35)

=
∑
u∈Cti

(
∑

Clj∈CI\Cti:Clj3u

x∗lj
2ρ

) · 1

fu
(36)
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≤
∑
u∈Cti

fu
2ρ
· 1

fu
(37)

≤ 1/2 (38)

where the first inequality is due to (32), the equality is due to (33), the second inequality

is due to (34), and the last inequality is due to |Cti| ≤ ρ.

Therefore, the probability that each team that survives in the first stage still survives

in the second stage is at least 1− 1
2

= 1
2
. �

Lemma 8 and Lemma 9 together imply that for each Cti ∈ CI , it survives in both stages

with probability x∗ti/(4ρ), hence, the following theorem follows.

Lemma 10. Given a feasible solution x∗ of Primal LP of P.3, a set of input teams

CI ⊆ C(x∗), let CRR denote the group of teams returned from the randomized rounding

(Algorithm 5),
∑

Cti∈CRR λt ≥ 1
4ρ
·
∑

Cti∈CI (x
∗
ti ·λt), where ρ= maxCti∈CI |Cti|.

Algorithm Design and Performance Analysis We still use Approx-TG to handle this exten-

sion. However, we make two crucial modifications to its original version developed in Sec-

tion 4.3 as follows. First, we replace its LP rounding method with Algorithm 5. Second,

we modify the second candidate solution (Algorithm 3) such that we adopt a different

criterion to partition each C(x∗)t. In particular, for every task t ∈ T , we partition C(x∗)t
into two disjoint subsets C(x∗)1

t and C(x∗)2
t such that: ∀C ∈ C(x∗)1

t : |C| ≤
√
fmaxm and

∀C ∈ C(x∗)2
t : |C|>

√
fmaxm, where fmax = maxu∈V fu represents the largest number of tasks

an individual can participate in. The rest of the algorithm is identical to its original version.

In analogy to Lemmas 2 and 3, we present two lemmas to prove the performance bounds

of the first and the second candidate solutions, respectively.

Lemma 11. Assume x∗ is a µ-approximate solution of Primal LP of P.3 that is found

by the ellipsoid method, Algorithm 2 (whose LP rounding method is replaced with Algorithm

5) achieves an approximation ratio of µ/4∆ for P.3.

Proof: By Lemma 5, our randomized rounding technique (Algorithm 5), taking C(x∗) as

input, returns a grouping that achieves a profit of at least 1
4∆

∑
Cti∈C(x∗)(x

∗
ti ·λt), where ∆ is

the size of the largest possible team in C(x∗). By the assumption that x∗ is a µ-approximate

solution of Primal LP of P.3, we have
∑

Cti∈C(x∗)(x
∗
ti · λt) ≥ µ · OPT . It follows that

Algorithm 2 achieves a profit of at least

1

4∆

∑
Cti∈C(x∗)

(x∗ti ·λt)≥
µ

4∆
·OPT.
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�

Lemma 12. Assume x∗ is a µ-approximate solution of Primal LP of P.3 that is found

by the ellipsoid method, Algorithm 3 (whose LP rounding method is replaced with Algorithm

5), using a modified partitioning criterion, achieves an approximation ratio of µ
8
√
fmaxm

for

P.3, where fmax = maxu∈V fu.

Proof: To prove this lemma, it suffices to show that max{
∑

Cti∈C̃ λt, λtmax} ≥ µ
8
√
fmaxm

·OPT .

We first bound the gap between the profit gained from C̃ and
∑

Cti∈C(x∗)1(x
∗
ti · λt). By

Lemma 10, we have∑
Cti∈C̃

λt ≥
1

4ρ(C̃)
·

∑
Cti∈C(x∗)1

(x∗ti ·λt)≥
1

4
√
fmaxm

·
∑

Cti∈C(x∗)1
(x∗ti ·λt) (39)

where the second inequality is due to the assumption that ρ(C̃) ≤
√
fmaxm holds for all

teams from C(x∗)1.

We next bound the gap between the profit gained from Ctmax and
∑

Cti∈C(x∗)2(x
∗
ti ·λt). In

particular, we show that

λtmax ≥
1√
m
·

∑
Cti∈C(x∗)2

(x∗ti ·λt) (40)

The following chain proves this inequality:∑
Cti∈C(x∗)2

(x∗ti ·λt)≤
∑

Cti∈C(x∗)2
(x∗ti ·λtmax) = λtmax ·

∑
Cti∈C(x∗)2

x∗ti ≤ λtmax ·
√
fmaxm. (41)

The first inequality is due to the assumption that Ctmax delivers the highest profit among

C(x∗)2. We next focus on proving the second inequality. Because x∗ is a feasible solution

of Primal LP of P.3 and C(x∗)2 ⊆ C, we have
∑

Cti∈C(x∗)2:Cti3u x
∗
ti ≤ fu,∀u ∈ V. It follows

that ∑
Cti∈C(x∗)2

(x∗ti · |Cti|)≤
∑
u∈V

fu ≤ fmaxm. (42)

Meanwhile, recall that all teams in C(x∗)2 contain at least
√
fmaxm individuals, we have∑

Cti∈C(x∗)2(x
∗
ti · |Cti|) ≥

∑
Cti∈C(x∗)2(x

∗
ti ·
√
fmaxm). This, together with (42), implies that∑

Cti∈C(x∗)2(x
∗
ti ·
√
fmaxm)≤ fmaxm, thus

∑
Cti∈C(x∗)2(x

∗
ti)≤

√
fmaxm. This finishes the proof

of the second inequality.
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By the assumption that x∗ is a µ-approximate solution of Primal LP of P.3, we have

∑
Cti∈C(x∗)

(x∗ti ·λt)≥ µ ·OPT ⇒
∑

Cti∈C(x∗)1
(x∗ti ·λt) +

∑
Cti∈C(x∗)2

(x∗ti ·λt)≥ µ ·OPT. (43)

Now we are ready to prove this theorem.

max{
∑
Cti∈C̃

λt, λtmax} ≥
∑

Cti∈C̃ λt +λtmax

2
(44)

≥
1

4
√
fmaxm

·
∑

Cti∈C(x∗)1(x
∗
ti ·λt) + 1√

fmaxm
·
∑

Cti∈C(x∗)2(x
∗
ti ·λt)

2
(45)

≥ 1

4
√
fmaxm

·
∑

Cti∈C(x∗)1(x
∗
ti ·λt) +

∑
Cti∈C(x∗)2(x

∗
ti ·λt)

2
(46)

≥ µ

8
√
fmaxm

·OPT (47)

where the second inequality is due to (39) and (40), and the last inequality is due to (43).

�

Lemma 6 and Lemma 12 together imply the following theorem.

Theorem 7. The modified Approx-TG achieves an approximation ratio of

max{µ/(4∆), µ/(8
√
fmaxm)} for P.3, where fmax = maxu∈V fu.

7. Conclusion

In this paper, we study the profit-driven team grouping problem. We assume a collection

of tasks T , where each task requires a specific set of skills, and yields a different profit

upon completion. Individuals may collaborate with each other in the form of teams to

accomplish a set of tasks. We aim to group individuals into different teams, and assign

them to different tasks, such that the total profit of the tasks that can be performed is

maximized. We consider three constraints when perform grouping, and present a LP-based

approximation algorithm to tackle it. We also study several extensions of this problem.

Although this paper studies team grouping problem, our results are general enough to

tackle a broad range of generalized cover decomposition problems.
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