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Production of electron-positron pairs in the collision of a high-energy photon with a high-intensity
few-cycle laser pulse is studied. By utilizing the frameworks of laser-dressed spinor and scalar
quantum electrodynamics, a comparison between the production of pairs of Dirac and Klein-Gordon
particles is drawn. Positron energy spectra and angular distributions are presented for various laser
parameters. We identify conditions under which predictions from Klein-Gordon theory either closely
resemble or largely differ from those of the proper Dirac theory. In particular, we address the question
to which extent the relevance of spin effects is influenced by the short duration of the laser pulse.
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I. INTRODUCTION

Very strong electromagnetic fields can extract electron-
positron (e−e+) pairs from the quantum vacuum. With
respect to the strong fields provided by a high-intensity
laser wave, the first theoretical studies on e−e+ pair
production via multiphoton absorption date back to
the 1960s [1, 2]. Due to a remarkable and still ongo-
ing progress in high-power laser technology, which has
started in the mid 1980s, there are clear prospects for cor-
responding experimental studies in the near future. Op-
tical field intensities well above 1020 W/cm2 are routinely
available today in many laboratories worldwide and an
increase towards 1025 W/cm2 is envisaged [3, 4]. This
way the characteristic intensity level for vacuum pair pro-
duction – given by the critical value Icr ∼ 1029 W/cm2 –
is being approached. Besides, high-intensity x-ray beams
can be generated nowadays at free-electron laser facilities
[5] and through plasma harmonics [6].
With the aid of a suitable combination of advanced

technologies, experimental studies on e−e+ pair produc-
tion in strong laser fields are feasible already at present.
The relevant field frequency and intensity can be en-
hanced effectively when a high-energy photon or parti-
cle beam counterpropagates an intense laser pulse. This
kind of setup has enabled the first observation of e−e+

pair creation via multiphoton absorption. It was accom-
plished in ultrarelativistic electron-laser collisions at the
Stanford Linear Accelerator Center (SLAC) in the 1990s
[7]. The detected pairs were attributed to the reaction

ωγ +NωL → e−e+ , (1)

involving a high-energy photon ωγ generated through
Compton backscattering and a certain number N of laser
photons ωL. Equation (1) represents a multiphoton ver-
sion of the well-known Breit-Wheeler process [8].
The successful SLAC experiment together with the

promising prospects for a new generation of ultra-high
intensity laser laboratories have stimulated considerable

theoretical activities on e−e+ pair production and other
processes of quantum electrodynamics (QED) in very
strong laser fields during the last decade [9, 10]. A special
focus has been placed on strong-field QED calculations
in laser fields of finite extent because very high intensi-
ties are reached in short laser pulses, comprising just a
few field oscillations. Corresponding studies have been
carried out on multiphoton Compton scattering [11–17]
where characteristic imprints of the finite pulse shape on
the scattered photon distribution were shown. Also the
multiphoton Breit-Wheeler process (1) in a finite laser
pulse has been examined [18–27], which is related to
multiphoton Compton scattering by a crossing symme-
try of the corresponding Furry-Feynman graphs. Here,
the frequency spectrum of the pulse is reflected in the
resulting electron and positron momenta. Similar effects
were obtained for e−e+ pair production by the strong-
field Bethe-Heitler process involving multiphoton absorp-
tion in the presence of a nuclear Coulomb field [28, 29].
The influence of the pulse shape was also studied for pair
production processes in strong electric fields of finite tem-
poral or spatial extension [30, 31].

Another aspect of particular interest in strong-field
processes is the relevance of spin effects. They have
been studied in laser-atom interactions, such as rela-
tivistic photoionization [32, 33] and high-harmonic gen-
eration [34], as well as in high-intensity QED phenom-
ena. One possibility to analyze spin effects in relativis-
tic processes in strong laser fields is to compare the
predictions from the proper spinor QED based on the
Dirac equation with those from the scalar theory based
on the Klein-Gordon equation where the electron spin
is neglected. Corresponding comparative studies have
been carried out with respect to Compton scattering [35],
Mott scattering [36], Kapitza-Dirac scattering [37], and
Bethe-Heitler pair production [38]. For strong-field Breit-
Wheeler pair production in an intense monochromatic
laser wave, spin-resolved results were obtained within
Dirac theory [39, 40] and a comparison of total pro-
duction rates for spin- 12 and scalar particles was per-
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formed based on the laser-dressed polarization opera-
tor [41]. Characteristic differences between fermions and
bosons are also known from pair production in oscillating
electric fields, where the location of Rabi-like resonances
depends on the particle quantum statistics [42]. The lat-
ter is crucial for the Klein paradox which has recently
been examined within a computational field-theoretical
approach; pronounced suppression and enhancement ef-
fects were revealed for Dirac and Klein-Gordon particles,
respectively [43]. In standing laser waves of elliptical po-
larization, spin-polarized e−e+ pairs may be produced
[44]. We note that very recently, spin effects in multi-
photon Compton scattering in a pulsed laser field were
analyzed [45].

In the present paper, we study strong-field Breit-
Wheeler pair production in finite laser pulses, focussing
on spin effects. Production probabilities for pairs of
Dirac and Klein-Gordon particles are obtained within the
frameworks of laser-dressed spinor and scalar QED, re-
spectively. By way of comparison, the relevance of spin
effects in the process is revealed by inspecting positron
energy spectra and angular distributions. Also spin-
resolved calculations are carried out. Our main goal is
to reveal under which conditions spin effects are either
more or less pronounced in a short laser pulse as com-
pared with an infinitely extended laser wave.

Our paper is organized as follows. In Sec. II we briefly
survey the theoretical frameworks of strong-field Breit-
Wheeler pair production in short laser pulses within
spinor and scalar QED, respectively. A benchmark for
the subsequent discussion of spin effects in pulsed fields
is established in Sec. III by providing analytical expres-
sions for total Breit-Wheeler pair production rates in
monochromatic laser fields. Their main properties are
discussed and their understanding is supported by an
intuitive picture. In Sec. IV we present our numerical
results for positron energy spectra and angular distribu-
tions in few-cycle laser pulses. Various parameter combi-
nations are considered allowing us to identify conditions
under which the relevance of spin effects is enhanced or
reduced due to the short duration of the laser pulse. As
we shall demonstrate, the impact of the finite pulse length
and shape can be surprisingly large. We finish with con-
cluding remarks in Sec. V.

II. THEORETICAL FRAMEWORK

In this section, we first introduce the required defini-
tions and notation and then present the analytical deriva-
tion of the particle creation probability for scalar parti-
cles obtained in the collision of a high-energy gamma
quantum and a short laser pulse. The analogous deriva-
tion for Dirac particles was carried out in [26] where a
similar notation is used. More details can also be found
in [21].

A. Definitions

Relativistic units with ~ = c = 1 shall be used, un-
less explicitly stated otherwise. The positron charge and
mass are denoted by e and m, respectively. We em-
ploy the metric tensor diag(+,−,−,−), so that the four-
product of two four-vectors aµ = (a0, a) and bµ = (b0,b)
reads a · b = a0b0 − a ·b. Feynman slash notation is used
to denote four-products with Dirac γ-matrices.

1. Laser pulse

The laser pulse is defined by its vector potential in
radiation gauge

Aµ = A0f(φ)X[0,2π](φ)ǫ
µ (2)

with the amplitude parameter A0 and the real polariza-
tion vector ǫµ.
Assuming a uniform propagation direction n⊥ǫ for all

spectral components of the pulse, the spacetime depen-
dence is determined by the phase φ = k · x. Here, the
fundamental wave four vector kµ = ωb(1,n) with basic
frequency ωb has been introduced, as well as the space-
time coordinate xµ = (t,x). The pulse shape is deter-
mined by the combination of the shape function f(φ)
and of the characteristic function X[0,2π](φ). In order to
model a finite pulse, the latter restricts the phase variable
to the interval [0, 2π].
While we present the following derivation without

specifying the actual shape, our numerical results are ob-
tained for a specific shape which is defined by means of
its derivative

f ′(φ) = sin2 (φ/2) sin(Noscφ+ χ) (3)

where Nosc gives the number of oscillations within the
sin2 - envelope, and χ allows to vary the carrier-envelope
phase. The spectrum, as presented in Fig. 1, is dom-
inated by a broad peak at the central frequency ωc =
Noscωb. Especially for higher energies, the window func-
tion X[0,2π](φ) causes a series of spectral holes at integer
multiples of the laser basic frequency. As we shall see
later on, this characteristic structure is reflected in the
energy spectra of the produced particles.
We measure the field strength by means of the Lorentz-

invariant parameter

ξmax =
eA0

m
maxφ|f(φ)| . (4)

2. Volkov States

Both the Klein-Gordon equation and the Dirac equa-
tion can be solved in closed analytical form for a particle
being subject to a plane-wave fronted pulse as given by
Eq. (2) by means of the Volkov states [46, 47].
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FIG. 1: Spectral energy density (arb. units) of the ultrashort
pulse with a shape function given by Eq. (3) with Nosc = 2
and χ = 0. The characteristic zeros at integer multiples of the
basic frequency ωb = ωc/Nosc (as indicated by the subticks)
are caused by the window function X[0,2π](φ).

For a scalar particle (anti-particle) with free four-
momentum pµ− (pµ+), the Gordon-Volkov states read

Φp±
=

1
√

2V Ep±

ei[±p±·x+Λ±] (5)

with

Λ± =
1

k · p±

∫ k·x

0

[

ep± · A(φ) ∓
e2

2
A2(φ)

]

dφ (6)

and pµ± = (Ep±
,p±), Ep±

=
√

m2 + p2
± and a normaliz-

ing volume V .
Conversely, for a spin- 12 particle, the Dirac-Volkov

states read

Φ(1/2)
p±

=

√

m

V Ep±

[

1±
e/k /A

2k · p±

]

w±e
i[±p±·x+Λ±] . (7)

The free spinors w± satisfy the algebraic equation
(/p ± m)w± = 0 and are normalized according to
w±(p±, s±)w±(p±, s

′
±) = ∓δs±,s′

±
and w±w∓ = 0, where

s± labels the spin projection of the positron and electron,
respectively [48]. The spin quantization axis is chosen
along the propagation direction of the laser pulse.

3. Gamma Quantum

The pair production process in the strong-field Breit-
Wheeler scenario is induced by the decay of a high-energy
gamma quantum traveling in the strong laser field. This
gamma quantum is described as a single mode of a quan-
tized radiation field. Its absorption during the process
gives rise to an effective scattering potential

Aµ
γ =

√

2π

V ωγ
e−ikγ ·x ǫµγ , (8)

where kµγ = (ωγ ,kγ) is the corresponding wave four vec-
tor whereas ǫµγ is a real polarization four vector. To sim-
plify our calculations, the gamma quantum is assumed
to be colliding head-on with the laser pulse.

B. Pair Creation Probability

In the following, we present the derivation of the pair
creation probability for Klein-Gordon particles in a short
laser pulse. Within laser-dressed scalar QED, the S-
matrix element for the creation of a (spinless) electron-
positron pair with momenta pµ− and pµ+ reads

Sp+p−
= −i

∫

d4xΦ∗p−
HintΦp+

, (9)

with the interaction Hamiltonian

Hint = −ie

(

Aγ ·
→

∇−
←

∇ ·Aγ

)

+ 2e2A ·Aγ . (10)

The S matrix can be brought into the form

Sp+p−
= S0

∫

d4xC(φ)e−iQ·x−iH(φ) (11)

with S0 = −iem
√

π
2V 3Ep+

Ep−
ωγ

and

C(φ) = g0 + g1f(φ)X[0,2π](φ) ,

H(φ) =

∫ φ

0

h(φ̃)dφ̃ ,

Qµ = kµγ −
(

pµ+ + pµ−
)

,

(12)

and with abbreviations

g0 =
p− − p+

m
· ǫγ ,

g1 =
2eA0

m
ǫ · ǫγ ,

h(φ) =
[

h1f(φ) + h2f
2(φ)

]

X[0,2π](φ) ,

h1 = −eA0

[

ǫ · p+
k · p+

−
ǫ · p−
k · p−

]

,

h2 = −
e2A2

0

2

[

1

k · p+
+

1

k · p−

]

.

(13)

In order to carry out the spacetime integration, the
term proportional to g0 is transformed according to (see
also [15])

g0 →
−k0

Q0
h(φ)g0 . (14)

The condition Q0 6= 0 follows from kinematical con-
straints [21]. Introducing light-cone coordinates, three
integrations can be carried out directly. For a given four
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vector xµ and with x‖ = x·n, we introduce x− = x0−x‖,
x+ = 1

2

(

x0 + x‖
)

, and x⊥ = x− x‖n. We obtain

Sp+p−
=(2π)3S0δ(Q

−)δ(2)(Q⊥)

×

∫ 2π/k0

0

dx−C(k0x−)e−iQ
0x−−iH(k0x−) .

(15)

The remaining integral can be calculated numerically.
The total creation probability of Klein-Gordon (KG)
pairs is obtained from

P
KG =

1

2

∑

λγ

∫

V d3p+
(2π)3

∫

V d3p−
(2π)3

|Sp+p−
|2 , (16)

assuming an unpolarized beam of gamma quanta.
Comparing the derivation above with the spin- 12 case,

where the S matrix reads

S(1/2)
p+s+,p−s− = ie

∫

d4xΦ
(1/2)

p−s−
/AγΦ

(1/2)
p+s+ , (17)

we note that the expressions following Eq. (11) are
mostly equivalent, except for the prefactor S0 and the
matrix elements g0 and g1 (see Eqs. (10) and (12) in [26]).
The latter include the spinor properties of the Dirac par-
ticles. The total production probability in the Dirac case
can be decomposed into spin contributions,

P
(1/2) =

∑

s+,s−

P
(1/2)
s+s− , (18)

where the quantitity P
(1/2)
s+s− is given by Eq. (16) with

Sp+p−
being replaced by S

(1/2)
p+s+,p−s− . We note that, in

general, the formal quantitity P
(1/2)
s+s− cannot be inter-

preted straightforwardly as the probability to create a
positron and an electron with spin projections s+ and
s− respectively. Nevertheless, the spin decomposition in
Eq. (18) will prove useful for gaining an intuitive under-
standing of the relation between the production of spinor
and scalar pairs. For distinguishing the two inequivalent
spin configurations in our case we introduce besides the
label s = |s+ + s−|. It gives the absolute magnitude of

the sum of the spin quantum numbers occuring in P
(1/2)
s+s−

and has, accordingly, the possible values s = 0 and s = 1.

III. SPIN-RESOLVED MULTIPHOTON

PROCESSES IN MONOCHROMATIC FIELDS

The pair creation in a laser pulse of moderate intensity
can be understood in terms of multiphoton processes in-
duced by the spectral components of the pulse [20, 26].
Therefore, we start our analysis of spin effects by analyz-
ing spin-dependent pair creation rates for multiphoton
processes in a monochromatic laser field. The spin ef-
fects obtained in a short laser pulse (see Sec. IV) will be

explicable in terms of these monochromatic rates, com-
bined with the spectral composition of the pulse.
The monochromatic laser field is assumed to be linearly

polarized. Its field strength is determined by means of
the usual dimensionless amplitude ξ = eA0

m which is as-
sumed to be small, ξ ≪ 1. We shall compare perturbative
multiphoton pair production rates RN in leading order of
ξ. We present these rates, throughout, in units of a com-
mon prefactor αmξ2N which includes the perturbative
intensity scaling for a process involving N laser photons.
For notational and calculational simplicity, the rates

are considered in the center-of-mass frame. The energy
of both the particles and the photons can thus be mea-
sured by means of the reduced velocity parameter β of
the particles (see [49] for further details). We first con-
sider processes close to the energy threshold (β = 0).
This consideration will help us to develop a basic physi-
cal understanding of the influence of the particles’ spin.
For the one-photon process, we obtain

R
KG
1 =

1

8
β −

11

48
β3 +O(β5) , (19)

R
(0)
1 =

1

4
β −

1

8
β3 +O(β5) , (20)

R
(1)
1 =

1

2
β3 −

7

20
β5 +O(β7) . (21)

The spin contributions to the Dirac case are distinguished
by the superscript (s), which has been introduced at the
end of Sec. II A 2. This is, the multiphoton Dirac rate is

decomposed according to R
(1/2)
N = R

(0)
N + R

(1)
N .

A comparison of Eqs. (19)-(21) suggests a particularly
simple picture for the relation between the production
of Dirac and KG pairs close to the threshold of the one-
photon process. In the limit of small β, the Dirac rate
is entirely determined by the contribution from s = 0
and twice as large as the rate for (intrinsically spinless)
KG pairs. Thus, intuitively one may say that Dirac pairs
are produced with vanishing total spin. The rate ratio
of 2 coincides with the number of possible configurations
being available for the “spinless” Dirac pairs [41] [51].
However, moving away from the threshold by in-

creasing the photon energies, the simple correspondence

breaks down. The ratio R
(0)
1 /RKG

1 starts to exceed the
value of 2. Additionally, the contribution from s = 1 to
the Dirac rate becomes sizeable.
For the two-photon process, one finds

R
KG
2 =

13

48
β3 −

133

160
β5 +O(β7) , (22)

R
(0)
2 =

1

3
β3 −

77

160
β5 +O(β7) , (23)

R
(1)
2 =

1

8
β −

31

48
β3 +O(β5) . (24)

Close to the threshold, the contribution from s = 1 to the
Dirac rate is domimant this time. The contribution from
s = 0 and the KG rate still behave similarly. However,
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they are suppressed due to the β3-scaling. Their numer-
ical ratio is 16

13 , which strikingly differs from the factor 2
found for the one-photon process.
For the three-photon process, the spin effects resemble

the one-photon process again:

R
KG
3 =

9

512
β −

249

1024
β3 +O(β5) , (25)

R
(0)
3 =

9

256
β −

177

512
β3 +O(β5) , (26)

R
(1)
3 =

93

128
β3 −

1155

256
β5 +O(β7) . (27)

Close to the threshold, we find R
(0)
3 /RKG

3 = 2, while the
contribution from s = 1 to the Dirac rate is suppressed.
Increasing the photon numbers further, the described

behavior (in particular close to the threshold) continues
to alternate between even and odd photon numbers. This
was checked for photon numbers up to N = 10. In par-
ticular, for low-energy particles being produced by an

even photon number, the ratio R
(0)
N /RKG

N was found to

be described by the formula 4N2

2N2+2N+1 . Note that this
expression approaches the value 2 for large photon num-
bers.
An intuitive understanding of the qualitative differ-

ence between even and odd laser photon numbers can be
gained by considering the angular momentum balance in
the process (see also [40]). The incoming N laser photons
and the gamma quantum carry one unit of angular mo-
mentum along the beam axis each. The resulting total
angular momentum is transferred to the produced parti-
cles. This constraint imposes a selection rule which de-
pends on the parity of the number of absorbed photons.
It becomes particularly sensitive to the spin configuration
when we regard processes close to the threshold [50].
For example in the case of a one-photon process, the

total angular momentum of the laser photon and the
gamma quantum is an even number (including zero). It
must be compensated by the produced particles. In the
limit of small β, the angular momentum of the particles
is solely composed of their spins. This offers a plausible
explanation for the suppression of the contribution from
s = 1 and the dominance of the contribution from s = 0
to the Dirac rate R

(1/2)
1 . Conversely, for a two-photon

process, the total angular momentum is an odd number.
This favors the contribution from s = 1 to the Dirac rate
R

(1/2)
2 in the limit of small β and suppresses, in turn, the

contribution from s = 0 as well as the KG rate.
The above line of argument breaks down when the par-

ticle energies grow. Then, the angular momentum of the
photons is transferred not only to the particles’ spins but
also to their orbital angular momenta. As we shall see
below, the angular distributions reveal clear signatures of
this selection rule. When the incoming angular momen-
tum is completely compensated by the particles’ spin,
they can be emitted into any direction. Conversely, a
non-zero orbital angular momentum along the beam axis
is most easily attained by low-energy particles when they
are emitted into transverse direction.

β

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

1-photon

2-photon

3-photon

FIG. 2: Ratio between the rates for Dirac and KG for different
numbers of absorbed photons as a function of the velocity β
of the particles.

As a preparation for the following section, we present

in Fig. 2 the ratio ζN = R
(1/2)
N /RKG

N between the spin-
summed Dirac and KG rates for N = 1, 2, 3 in the full in-
terval of β. The spin effects reveal an increasingly rich de-
pendence on β as the number of absorbed photons grows.
While the spin sensitivity of the one-photon process es-
sentially grows with increasing β, the ratio for the two-
photon process diverges with 1/β2 at the threshold and
falls into a minimum at β ∼ 0.5. The three-photon ratio
ζ3 reveals a pronounced maximum and minimum. As a
consequence, the spin sensitivities may strongly depend
on the photon number at a given velocity β. Neverthe-
less, we find comparable spin sensitivities ζN ∼ 4 in the
range of intermediate velocities β ∼ 0.5. Furthermore,
since ζN ≥ 2 in the whole β interval, the Klein-Gordon
rates form a lower limit for the full Dirac rates, again
with a factor of two.
In the limit of ultrarelativistic particles, the ratio ζN

suggests huge spin effects. Note, however, that the un-
derlying production rates approach zero, such that these
processes contribute only marginally to the full pair pro-
duction probability obtained in a pulse.

IV. SPIN EFFECTS IN SHORT PULSES

In the following, we shall investigate spin effects in
pair production driven by a short laser pulse with cen-
tral frequency ωc and draw a comparison with the corre-
sponding process in a monochromatic laser wave of the
same frequency. In order to have comparable amplitudes,
we choose the amplitude of the monochromatic wave as
ξ = ξmax. The number of cycles and the carrier-envelope
phase of the laser pulse are chosen as Nosc = 2 and
χ = 0 throughout. The ratio between the probabilities
(or rates) of Dirac and KG pairs is denoted by ζ.
We shall consider three different parameter combina-
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tions which are distinguished by the value of ωcωγ . This
product determines the energy threshold of the pair pro-
duction process. If ωcωγ > m2

∗, with m∗ being the laser-
dressed mass, a pair can be created in the collision of the
gamma photon with one laser photon from a monochro-
matic field of frequency ωc. The numerical calculations
are carried out in a frame of reference where the gamma
photon energy equals the total absorbed laser photon en-
ergy for the leading order photon-number channel. The
parameters can be achieved, for instance, by employing
a Nd:YAG laser with ωc ≈ 2.4 eV and peak intensity
. 1018 W/cm2, and a high energy photon with ∼ 100
GeV, which could be generated by Compton backscat-
tering off an ultrarelativistic electron beam.

A. Above the one-photon threshold

We start with a laser frequency ωc = 1.006m and a
gamma quantum with equal energy. In the case of a
monochromatic laser field of moderate intensity, these
parameters allow a one-photon process closely above the
threshold, with β ≈ 0.11. For ξ = 0.02, the monochro-
matic laser field yields a rate ratio of ζ ≈ 2.1, in accor-
dance with Eqs. (19)-(21). Employing a short two-cycle
pulse, we find a substantially larger probability ratio of
ζ ≈ 3.5 instead.
This enhancement of the relevance of spin effects can

be attributed to the broad spectrum of the ultrashort
pulse. In contrast to the monochromatic field, the pulse
facilitates creation of particle pairs within a broad range
of energies. As depicted in Fig. 3, the dominant pair
production channels are actually those with energies well
above the monochromatic case. In fact, the largest con-
tributions stem from positron momenta around p+ ≈
0.46m. For the corresponding value of β ≈ 0.42, the
ratio ζ1 ≈ 3.4 can be read off from Fig. 2. These ener-
getic positrons have been produced by laser photons with
frequencies significantly above ωc. Although the spectral
weight of these photons is reduced as compared with pho-
tons close to the central frequency (see Fig. 1), they can
give the dominant contribution to the pair production
probability because the latter increases with increasing
positron momentum [see Eqs. (19)-(21)].
Thus, the availability of photons with relatively high

energies in the short laser pulse, in combination with the
energy dependence of the production probability, leads
to the enhanced spin sensitivity observed in the present
scenario.
While the difference between KG and Dirac particles

in terms of their total production probabilities is am-
plified in the short laser pulse, certain similarities may
still exist. This can already be anticipated by comparing
the curves for KG and “spinless” Dirac pairs in Fig. 3,
whose shapes resemble each other. Further insights can
be gained from an inspection of the angular distributions
of positrons generated in the short pulse. In Fig. 4, we
present our corresponding results for positrons with fixed

p+/m

0 0.25 0.5 0.75 1 1.25

×10−6

0

0.2

0.4

0.6

0.8

1

Dirac

s = 0

s = 1

KG

FIG. 3: Angularly integrated probabilities dP
dEp+

in units of

1/m as a function of p+/m for ωc = ωγ = 1.006m, Nosc = 2,
and ξmax = 0.02.

momentum p+ = 0.15m for different spin configurations.
The production probability of Dirac pairs is mainly deter-
mined by the contributions with s = 0 (see also Fig. 3).
The corresponding angular distribution is almost homo-
geneous in the transverse direction and moderately en-
hanced in the laser backward direction [52]. In contrast,
the contribution from s = 1 is suppressed and its angular
distribution looks qualitatively different. Emission along
the laser polarization axis is preferred, whereas emission
along the collision axis is further suppressed. The com-
parison between the two Dirac contributions nicely illus-
trates the consequences of the conservation of angular
momentum (see Sec. III). The full Dirac distribution is
mainly determined by the contribution from s = 0. The
much weaker probability for s = 1 appears as a mod-
ulation along the azimuthal direction. In comparison,
the KG distribution shows certain similarities with the
spin-summed Dirac distribution because it quite closely
resembles the dominant case s = 0. Also azimuthal mod-
ulations exist which, however, are offset by π/2 as com-
pared with the full Dirac distribution. In Sec. IV.C we
shall see that the similarity between the KG and spinless
Dirac distributions can be even more obvious.

B. Just below the one-photon threshold

As a second example, we choose ωc = 0.7m and
ωγ = 1.4m. Hence, the absorption of two laser photons
is required in the monochromatic case. For ξ = 0.2, we
find strong spin effects with ζ ≈ 5.8. Conversely, for a
short pulse with Nosc = 2, we find ζ ≈ 3.4.
In this case, the spin effects in the pulse are reduced as

compared to the monochromatic field. Since the photon
frequencies are just slightly below the one-photon thresh-
old, the two-photon process in the monochromatic field
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FIG. 4: Fully differential probability d3P

dEp+
d2Ωp+

in units of

1/m for p+ = 0.15m, ωc = ωγ = 1.006m, Nosc = 2, and
ξmax = 0.02. The angles ϑ and ϕ describe the positron emis-
sion direction and are measured with respect to the laser prop-
agation and polarization directions, respectively.

leads to a pair with rather large value of β ≈ 0.70 (when
dressing effects are neglected). From Fig. 2 we can con-
firm ζ ≈ 5.9, accordingly. When, instead, the pairs are
created in the short laser pulse, the broad pulse spectrum
contains photons with sufficiently large energy in order to
drive one-photon processes. As depicted in Fig. 5, these
one-photon processes produce pairs with lower values of
β, such that the resulting spin effects are smaller than in
the monochromatic field. In fact, the dominant contribu-
tion to the total creation probability stems from processes
with positron momenta p+ ≈ 0.59m, corresponding to
β ≈ 0.51.
The dominance of the one-photon channels in the

pulsed field is due to the ξ2N scaling of the process prob-
ability in the regime where ξ ≪ 1. Therefore, pair pro-
duction by two-photon absorption is suppressed by an
additional factor of ξ2. This phenomenon has been called
“subthreshold enhancement” of pair creation in Ref. [20],
in analogy with the terminology in nuclear collisions.
The reduction of the spin sensitivity in the present sce-

nario thus results from the availability of photons with
relatively high energies in the short laser pulse, in com-
bination with the intensity dependence of the production
probability.
We further note that, as before, the curves for KG and

spinless Dirac pairs in Fig. 5 have similar shapes. Besides,
we point out that, for p+ & m, the two-photon process
becomes dominant also in the pulsed field and leads to
the small plateau in the energy spectra of Fig. 5.

C. Deeply below the one-photon threshold

Finally, we consider a scenario where the reduction
of spin effects in a short laser pulse is particularly pro-
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FIG. 5: Same as Fig. 3 but for ωγ = 1.4m, ωc = 0.7m, and
ξmax = 0.2.

nounced. To this end, we investigate the case of ξ =
0.001, ωγ = 1.006m, and ωc = 0.503m, which is half of
the frequency of the above-threshold case in Sec. IV.A.
For the monochromatic field, these parameters lie deeply
below the one-photon threshold. As a consequence,
the two-photon process leads to a low-energy pair with
β ≈ 0.11 and very strong spin effects with ζ ≈ 39. In
comparison, the ultrashort pulse with Nosc = 2 leads to
ζ ≈ 2.9 only, which means that the relevance of the spin
degree of freedom is suppressed by an order of magnitude.

Based on the line of argument in Sec. IV.B, one might
suspect that the pronounced suppression comes from the
fact that, in the short pulse, the pairs can be gener-
ated by a single energetic photon whose frequency equals
2ωc = 1.006m. However, a closer look at the spec-
trum of the pulse is necessary. It exhibits characteristic
holes at (most) integer multiples of the basic frequency
(see Fig. 1). They are induced by the window function
X[0,2π](φ) in Eq. (2). In particular, the pulse under in-
vestigation does not contain photons of frequency 2ωc.
As a consequence, the corresponding energy can only be
provided by two (or more) photons. This means that
the pulse produces pairs with β ≈ 0.11 predominantly
through a two-photon process (just as the monochro-
matic field). This production channel is associated with
a large value of ζ.

Additionally, as Fig. 6a shows, the pulse produces pairs
with other values of β by means of one-photon processes.
Due to the very small value of ξmax, these one-photon
processes deliver the dominant contribution to the full
probability (see Sec. IV.B). The typical positron mo-
menta amount to roughly p+ ≈ 0.33m, corresponding
to β ≈ 0.31. Therefore, as the blue ζ1 curve in Fig. 2
indicates, the spin dependence of the total production
probability in the pulse is heavily reduced as compared
to the monochromatic field. It is interesting that in the
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scenario of Sec. IV.A, the contribution of higher particle
energies led to enhanced spin effects in the pulsed field,
whereas in the current situation higher particle energies
are accompanied by reduced spin sensitivity.

The reduction is particularly strong in the present
case because the monochromatic field probes production
of low-energy pairs by two-photon absorption which is
highly spin sensitive (see green ζ2 curve in Fig. 2). In
contrast, pairs are mainly generated with intermediate
energies through one-photon processes in the pulse. This
phenomenon occurs despite the spectral holes of the spe-
cific laser pulse under consideration. It can therefore be
expected to arise in pulses of other shapes, as well, when-
ever the corresponding process in a monochromatic field
with ξ ≪ 1 produces low-energy pairs by an even number
of laser photons.

Figure 6a also shows that the contribution from s = 1
to the production probability of Dirac pairs does not re-
veal the pronounced dip at β ≈ 0.11. As we have seen in
Sec. III, the contribution from s = 1 to the production of
low-energy pairs is suppressed when only one laser pho-
ton participates. The pulse, however, allows to deliver
the required energy through two photons. These pro-
cesses do not suffer from the spectral hole which affects
the one-photon processes.

The plateaus visible in Fig. 6a are related to the spec-
tral holes. The production of a positron of momentum
p+ requires an energy EL(p+) to be absorbed from the
pulse. This energy generally depends on the emission
direction. For the current parameters, only the process
with p+ ≈ 0.11m happens in a c.m. system, such that
EL becomes angle-independent. Therefore, the hole in
the pulse spectrum located at the frequency 1.006m di-
rectly translates to the dip in the momentum distribu-
tion at p+ ≈ 0.11m. For other values of p+, the angle-
integrated probabilities comprise an interval of energies
EL(p+). Therefore, an average over some spectral range
is taken, washing out the sensitivity to the spectral holes.
This holds especially for higher positron momenta, where
the lower and upper boundary of the interval are shifted
to higher energies. Furthermore, the EL interval becomes
broader and soon comprises several spectral holes. The
local maxima between the holes (see Fig. 1) provide the
dominant contribution to the integrated probabilities.
Since the spectrum falls off for higher frequencies, the
integrated probability drops significantly whenever the
lower interval boundary passes one more spectral max-
imum. In between, the integrated probability is almost
constant, leading to the plateau structure.

Finally, we increase the intensity from ξmax = 0.001
to ξmax = 0.1, which strongly enhances the relative im-
portance of processes with higher photon numbers due
to the intensity scaling. Unlike in the scenarios pre-
sented before, low-energy particles can be expected (from
the P-Model, see [26]) to be predominantly produced
by two-photon processes, while the three-photon pro-
cess becomes important for higher energies. Inspecting
the positron energy spectrum as depicted in Fig. 6b, the
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FIG. 6: Same as Fig. 3 but for ωγ = 1.006m, ωc = 0.503m,
and a) ξmax = 0.001, b) ξmax = 0.1.

production of low-energy particles is mainly determined
by the contribution with s = 1, while the production of
“spinless” particles is strongly suppressed. These results
are in accordance with the results for two-photon pro-
cesses in Sec. III, but they differ from the energy spectra
of the other scenarios. Furthermore, in comparison with
the low-intensity case [see Fig. 6a], the effects of the spec-
tral holes are washed out due the convolution inherent
to multiphoton processes. The production probability
of Klein-Gordon particles close to the threshold contains
significant contributions from one- and, possibly, three-
photon processes.

Despite the strong spin effects inherent to the two-
photon process at low energies, the full probability re-
veals only moderate spin sensitivity with ζ ≈ 4.6. The
main contribution to the full probability in the pulse
stems from processes with intermediate momenta p+ ≈
0.34m. As we have already seen in Fig. 2, the spin sensi-
tivity at those energies is much weaker than for processes
close to the threshold. In contrast, the monochromatic
field predominantly produces low-energy particles via a
two-photon process, which reveals very strong spin effects
with ζ2 ≈ 66. In comparison with the low-intensity case
(see beginning of Sec. IV.D), the rather small reduction
of the particles’ momenta due to the laser dressing leads
to a significant increase in ζ2. When the weaker yet no-
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ticeable three-photon process is included, the combined
spin-effects in the monochromatic field amount to ζ ≈ 43
in total, exceeding the spin-sensitivity in the pulse by one
order of magnitude. The strong difference between the
spin sensitivities in the pulse and in the monochromatic
field thus persists despite the substantial increase in the
laser intensity.
Figure 7 shows a comparison of the angular distribu-

tions for fixed momentum p+ = 0.15m. The results for
Dirac and Klein-Gordon particles differ completely, but
we find a striking similarity between KG and s = 0. With
the process being primarily induced by two laser pho-
tons, their numerical ratio is less than two (at least for
the dominant directions). In contrast to the angular dis-
tributions presented in Fig. 4, the similarity between the
“spinless” channels occurs despite the fact that the con-
tribution with s = 1 is dominant. We finally note that
the strong localization of the “spinless” contributions is
again a typical signature of the conservation of angular
momentum in a two-photon process (see Sec. III). The
non-vanishing emission probabilities along the propaga-
tion direction are caused by processes involving different
photon numbers.

V. CONCLUSION

We studied spin effects in strong-field Breit-Wheeler
pair production in a short few-cycle laser pulse. This way,
our previous investigations in [21, 26] were extended. Fo-
cussing on the regime of moderate laser intensities (ξ ≪ 1
and ξ . 1), we compared predictions from laser-dressed
scalar and spinor QED, based on the Klein-Gordon and
Dirac equations, respectively. The results from spinor

QED were also decomposed into spin contributions along
the beam axis, which allowed us to obtain intuitive in-
sights into the origin of the spin dependence of the pair
production probabilities.

We have found that the relevance of spin effects –
which was measured by the ratio ζ between total Dirac
and Klein-Gordon probabilities – can both be enhanced
or reduced in a short laser pulse, as compared with a
monochromatic laser field. For instance, spin effects may
be enlarged in the pulse when pairs are produced above
the monochromatic one-photon threshold. In contrast,
when low-energy pairs are produced by an even number
of photons from a monochromatic field, the correspond-
ing pair production process in the pulse will mainly occur
with an odd number of laser photons, which can lead to
a very strong suppression of the spin sensitivity. In par-
ticular, the value of ζ can either be much larger or signif-
icantly smaller than the value of ζ = 6, which is obtained
in the strong-field tunneling regime of Breit-Wheeler pair
production where ξ ≫ 1 [41].

Besides, it was found that the predictions from the
spinless Klein-Gordon theory often exhibit a close sim-
ilarity with the “spinless” contribution from the Dirac
calculation. This holds not only for total probabilities,
but also for energy spectra and, most strikingly, angular
distributions of produced positrons.

In conclusion, the comparability between scalar and
spinor pair production strongly depends on the kinemat-
ical conditions. The influence of a short pulse can be
understood in terms of the properties of the production
rates in a monochromatic field, combined with the fre-
quency spectrum of the pulse. The spin-sensitivity of
the monochromatic rates reveals a strong dependence on
the number of absorbed photons (especially its parity)
and on the momentum of the particles. The monochro-
matic field may probe channels with extremely small or
large momenta, which may be either weakly (ζ ≈ 2) or
strongly (ζ → ∞) sensitive to the spin. In contrast, when
the comparison with a short pulse of the same central
frequency is drawn, the full pair production probability
in the pulse is mainly determined by production channels
with intermediate particle energies – which were found to
reveal also an intermediate spin-sensitivity with ζ ∼ 4.
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