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Abstract 

Many real-world networks exhibit a multicores-periphery structure, with densely connected 

vertices in multiple cores surrounded by a general periphery of sparsely connected vertices. 

Identification of the multicores-periphery structure can provide a new lens to understand the 

structures and functions of various real-world networks. This paper defines the multicores-

periphery structure and introduces an algorithm to identify the optimal partition of multiple 

cores and the periphery in general networks. We demonstrate the performance of our 

algorithm by applying it to a well-known social network and a patent technology network, 

which are best characterized by the multicores-periphery structure. The analyses also reveal 

the differences between our multicores-periphery detection algorithm and two state-of-the-art 

algorithms for detecting the single core-periphery structure and community structure. 
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1 Introduction 
 

Many real-world systems can be represented as networks, for instance, social networks, 

technological networks, information networks, and biological networks. In the past two 

decades, various algorithms have been developed to explore the structures of real-world 

networks, which may reveal the properties and functions of the respective networks 

(Newman, 2003; Strogatz, 2001). A particular and popular strand of network analyses has 

focused on detecting meso-scale structures, such as communities (or clusters) in networks. 

Vertices in the same community are more cohesively connected to each other than those in 

different communities (Fortunato, 2010).  

    The core-periphery structure is an alternative meso-scale structure that has been 

discovered in many real-world networks, such as social networks, transportation networks 

and the World Wide Web (Borgatti & Everett, 2000; Csermely et al., 2013; Rombach et al., 

2014). A network characterized by the core-periphery structure exhibits some sort of core, in 

which vertices are densely connected, and a periphery, in which vertices are only sparsely 

connected. Both community and core-periphery structures have important implications on the 

functions in the networks that embed them (Zhang et al., 2015). For instance, in 

communication networks, dense connections in a dense community or core may lead to 

efficient information flow or synchronization among vertices in the same community or core 

(Wasserman & Faust, 1994; Xu & Chen, 2005). In social networks, persons in the densely 

connected core might be more influential or powerful than those in the periphery. 

    However, real-world networks can exhibit multiple cores, each of which contains vertices 

that are only densely connected to each other within the respective cores, together with the 

periphery, in which vertices are only sparsely connected in general. For example, in a social 

network people may be cohesively connected in different sub-groups; meanwhile there are 

always people who are only loosely connected to any of the sub-groups and other people in 

general. A city may have multiple dense centers (i.e., cores) for different urban functions, and 

a general sparse suburb (i.e., periphery) surrounding them. Rombach et al. (2014) observed 

two cores in London’s underground railway network. Zhang et al. (Zhang et al., 2015) 

visually identified two cores in the network of hyperlinks between political blogs, leaving 

those generally loosely connected blogs in the periphery. In our earlier analysis of the 

structure of a weighted network of patent technology classes that represent the total 
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technology space (Yan & Luo, 2017), we vaguely observed several strong cores which 

contain technology classes that are strongly and cohesively related to one another, and the 

periphery consists of all outlying and weakly-connected technology classes.  

These networks exhibit a meso-scale structure in common, i.e., multiple cores, each of 

which contains densely connected vertices, surrounded by the periphery, which contains the 

sparsely connected vertices. We refer to this structure as a “multicores-periphery structure”. 

Figure 1 illustrates the fundamental differences between the newly defined multicores-

periphery structure and the well-known community and core-periphery structures. Moreover, 

various studies have attempted to identify the periphery closely connected to a clique with a 

maximum or required density, and resulted in a structure of multiple sets of dense cores and 

their own affiliated peripheries (Bruckner et al., 2015; Everett & Borgatti, 2000; Yang & 

Leskovec, 2014). The multicores-periphery structure defined in this paper differs from those 

with “multiple cores, each with its own periphery (Borgatti & Everett, 2000)” in that it 

contains only one general periphery, which hosts all the vertices with a generally weak 

connectivity. The peripheral vertices are basically outliers and not affiliated with any core. 

Mathematical formulas in chapter 3 manifest the definition here. 

 

 

Fig. 1. Examples of meso-scale network structures: (A) community; (B) core-periphery; (C) 

multicores-periphery. 

 

    In this paper, we focus on the quantitative identification of the multicores–periphery 

structure in real-world networks. The detection of the multicores-periphery structure has 

potential uses, particularly for the networks that innately have multiple cohesive cores and 

many generally outlying elements that are not affiliated with any core. Different cores and the 

general periphery may play different functions or roles in a network, whereas such roles 

despite their differences might be generally more important than the peripheral ones. For 
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instance, a city may consist of multiple core areas for governance, business, shopping, 

entertainment, and education functions, and the peripheral suburb area for residential 

function. Simultaneously distinguishing different cores and the general sparse periphery may 

shed new light on the functions in networks that are inherently governed by a multicores-

periphery structure. 

    To the best of our knowledge, there is still no method to directly detect the multicores-

periphery structure, i.e., multiple cores plus a general periphery that surround the cores, in 

networks. The existing core-periphery network literature has focused on either dichotomous 

or continuous division of the network into a single core and a periphery (Borgatti & Everett, 

2000; Csermely et al., 2013; Holme, 2005; Rombach et al., 2014). Although existing 

community detection algorithms are able to locate multiple similarly defined cohesive 

communities, the periphery is not considered or differentiated (Fortunato, 2010). The 

methods to detect cliques, k-scores or n-plexes may find multiple local cohesive sub-groups 

with pre-determine densities, but do not concern the separation and distinction from the 

remaining network (Brandes & Erlebach, 2005). Prior studies have explored ways to identify 

the peripheries that are affiliated to specific dense cores defined as cliques with pre-

determined densities, but such analyses result in multiple peripheries only affiliated to their 

own cliques (Bruckner et al., 2015; Everett & Borgatti, 2000). In contrast, following the 

multicores-periphery structure of our interest and definition, the dense cores are not required 

to be cliques or have specific densities, and there is only one general periphery rather than 

multiple peripheries. 

    Note that, nested uses of existing core-periphery or community detection algorithms may 

lead to a structure that has multiple “cores”. For instance, one can use existing algorithms to 

detect communities first, and then decompose each community into a core and a periphery. 

However, this would result in multiple peripheries with community identities, which violate 

our definition that there is only a general sparse periphery. Alternatively, one can first detect 

a single core and periphery division and then decompose the core into sub-communities. This 

sequence may yield stronger connections between the resultant “sub-cores” than normal, 

because an optimal core identified by a core-periphery algorithm (Borgatti & Everett, 2000; 

Holme, 2005) would be internally cohesive. Especially, when the core is extremely dense or 

cohesive, i.e., it is a clique with maximum density (Brandes & Erlebach, 2005; Everett & 

Borgatti, 2000; Yang & Leskovec, 2014), it would be theoretically incorrect to arbitrarily 
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detect communities in the non-decomposable core. In general, community and single core-

periphery detection algorithms, as well as clique detection algorithms, were developed for 

other structures. The nested use of them would be a methodological compromise, and by 

nature unable to capture the exact meaning of the multicores-periphery structure that we 

define here.  

    In this paper, we present a method to directly identify the optimal partition of a network 

that can have multiple dense cores and a general sparse periphery, i.e., the multicores-

periphery structure. Our method defines a single statistical measure that characterizes the 

distinction between the multiple cores and the periphery in terms of connection density, and 

examines the value given by every possible network partition in the hierarchical dendrogram 

of the network. The optimal partition emerges when the value of the measure characterizing 

the multicores-periphery structure is maximized. This method is generally applicable to any 

type of networks. We demonstrate that the method successfully identifies multicores-

periphery structures in a social network and in a technology space network. Both networks 

are weighted. 

2 Core-periphery structures in networks 
 

The comprehensive review of the core-periphery structure in networks by Csermely et al. 

(2013) revealed various definitions and types of core-periphery structures in biological, 

social-economic and technological network literatures. Despite the variety of definitions, they 

are generally consistent in the intuition that vertices in the core are densely connected and 

vertices at the periphery are sparsely connected. Some believe that core vertices should also 

be well-connected to the periphery (Borgatti & Everett, 2000; Csermely et al., 2013; 

Rombach et al., 2014). Some others state that core vertices should be both densely connected 

and central to the network (Holme, 2005).  

    Borgatti and Everett (2000) proposed an association function on how far a given network 

deviates from a comparable network with an ideal core-periphery structure and minimized 

this function to find the best core-periphery partition of the network. In their ideally defined 

core-periphery structure, core vertices are fully connected to each other and to the peripheral 

vertices, but the peripheral vertices are not connected to each other. In a similar spirit, Zhang 

et al. (Zhang et al., 2015) proposed an algorithm to identify the core-periphery structure by 

fitting a stochastic block model to empirical network data using a maximum likelihood 
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method. Borgatti and Everett (2000) also defined a continuous core-periphery division, in 

which every vertex is assigned a coreness value that quantifies its qualification to be in the 

core. Rombach et al. (2014) presented a more flexible model to determine the fraction and 

sharpness of the core-periphery division. They employed a transition function to assign a 

core score to each vertex and maximized the quality function of a core by simulated 

annealing.  

    Other methods have defined and detected core vertices that are also central in the network, 

in addition to being well connected to each other (Holme, 2005; Shanahan & Wildie, 2012; 

Silva et al., 2008). For example, Holme (2005) assumed that core vertices should have a high 

closeness centrality, i.e., a short average distance from the rest of the vertices, and proposed a 

core-periphery coefficient to measure the extent to each an empirical network exhibits a 

clear-cut single core-periphery dichotomy. In particular, he defined the single core as the k-

core with the maximal closeness centrality among all k-cores. Silva et al. (2008) considered 

both closeness centrality and community modularity (Newman, 2004) to identify the core-

periphery structure of metabolic networks. They showed that closeness centrality provides 

better results than degree and betweenness centralities for identifying core vertices. Della 

Rossa et al. (2013) defined a core-periphery profile for the network along with a coreness 

value for each vertex that were calculated by following the order of the degree centrality of 

each vertex based on a random walk model. These methods generally aimed to identify a 

single core in the core-periphery structure. 

    Some prior studies borrowed the concepts of cliques or k-cores to define and detect 

multiple cores. For example, to study protein interaction networks, Bruckner et al. (Bruckner 

et al., 2015) detected multiple cores defined as complete cliques, in each of which all proteins 

must interact with each other. Likewise, Everett and Borgatti (Everett & Borgatti, 2000) 

additionally discussed the relaxed cases where the cores are k-cores, in which all vertices 

have a degree of at least k. K-cores are relaxed cliques, and cliques are extreme cases of k-

scores with maximum k. The definitions of cliques and k-scores have constrained the 

analyses only possible for unweighted networks. In addition, the detection of cliques or k-

cores requires pre-determined local densities, does not take into account the global network 

structure and the separation and relative distinction from the remaining network (Brandes & 

Erlebach, 2005), and is unable to guarantee an optimal network partition into multiple cores 

and the periphery. 
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    Indeed, Everett and Borgatti (Everett & Borgatti, 2000) and Bruckner et al. (Bruckner et 

al., 2015) primarily aimed to identify the separate peripheries that were most closely 

connected to respective cliques. Yang and Leskovec (Yang & Leskovec, 2014) also detected 

multiple separate peripheries, but their peripheries share affiliations with dense cores. Their 

method does not rely on the rigid clique and cohesion concepts, but took the dense overlaps 

of multiple ground-truth functional (instead of structural) communities as cores, and the non-

overlapping regions of the functional communities as peripheries. Each vertex must have one 

or multiple community identities. In general, these methods identifying multiple peripheries 

of dense cores are not in line with our definition that emphasizes one single generally sparse 

periphery and its separation from the cores.  

    In general, prior research on core-periphery structures focused on either continuous or 

dichotomous division of a network into a single core and a periphery. The studies that 

revealed multiple cores either used rigid definitions of cliques with maximum or pre-

determined densities, which do not concern the overall network structure and have limited 

applicability, or focused on affiliating multiple peripheries to their most close cores, apart 

from our definition of the multicores-periphery structure which considers all the vertices 

outside different cores belong to a general periphery. There is still no quantitative method to 

directly identify the multicores-periphery structure, i.e., the partition of a network into 

multiple cores surrounded by a general sparse periphery, which characterizes many real-

world networks. 

 

3 Finding the optimal partition of multiple cores plus periphery 
 

Herein, we introduce a method to detect the optimal multicores-periphery partition of a given 

network as the partition in its hierarchical dendrogram that provides the largest distinction 

between cores and the periphery in terms of connection densities. The first step is to create a 

dendrogram of the network, using a hierarchical clustering algorithm. In the dendrogram, 

more closely connected vertices are joined by shorter and lower branches than those more 

distantly connected vertices. The dendrogram defines a series of network partitions from the 

bottom where every vertex is stand-alone, to the top where all vertices belong to one single 

cluster. In each partition, some vertices are in clusters (i.e., potential cores) and some other 

vertices stand alone outside any cluster.  
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    When creating the dendrogram, the average linkage clustering algorithm is used to 

determine the distance between each pair of temporary clusters of vertices (in the 

dendrogram) as the mean of all pairwise distances between vertices in both clusters 

(Wasserman & Faust, 1994). Compared to alternative clustering methods (for instance, the 

single-linkage clustering method that uses the minimum distance and the complete-linkage 

clustering method that uses the maximum distance between vertices in different clusters), the 

average-linkage clustering method prioritizes the clusters with the strongest cohesion to 

merge first, so that the merged cluster would have the highest internal connection density, 

because density is correlated with average link weight in a cluster. Such a property is 

desirable because the definition of the cores-periphery structure emphasizes high link density 

within each core. 

    Among all the partitions in the dendrogram, the optimal cores-periphery partition should 

have the largest possible distinction between cores and the periphery in terms of respective 

connection densities. Such a distinction for a partition is calculated as the ratio of the density 

of connections of vertices in all clusters (i.e., potential cores) over the density of connections 

of the vertices that are not assigned to any cluster (i.e., potential periphery). The densities of 

connections in the cores and in the periphery are calculated as, 

densitycores = C
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       (1) 

	densityperiphery = P
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         (2) 

where ni is the number of vertices in cluster i, for i=1 to k clusters; m is the number of 

vertices at the periphery; C is the sum of weights of all the connections of core vertices 

within cores; and P is the sum of weights of all the connections of peripheral vertices outside 

cores. Then, we define the following cores-periphery ratio (note the plural “cores” in the 

term) to measure the degree to which the partition fulfills a multicores-periphery structure, 

                  r = density cores

density periphery	
                           (3) 

We further compared the empirically observed cores-periphery ratio r (Equation 3) to those 

expected by chance using randomized networks. In the randomized networks, all edges 
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between all vertices in the original network were switched using a Monte Carlo method, 

while preserving the weighted degree distributions of each vertex, in order to ensure that the 

observed and randomized networks have the same macro network structures so that they can 

be compared. To compare the observed r with those of the randomized but comparable 

networks, we calculated a z-score for each network partition, 

z	=	 robs	-	rrand
σ

                 (4) 

where robs is calculated from the partition of the empirical network and rrand and σ are the 

mean and standard deviation, respectively, of the r ratios calculated of a sufficiently large 

ensemble of randomized networks based on the same partition as that of the original network. 

This normalized measure describes the extent to which the network partition exhibits a cores-

periphery structure relative to chance. Therefore, the partition that provides the maximal z 

score is the optimal cores-periphery partition of the network.  

    Note that, the algorithm does not impose the assumption of finding more than one core, 

and may still allow a single core-periphery structure to be detected as optimal. That is, the 

optimal partition may emerge to have either a single or multiple cores, depending on the 

innate structure of the examined network. In contrast, the existing core-periphery algorithms 

impose the assumption of a single core for partitioning, and ignore the fact that many real-

world networks are inherently organized and governed by a multicores-periphery structure.  

Figure 2 illustrates the procedure of finding the optimal multicores-periphery partition in 

an example network. In brief, we first generate the dendrogram of a network, compute the z-

scores, i.e., normalized cores-periphery ratios, for all possible partitions in the dendrogram, 

and then search for the partition with the highest z-score value. In that optimal partition, the 

clusters are the cores and all the vertices outside clusters belong to the periphery.  
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Fig. 2. The procedure of finding the optimal multicores-periphery partition in a sample network. (A) 

The original sample network of 21 vertices; (B) the dendrogram of the original network; (C) z-scores 

(calculated using ensembles of one million randomized networks) of different partitions; (D) matrix 

representation of the optimal multicores-periphery partition given by the maximal z-score. 

 

    The exemplar z-score curve in Figure 2(C) has only one peak, suggesting a single 

maximum z-score. However, the curve might display a plateau given a range of partitions for 

a maximum, or multiple peaks for equal maxima. In such cases, despite being unlikely, one 

may utilize the domain knowledge about the network to assess and compare the 

corresponding partitions giving the same maximal z-scores, in order to select the most 

reasonable or meaningful one(s). 

    In addition, given the structure of the algorithm described above, one can estimate its time 

complexity when applied to a real-world network. The first step of the algorithm is 

fundamentally the same as the average linkage clustering algorithm, so the time complexity is 

O(n2logn). The core of the second step is the generation of a randomized network, which 

means a time complexity O(n2). Understanding of the time complexity of our method will be 

useful to guide practitioners on the computational resources required when they apply the 
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algorithm to real-world networks. 

In the next section, we will demonstrate and test this method by applying it to detecting the 

multicores-periphery structures embedded in two distinct types of real-world networks, 

including a well-known social network and a network of patent technology classes that 

represent the technology space. 

 

4 Multicores-periphery structure in real-world networks 
 

Both real-world networks are undirected and weighted. Table 1 reports their original data 

sources, number of vertices and edges, maximum modularity score (Q) from the optimal 

network community partition given by the widely accepted Louvain algorithm (Blondel et al., 

2008) and the maximal cores-periphery ratio (z-score) from our algorithm. In calculating the 

z-score for each candidate network partition, one million random networks are used. For each 

of the two real-world networks, we compare and analyze the optimal multicores-periphery 

structure identified by our method, the core-periphery structure detected by the algorithm of 

Borgatti and Everett (2000), and the optimal community structure identified  by the Louvain 

community detection algorithm (Blondel et al., 2008). 

Table 1. Properties of real-world networks 

Networks Vertices Edges Max Q Max z 
Zachary’s karate club network 
(Zachary, 1977) 34 78 0.444 33.321 

Patent technology network (Yan & 
Luo, 2016, 2017) 121 7120 0.251 85.547 

 

4.1 Zachary’s karate club network 

Zachary’s karate club network is a social network of karate club members in the United 

States. This empirical network is well-known, as it has been popularly used as a benchmark 

case for testing different community detection algorithms (Fortunato, 2010). The network 

consists of 34 vertices that represent club members and 78 edges that represent social 

relationships among them. The weight of an edge between two club members is the count of 

social activities that both members attended together outside of the club, for instance, going 

together to a bar near the university campus. The karate club network was observed in the 
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period of 1970 and 1972.  

At the time, two key persons in the network, the club president, John (vertex #34 in Figure 

3(A)), and the instructor, Mr. Hi (vertex #1 in Figure 3(A)), had a conflict, which resulted in 

the separation of their respective social groups. Based on Borgatti and Everett’s core-

periphery detection method, one single core is found that contains both John and Hi (Table 

A1 in Appendices). Their single core-periphery partition does not reflect the conflict between 

John and Hi, and does not distinguish the separate social groups of these two persons. The 

Louvain community detection method places John and Hi in two separate large communities 

(Table A1), but does not differentiate the peripheral persons who are generally not social and 

stand neutral in the conflict between John and Hi. In contrast, in our optimal multicores-

periphery partition, John and Hi belong to the two largest cores, together with a few small 

cores, which are surrounded by several generally non-social and insignificant individuals at 

the periphery (see Figure 3(A) and Table A1). The multicores-periphery structure provides 

the most systematic and nuanced characterization of the relative network positions and roles 

of different individuals in this social network. 
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Fig. 3. Multicores-periphery structure of (A) Zachary’s karate club network and (B) its matrix 

representation. In the network, each red circle encapsulates a core and the vertex colors are the same 

in the core and are different across cores; the peripheral vertices are in grey. 

 

It is worth to note that nested core-periphery and community detections would not yield 

our partition that is holistically optimized according to the definition of the multicores-

periphery structure. For example, the core where John is, including vertices #16, #24, #33 

and #34, contains vertices #33 and #34 from the single core and vertices #16 and #24 from 

the periphery in the partition by Borgatti and Everett’s core-periphery algorithm. That is, if 

one starts with the core-periphery algorithm to find the single core and then decomposes it to 

obtain more cores, he will never get the core of John because vertices #16 and #24 would 

never be located in any core. Likewise, the community detection result by the Louvain 

method separates the four vertices (#16, #24, #33 and #34) of the core of John in two 

communities. #24 belongs to one community, while #16, #33 and #34 belong to another. 

Therefore, if one starts with the community detection and then divides each community into a 

single core and periphery, he will never get the core of John because it is impossible for 

vertex #24 to join vertices #16, #33 and #34 in one core. 
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4.2 Patent technology network 

 

The patent technology network was constructed by Yan and Luo (Yan & Luo, 2017). Vertices 

are 3-digit patent technology classes defined by the International Patent Classification (IPC) 

system and represent different types of technologies, i.e., different technological areas in the 

total technology space. The strength of the edges represents the knowledge relatedness 

between pairs of IPC technology classes, and quantified as the Jaccard Index (Jaccard, 1901), 

i.e., the number of shared references of the patents in a pair of patent classes normalized by 

the number of unique references of the patents in either class. The edge values indicate the 

relatedness of the knowledge bases of the technologies represented by corresponding patent 

classes. To calculate the values of all edges, all patent records in the United States Patent and 

Trademark Office (USPTO) database from 1976 to 2010 were used.  

    For such a network of technologies connected according to their knowledge relatedness, an 

informative and meaningful structural partition must identify and reveal the groups of 

technologies that are densely related to each other within groups, but loosely related across 

groups. Applying Borgatti and Everett’s core-periphery algorithm, we find 85 technologies in 

the single core and the rest in the periphery of the technology network (Table B2 in 

Appendices). The core contains (and thus does not discern) many distinct types of 

technologies, such as information technologies (e.g., G11, information storage; G05, 

controlling & regulating; G06, computing; G08, signaling), metallurgy-related technologies 

(B22, casting & metallurgy; C21, metallurgy of iron; and C22, metallurgy of non-ferrous 

metals or alloys), and food processing technologies (A21, baking; and A23, food processing). 

A meaningful partition needs to differentiate and separate such clearly distinct types of 

technologies into different groups.  

    In contrast, the optimal partition from our method identifies 27 cores and a general 

periphery, revealing a more nuanced and meaningful structure (Figure 4 and Table B2). For 

example, the metallurgy-related technologies (B22, C21, and C22), food processing 

technologies (A21 and A23), and information technologies (G05, G06, G08, and G11) now 

belong to different cores. Our optimal partition also reveals the meaningful cores that 

represent non-metal materials processing (B05, B28, B29, B32, C04, C08, and C09), 

biomedical technologies (A01, C12, A61, and C07), engine-related technologies (F01, F02, 

F03, and F04), thermal management technologies (F22, F23, F24, F25 and F28), optical 
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technologies (B41, G02, G03), construction technologies (E01, E02 and E21), and paper 

processing (B31 and D21. The partition of these cohesive cores agrees with the common 

knowledge of the relatedness and distinctions of corresponding technologies. 

    Our optimal partition also reveals a more meaningful structure than the community 

structure identified by the Louvain method, which shows 5 large communities and the largest 

community with 41 vertices. Each of the 5 large communities encapsulates several cores 

together with a few peripheral technologies that are differentiable and identified by our 

method (Table B2). For example, one large community (#1 in Table B2) encapsulates several 

cores, such as thermal management (F22, F23, F24, F25 and F28), biomedical (A01, C12, 

A61, and C07), chemical processing (C01, C02, C10, and B01), food processing (A21 and 

A23), and solid material processing (B03 and B07). Within the community, these distinct 

types of technology are not further discerned. This community also contains a few 

technologies that are in the periphery as identified in our partition, such as tobacco (A24), 

grain milling (B02), sugar production (C13), combinatorial chemistry (C40), and nuclear 

technology (G21). Such technologies are generally peripheral by nature, but are not discerned 

from those highly connected technologies within the same community.  

Therefore, our multicores-periphery partition is more meaningful than the single core-

periphery and community partitions in revealing the innate relationships of different 

technologies in the network1. Such benefits are achieved by effectively discerning various 

cohesive groups of highly related technologies (i.e., cores), as well as discerning dense 

cohesive groups (i.e., cores) from the isolated insignificant technologies (i.e., periphery) that 

are only loosely connected to the rest of the technology space. 

 

																																																								
1	Note that, in this specific case of the technology network, the more meaningful partition turns out to be finer 

than the others in comparison, because the additional nuances are valuable. However, in other networks, the 

most meaningful partition may be coarse. In theory, the fineness or coarsens of the most meaningful partition 

depends on the innate structure of the examined network and emerges in the computation result. In brief, our 

algorithm is not aimed to deliver a finer or coarser division of a network, but find the partition that most 

meaningfully reveals the innate structure of the examined network.	



16	
	

 

 
Fig. 4. Multicores-periphery structure of (A) the patent technology network, in which only the 
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strongest edges of the original network are visualized so that the number of edges is twice the number 

of vertices, for a clear visualization as suggested by Hidalgo et al. (2007), and (B) its matrix 

representation. Each red circle represents a core, and the vertex colors denote the cores; the peripheral 

vertices are in grey. 

 

5 Conclusion 

Although many real-world networks exhibit a multicores-periphery structure, neither a 

formal definition nor quantitative methods to directly identify the structure exist. In this 

paper, we first formally defined the multicores-periphery structure in networks, i.e., multiple 

dense cores and a sparse periphery. The definition is distinguished from the single core-

periphery structure, or multiple peripheries attached to multiple cores. This definition also 

does not require cores to be rigid cliques of pre-determined local densities. According to the 

definition, we have further introduced a method to directly detect the optimal multicores-

periphery structure of a network. 

    Previous core-periphery algorithms focused on detecting a general single core and 

periphery, whereas previous community detection algorithms did not discern a periphery 

from dense cohesive communities. Although the studies that defined cores as cliques of 

maximum or pre-determined local densities may detect multiple dense cores, they did not 

consider the global network structure and the relative distinction from the periphery. Our 

detection method is dedicated to directly detecting the multicores-periphery structure. It does 

not pre-require a pre-determined local density of the cores (as for clique or k-core detection), 

but statistically identifies the optimal partition that maximizes the distinction between the 

density in cores and the density outside cores (i.e., the periphery).  

We have illustrated the differences between our proposed algorithm and two state-of-the-

art algorithms for detecting core-periphery structure and community structure via the 

applications to two distinct real-world networks. The multicores-periphery structures 

identified by our algorithm in these two real-world networks provide more systematic, 

nuanced and meaningful characterizations of these networks than traditional single core-

periphery and community structures. The new definition and detection method for 

multicores-periphery structure may enable new analyses and understanding of many real-

world biological, ecological, social and technological networks, which are best characterized 

by a multicores-periphery structure.  
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One area of future work is to apply our algorithm to analyze the dynamics of multicores-

periphery networks (Csermely, 2018; Liu et al., 2015; Pan et al., 2012), whereas we only 

focus on the structural aspect of networks in this paper. Another valuable future research 

direction is to extend our algorithm for the analysis of unweighted, directed and signed 

networks. In addition, it will be worthwhile to further revise the algorithm or develop new 

algorithms with improved computation efficiency and speed for the analysis of multicores-

periphery structures in very large-scale complex networks, in contrast to the two small 

networks in the present paper. 

We hope the readers view this paper as a beginning and invitation for future research and 

development of more efficient algorithms to directly detect the multicores-periphery 

structure. The methodological development for the multicores-periphery structure is clearly 

nascent, compared to the extensive methods that have been developed for detecting 

communities, local cliques or k-cores, and single core-periphery dichotomy. Together with 

methodological development, we also hope more network analyses will take the lens of the 

multicores-periphery structure to understand, design and manage large-scale complex 

networked systems in diverse contexts and domains. 
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Appendix A: Analysis of Zachary’s Karate Club Network 

 
Fig. A1. The dendrogram of Zachary’s karate club network. 

 
Fig. A2. z-score curve for deciding the optimal partition in Zachary’s karate club network. For each 

partition, z-score is calculated comparing the empirical network with an ensemble of one million 

randomized networks. 

 

Table A1. Partition of 34 vertices in the Zachary’s karate club network 
Vertex ID 
(Persons) 

Core ID or 
Periphery (P) 

Core (C) or 
Periphery (P) Community ID 

8 1 P 1 
14 1 C 1 
1 1 C 1 
2 1 C 1 
3 1 C 1 

16 2 P 3 
34 2 C 3 
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24 2 P 2 
33 2 C 3 
17 3 P 4 
6 3 P 4 
7 3 P 4 

26 4 P 2 
32 4 P 2 
27 5 P 3 
30 5 P 3 
11 6 P 4 
5 6 P 4 

13 7 P 1 
4 7 P 1 

25 8 P 2 
28 8 P 2 
31 9 P 3 
9 9 C 3 

10 P P 3 
12 P P 1 
15 P P 3 
18 P P 1 
19 P P 3 
20 P P 1 
21 P P 3 
22 P P 1 
23 P P 3 
29 P P 2 

          “Core ID or periphery (P)”: results obtained by the method proposed in the paper. 

         “Core (C) or periphery (P)”: results obtained by Borgatti and Everett’s method. 

         “Community ID”: results obtained by the Louvain method. 
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Appendix B: Analysis of Patent Technology Network 
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Fig. B1. The dendrogram of patent technology network. 

 
Fig. B2. z-score curve for deciding the optimal partition in patent technology network. For each 

partition, z-score is calculated comparing the empirical network with an ensemble of one million 

randomized networks. 

 

Table S2. Partitions of 121 vertices in the technology network 
Vertex ID 

(IPC3 Class) Description Core ID or 
Periphery (P) 

Core (C) or 
Periphery (P) 

Community 
ID 

G11 Information Storage 1 C 3 
G08 Signaling  1 C 3 
G01 Measuring & Testing 1 C 3 
H03 Electronic Circuitry 1 C 3 
G06 Computing 1 C 3 
H04 Electric Communication 1 C 3 
H01 Electric Elements 1 C 3 
H05 Electric Techniques 1 C 3 
G05 Controlling & Regulating 1 C 3 
H02 Electric Power 1 C 3 
B29 Plastics-Working 2 C 4 
B05 Spraying or Atomizing 2 C 4 
C09 Organic Material Applications 2 C 4 
B32 Layered Products 2 C 4 
C08 Organic Macromolecular Compounds 2 C 4 
B28 Cement, Clay or Stone Working 2 C 4 
C04 Building Materials 2 C 4 
A47 Furniture & Appliances 3 C 2 
B65 Filamentary Material Handling 3 C 2 
F16 Machine Elements 3 C 2 
B60 Vehicles in General 3 C 2 
B62 Land Vehicles 3 C 2 
F22 Steam Generation 4 C 1 
F25 Refrigeration, Liquefaction or Solidification 4 C 1 
F28 Heat Exchange in General 4 C 1 
F23 Combustion Apparatus & Processes 4 C 1 
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F24 Heating & Ventilating 4 C 1 
A01 Agriculture 5 C 1 
C12 Biochemistry & Genetic Engineering 5 C 1 
A61 Medical & Hygiene 5 C 1 
C07 Organic Chemistry 5 C 1 
D03 Weaving 6 C 4 
D04 Braiding & Knitting 6 C 4 
D01 Threads or Fibers 6 C 4 
D02 Yarns or Rope Finishing 6 C 4 
C02 Water Treatment 7 C 1 
C10 Fuels & Lubricants 7 C 1 
B01 Physical or Chemical Processes 7 C 1 
C01 Inorganic Chemistry 7 C 1 
C25 Electrolysis or Electrophoresis 8 C 4 
C23 Coating Metallic Material 8 C 4 
B44 Decorative Arts 8 C 4 
C03 Glass, Mineral or Wool 8 C 4 
F03 Machines or Engines for Liquids 9 C 2 
F04 Pumps 9 C 2 
F01 Machines or Engines in General 9 C 2 
F02 Combustion Engines 9 C 2 
D06 Textile Treatment 10 C 4 
B08 Cleaning 10 C 4 
C11 Fat, Oil & Wax Processing 10 C 4 
B41 Printing 11 C 3 
G02 Optics 11 C 3 
G03 Photography, Electrograph & Holography 11 C 3 
B22 Casting & Metallurgy 12 C 4 
C21 Metallurgy of Iron 12 C 4 
C22 Metallurgy of Non-ferrous Metals or Alloys 12 C 4 
B25 Workshop Equipment 13 C 2 
B21 Mechanical Metal-Working 13 C 2 
B23 Machine Tools 13 C 2 
E05 Locks, Keys & Safes 14 C 2 
E04 Building Construction 14 C 2 
E06 Building & Vehicle Closures & Ladders 14 C 2 
F41 Weapons 15 C 2 
C06 Explosives & Matches 15 C 2 
F42 Ammunition & Blasting 15 C 2 
A45 Hand or Travelling Articles 16 C 2 
A46 Brushware 16 C 2 
B43 Writing & Drawing Implements 16 C 2 
E21 Drilling & Mining 17 C 2 
E01 Road, Railway & Bridge Construction 17 C 2 
E02 Hydraulic & Construction Engineering 17 C 2 
G12 Instrument Details 18 P 5 
B81 Micro-Structural Technology 18 P 5 
B82 Nano-Technology 18 P 5 
A21 Baking 19 C 1 
A23 Food Processing 19 C 1 
F26 Drying 20 C 1 
F27 Furnaces, Kilns & Ovens 20 C 1 
B26 Hand Cutting Tools 21 C 2 
B27 Wood-Working 21 C 2 
A63 Sports & Amusements 22 C 2 
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G09 Info graphics & Display 22 C 3 
A41 Clothing 23 C 2 
A44 Haberdashery & Jewelry 23 C 2 
B03 Solid Material Separation 24 C 1 
B07 Separation of Solids 24 C 1 
B63 Ships 25 C 2 
B64 Aircraft 25 C 2 
A62 Life-saving 26 C 1 
B09 Disposal of Waste 26 C 1 
B31 Paper Articles 27 C 4 
D21 Paper & Cellulose Making 27 C 4 
A22 Butchering P C 1 
A24 Tobacco  P C 1 
A42 Headwear P C 2 
A43 Footwear P C 2 
B02 Grain Milling P C 1 
B04 Centrifugal Machines P C 1 
B06 Mechanical Vibration P C 4 
B24 Grinding & Polishing P C 2 
B30 Press Machine P C 4 
B42 Sheet-binding P C 2 
B61 Railways P C 2 
B66 Hoisting & Hauling Machines P C 2 
B67 Liquid Containers P C 2 
B68 Saddlery & Upholstery P C 2 
C05 Fertilizers P C 1 
C13 Sugar Production P P 1 
C14 Leather P P 4 
C30 Crystal Growth P C 4 
C40 Combinatorial Chemistry P P 1 
D05 Sewing P C 4 
D07 Ropes or Cables in General P P 4 
E03 Water Supply & Sewerage P C 2 
F15 Hydraulics & Pneumatics P C 2 
F17 Storing or Distributing of Liquids P C 1 
F21 Lighting P C 3 
G04 Horology P C 3 
G07 Checking-devices P C 3 
G10 Musical Instruments & Acoustics P C 3 
G21 Nuclear Technology P C 1 

 

 

 


