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3Departamento de F́ısica Teórica I, Universidad Complutense, 28040 Madrid, Spain

4Instituto de Biocomputación y F́ısica de Sistemas Complejos (BIFI), Zaragoza, Spain
5Information Sciences Institute, University of Southern California, Marina del Rey, CA 90292, USA

Recent technological developments in the field of experimental quantum annealing have made
prototypical annealing optimizers with hundreds of qubits commercially available. The experimental
demonstration of a quantum speedup for optimization problems has since then become a coveted,
albeit elusive goal. Recent studies have shown that the so far inconclusive results, regarding a
quantum enhancement, may have been partly due to the benchmark problems used being unsuitable.
In particular, these problems had inherently too simple a structure, allowing for both traditional
resources and quantum annealers to solve them with no special efforts. The need therefore has arisen
for the generation of harder benchmarks which would hopefully possess the discriminative power to
separate classical scaling of performance with size, from quantum. We introduce here a practical
technique for the engineering of extremely hard spin glass Ising-type problem instances that does not
require ‘cherry picking’ from large ensembles of randomly generated instances. We accomplish this
by treating the generation of hard optimization problems itself as an optimization problem, for which
we offer a heuristic algorithm that solves it. We demonstrate the genuine thermal hardness of our
generated instances by examining them thermodynamically and analyzing their energy landscapes,
as well as by testing the performance of various state-of-the art algorithms on them. We argue
that a proper characterization of the generated instances offers a practical, efficient way to properly
benchmark experimental quantum annealers, as well as any other optimization algorithm.

I. INTRODUCTION

Many problems of theoretical and practical relevance
consist of searching for the global minimum of a cost func-
tion. These optimization problems are on the one hand
notoriously hard to solve but on the other hand ubiqui-
tous, and appear in diverse fields such as machine learn-
ing, material design, and software verification, to mention
a few diverse examples. The computational difficulties as-
sociated with solving these optimization problems stems
from the intricate structure of the cost function that needs
to be optimized which often has a rough landscape with
many local minima. The design of fast and practical algo-
rithms for optimization has therefore become one of the
most important challenges of many areas of science and
technology [1].

Recent theoretical and technological breakthroughs
have triggered an enormous interest in one such non-
traditional method, commonly referred to as Quantum
Annealing (QA) [2–8]. The uniqueness of this approach
stems from the fact that it does not rely on traditional
computation resources but rather manipulates data struc-
tures called quantum bits, or qubits, that obey the laws
of Quantum Mechanics. It is believed that by utilizing
uniquely quantum features such as entanglement, massive
parallelism and tunneling, a quantum computer can solve
certain computational problems in a way which scales
better with problem size than is possible on a classical
machine.
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A huge amount of progress has recently been made in
the building of experimental quantum annealers [9, 10],
the most notable of which are the D-Wave processors
consisting of hundreds of coupled superconducting flux
qubits. These devices offer a very natural approach to
solving optimization problems utilizing gradually decreas-
ing quantum fluctuations to traverse the barriers in the
energy landscape in search of global optima [2, 3, 5–
7]. As an inherently quantum technique, QA holds the
so-far unfulfilled promise to solve combinatorial opti-
mization problems faster than traditional ‘classical’ algo-
rithms [11–14]. However, to date there is no experimental
(nor theoretical) evidence that quantum annealers are ca-
pable of producing such speedups [15, 16].

Extensive studies designed to properly benchmark ex-
perimental QA processors, such as the D-Wave annealers,
have resulted for the most part in inconclusive results, de-
spite accumulating evidence for the (indirect detection)
of genuinely quantum effects such as entanglement and
multi-qubit tunneling [17–21]. Indeed, direct comparison
tests between the 128-qubit D-Wave One and later the
512-qubit D-Wave Two (DW2) processors and classical
state of the art algorithms on randomly-generated Ising-
model instances have shown no evidence of a quantum
speedup [15, 16, 19].

The above lack of evidence has motivated a few re-
cent studies to further explore problem classes where one
might expect the occurrence of quantum speedups [16,
22–24]. Katzgraber, Hamze and Andrist [22] pointed out
that the random Ising instances used in the previously
mentioned comparison tests exhibit a spin-glass phase
transition only at T = 0, i.e., at zero temperature. Spin-
glasses are disordered, frustrated spin systems that may
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be viewed as prototypical classically-hard (also called NP-
hard) optimization problems, that are so challenging that
specialized hardware has been built to simulate them [25–
27] [the related cost function is in Eq. (1) below]. That
the spin glass transition occurs at T = 0 implies that
for any T > 0, the energy landscapes for these problems
are in general fairly simple and can therefore be solved
rather easily by classical heuristic solvers and hence do
not require quantum tunneling reach global optima, thus
rendering these instances less than ideal for benchmark-
ing.

A subsequent study which examined the same class of
uniformly-random Ising problems on the D-Wave archi-
tecture [23] measured the correlation between the perfor-
mance of the DW2 device and a physical effect referred
to as temperature chaos [28–43], which has recently been
identified as the culprit for the difficulties that classical
thermal algorithms encounter when attempting to solve
spin-glasses [44, 45]. Temperature chaos implies the pres-
ence of low-lying excited states (i.e., slightly sub-optimal
spin assignments) that have a large Hamming distance
with respect to the minimizing assignment, or ground
state (GS), of the instance. Furthermore, these excited
states are not only stable against local excitations (i.e.,
bit flips), they also have a much larger entropy than the
GS. As a consequence, classical state-of-the-art optimiza-
tion algorithms such as simulated annealing or parallel
tempering simulations often get trapped in one of these
excited states. Indeed, non-chaotic problem instances are
exponentially unlikely to be found as the problem size
is increased [39, 42, 43]. However, while temperature-
chaotic instances do indeed exist on the relatively tiny
DW2 512-bit hardware graph, they become exceedingly
rare with the degree to which they exhibit temperature
chaos, and are therefore difficult to find [23].

Since these are the temperature-chaotic instances that
are expected to have the discriminative power to separate
classical scaling of performance with size, from quantum,
a natural question thus arises. Can one efficiently find or
generate ‘rare gem’ instances, i.e., small size problems (so
small that encoding it on a quantum device is feasible)
that also display a large degree of temperature chaos,
or inherent hardness? To date, several techniques for
generating hard problems that go beyond random gen-
eration of instances have been explored, such as utiliz-
ing instances with planted solutions with tunable frustra-
tion [16], the deliberate reduction of GS degeneracy using
Sidon sets for the couplings [46] or the porting of fully-
connected Sherrington-Kirkpatrick (SK) instances [24].
However the obtained instances were found to lack the
necessary degree of inherent hardness (i.e., hard problems
are still rare), which as a result necessitated the genera-
tion of an initial huge pool of problems followed by the
prohibitively expensive procedure of exhaustive ‘mining’
for instances presenting high degrees of inherent thermal
hardness [23, 46].

In this paper, we propose an altogether different, adap-
tive algorithm to generate such rare gem instances — ex-
tremely hard spin-glass instances of relatively small size
— in a considerably more efficient manner than current

mining techniques. The remainder of the work is orga-
nized as follows. In Sec. II we present the basics of a
heuristic algorithm which generates hard spin-glass in-
stances. Following this, in Sec. III, we thermodynamically
analyze the generated instances, and test them against
classical optimizers as well the DW2 annealer. We also
apply our technique to instances with planted solutions
in Sec. IV and conclude in Sec. V.

II. ENGINEERING OF HARD SPIN-GLASS
BENCHMARKS

For concreteness in what follows we apply our tech-
nique to the D-Wave Two ‘Chimera’ hardware graph (see
Appendix A) as this will allow us to experimentally test
the hardness of the instances on an actual quantum an-
nealer. However it should be noted that the method pro-
posed here is far more general and may apply to arbitrary
connectivity graphs. The cost function on which we gen-
erate our instances is of the form

H =
∑
〈i,j〉

Jijsisj , (1)

where the couplings {Jij} are programmable parame-
ters that define the instance. The cost function H is
to be minimized over the spin variables, si = ±1 where
i = 1 . . . N and N is the number of participating spins.
The angle brackets 〈i, j〉 denote that the sum is only over
connected bits on the Chimera graph.

In this work, we shall treat the process of finding prob-
lem instances, i.e., sets of {Jij} values, over any predeter-
mined set of allowed values in a way that maximizes the
hardness of the problem (however hardness is defined), as
an optimization problem in itself. The figure of merit – or
cost function – for this optimization problem is any faith-
ful characteristic of the inherent hardness of the instance.
We will call this figure of merit the time to solution, or
TTS for short.

Here, we shall use as the TTS of a problem instance
the definition for classical thermal hardness that was in-
troduced in Ref. [23], namely, the characteristic num-
ber of steps it takes for a parallel tempering (PT) al-
gorithm to equilibrate. In a PT algorithm, one simulates
NT realizations of an N -spin system, with temperatures
T1 < T2 < . . . < TNT

, where Metropolis updates oc-
cur independently for each copy. Each copy attempts to
swap temperatures with its temperature neighbors, with
probabilities satisfying detailed balance [47]. The result-
ing temperature random walk of each system copy allows
a global traversal of the configuration space, as well as
detailed exploration of local minima (i.e., at the lower
temperatures). An accurate PT simulation takes time
longer than the temperature ‘mixing’ time, τ [48, 49].
The time τ can be thought of as an equilibration time;
the time for each copy to explore the entire temperature
mesh. Thus, large τ instances take longer to equilibrate,
motivating the definition of the mixing time τ as the clas-
sical hardness.
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Furthermore, we shall utilize the strong correlation
found between the PT mixing time τ and the hardness
of other algorithms (consistently with the requirement of
intrinsic hardness [23]). Specifically, we shall use as TTS
the runtime clocked by the Hamze-de Freitas and Selby
algorithm (HFS) [50, 51], which has proved to be much
faster yet strongly correlated with the classical hardness,
τ [23]. Our aim in this work is the maximization of the
TTS cost function where the variables over which the
maximization is done are the coupling strengths {Jij} of
the underlying graph.

A. Random adaptive optimization (RAO)

Heuristic optimization algorithms, such as Metropolis
and simulated annealing, aim to find the global minimum
(equivalently, maximum) of a cost function by changing
the state of the system at each step. Changes are ac-
cepted when the cost moves in the required direction, but
also, often crucially, still accept changes in the ‘wrong’
direction with a certain probability so as to reduce the
chances of becoming stuck in local minima. This accep-
tance probability may be determined by defining a sim-
ulated ‘temperature’ parameter, β (inspired by thermal
annealing). We follow this approach with the cost being
the TTS (which is assumed to be an indicator of inher-
ent hardness), and the ‘state’ of the system a particular
configuration of the Jij .

By picking some random ‘seed’ instance, and modify-
ing a subset of the Jij (e.g., flipping the sign of a random
edge), the resulting instance may be harder to solve as de-
termined by the TTS cost. If this is the case, we accept
the modification. Repeating this process will necessar-
ily drive the system to harder and harder instances. If
the TTS is lowered by such a modification, it may still
be accepted, so as avoid getting trapped in local min-
ima. We utilize a Boltzmann-type acceptance probability,
e−β|∆TTS| [52], where the choice of β defining this distri-
bution will depend on the solver being used to determine
the TTS, and the manner in which one updates β during
the algorithm (if at all), will depend on the methodology
one wishes to pursue (e.g., Metropolis, simulated anneal-
ing, etc.).

We outline our algorithm in its most basic (unopti-
mized) form in Algorithm 1, which generates hard signed
(i.e., Ji,j = ±1) instances, though we wish to stress that
the general technique can be applied under much more
diverse settings. In fact, we expect that allowing the cou-
pling constants, Jij , to take on a wider range of values,
will in general result in harder instances being generated
(compared to the Jij = ±1 case). However, this is not
necessarily indicative of a greater efficiency of the RAO al-
gorithm, as higher range (random) instances are known to
be harder to solve, compared to Jij = ±1 instances [15].
Additionally, as an example of this diversity, we have also
utilized a ‘reversed’ version of the algorithm, tweaked to
minimize the TTS in order to generate particularly easy
instances as well. Moreover, we apply this method to
instances with planted solutions in Sec. IV. In the next

section we illustrate the effectiveness of our technique.

Algorithm 1 Random Adaptive Optimization (RAO)

1: procedure GenerateHardProblem
2: Generate random ±1 seed instance and get TTS
3: for step = 1 to NSTEP do
4: Pick a random edge and flip sign
5: Get new TTS
6: if TTS increases then
7: Accept Change
8: else
9: Accept with probability e−β|∆TTS|

10: end if
11: Update β if required
12: end for
13: end procedure

III. RESULTS

A. Engineering of hard spin-glass instances

For our work, we used extensively the version of the
HFS algorithm created by A. Selby [51, 53], and have
taken the average wallclock time for the TTS [54], as
our cost function. We adopt the notation tHFS for this
quantity (see Appendix B for specific implementation de-
tails) [55].

The performance of one typical realization of our algo-
rithm on a 512 bit Chimera-type instance is depicted in
Fig. 1. Remarkably, the final instance is just 20 successful
steps away from the initial, and the final TTS is about
25 times the initial instances TTS. Though there does
not seem to necessarily be a typical (or standard) output
for the algorithm, the occurrence of plateaus is found to
be fairly common. Indeed in Fig. 1 we see that the in-
stance remains at a plateau of about 0.25s between 100
and 400 attempted flips. These plateaus can occasionally
halt the optimization of the cost function, and as such it
is important to carefully choose an appropriate simulated
temperature.

In Fig. 2, we statistically quantify the merit of the gen-
erated hard instances, by comparing the final TTS to the
mean initial TTS (i.e., typical TTS of a random instance),
after 0 (blue), 500 (red) and 2500 (yellow, with red out-
line) adaptive steps on 150 instances. One notices imme-
diately a clear separation in hardness classification from
the completely random instances (blue), and the other
two groups, even after a fairly modest number of update
attempts (i.e., 500). The instances after 2500 steps are on
average about 3 times harder than those after 500 steps,
which are themselves about an order of magnitude above
the random instances.

To gain a reverse effect, namely, easier than random
instances, we have also run our algorithm by ‘reversing’
the acceptance criterion (i.e., step 6 in Algorithm 1) such
that it favors instances with shorter TTS values. This
allowed for the lowering the TTS on the DW2 Chimera
by a factor of about 10 from randomly chosen instances
(see next subsection).
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FIG. 1. (Color online) Performance of the RAO algo-
rithm for a single instance. A single run of the algorithm
over 1000 steps, set up to maximize tHFS of a 512-bit Chimera
instance with Jij = ±1. Updates consist of flipping the value
of randomly picked edges. Squares (red) show successful up-
date attempts, crosses (blue) are rejected updates.
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FIG. 2. (Color online) Histogram of the ratio of final
to mean initial tHFS for 150 random signed instances
(512 bit Chimera graph). As in Fig 1 we adapted the
instances by flipping random edge values, attempting to max-
imize tHFS . This plot is a normalized histogram of the ra-

tio final TTS, t
(f)
HFS , to mean initial TTS, 〈t(i)HFS〉, after 0

(blue), 500 (red) and 2500 (yellow, with red outline) algorith-
mic steps.

B. Inherent (thermal) hardness of the generated
instances

It is crucially important to demonstrate that the gener-
ated instances are not only difficult to solve with respect
to the solver with the help of which they are obtained,
but that the instances are inherently difficult, i.e., they

possess inherent degrees of hardness. In what follows we
illustrate precisely that by measuring the thermodynami-
cal complexity of the instances, generated using our RAO
algorithm.

To that aim, we have used tHFS as both a minimiz-
ing and maximizing cost function, to generate 100 signed
(Jij = ±1) 500-bit DW2 Chimera instances in each of
four different hardness groups, or generations, classified
by tHFS ∈ [0.8,1.2]×10−4+k (s), where k = 1, 2, 3, 4 [56].
The k = 1 instances are about an order of magnitude eas-
ier compared to random instances. The hardest instance
we have found on the studied graph, after analyzing 780
instances, was found to be ∼ 250 times harder than a
typical random instance, with a runtime of tHFS ≈ 6.0s
on a 3.5 GHz single core CPU, which to our knowledge
is the most difficult randomly generated HFS instance on
the DW2 graph to date. We shall denote this instance by
kmax.

Our first task is assessing how difficult it is for a state-
of-the-art classical thermal algorithms such as PT to solve
the generated instances. This question can be quantita-
tively answered by computing the mixing time, τ , for the
temperature random-walk of the algorithm [42, 47–49]
and examine its correlation with ‘hardness group’ k.

Our computation of τ follows exactly the procedure de-
tailed in Ref. [23]. We simulated 120 system copies con-
sisting of four independent parallel-temperature chains,
with 30 temperatures each. Given the similar system size,
we also use the same temperature grid of Ref. [23]. The
Elementary Monte Carlo Step (EMCS) consisted of 10
full-lattice Metropolis sweeps, independently performed
in each system copy, followed by one Parallel Temper-
ing temperature-exchange sweep. A computation of τ
was considered satisfactory if two conditions were met: i)
The system copy (out of the 120 possibilities) that spends
the least time in the hot-half region (i.e., the 15 highest
temperatures), spends at least 20% of the total simula-
tion time there. In other words, no system-copy got per-
manently trapped in the cold-half region. ii) The total
simulation time was at least 20τ long. τ is given in units
of Metropolis sweeps.

We performed three independent simulations of differ-
ent lengths: 106 EMCS (i.e., 107 Metropolis sweeps), 107

EMCS and 108 EMCS. The shortest runs (106 EMCS),
were enough to compute τ for the 200 problem instances
that belong to the first and second hardness groups
(k = 1, 2). The 107 EMCS run sufficed to compute τ
for most (but not all) of the third-generation instances.
The 108 EMCS run was enough to compute τ for all the
third-generation instances, and for 86 out of 100 prob-
lem instances belonging to the fourth-generation. As a
cross-check, we compared the GS energy found with par-
allel tempering with the one found with the HFS code.
Agreement was reached in all cases (even in cases where
the computation of τ was not successful).

Specifically notable are 32 of the instances of the hard-
est (k = 4) HFS group, which were found to have τ > 107.
In Ref. [23] it was estimated that only 2 out of every 104

random instances of this type have τ > 107. This obser-
vation helps to quantify the efficiency of our algorithm;
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a highly optimized PT algorithm screening random in-
stances of this type would require ∼ 65 CPU hours [57]
to find one with τ > 107. Equivalently for (unoptimized)
RAO, we estimate less than 5 hours to generate one such
instance [56].

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

overlap(GS-ES)/overlap(GS-GS)

102

103

104

105

106

107

108

τ

k = 1
k = 2
k = 3
k = 4

FIG. 3. (Color online) Mixing time τ vs ratio of typi-
cal GS-ES overlaps over GS-GS overlaps. For each in-
stance for which PT computed τ successfully, we compute the
median overlap (see text) between the ground and dominant
first-excited states, normalizing by the median ground state
to ground state overlap. Also plotted is the median data point
for each group (filled black circle), where going from bottom
right to upper left, is in order from k = 1 to k = 4. Linear fit
is on the median data point for k = 2, 3, 4. τ is given in units
of Metropolis sweeps.

Having classified (most of) these 400 instances by the
PT mixing time, we analyze their energy landscapes
by computing the overlap between their GS configura-
tions and their dominant first-excited states. The over-
lap between two spin assignments, s̄1, s̄2, is defined as,
1−2h(s̄1, s̄2)/N , where h is the Hamming distance. This
analysis is summarized in Fig. 3. The trend in the fig-
ure is rather clear: a large τ (and k) correlates strongly
with a smaller overlap (i.e., large Hamming distance) be-
tween the ground and dominant first-excited states; that
is, the larger τ , the more difficult the problems are in
a thermodynamical sense. Interestingly, the easiest HFS
instances, k = 1, which have been generated by minimiza-
tion of TTS have been found to not correlate as well with
the other data groups. We examine this in more detail in
the next subsection.

C. Algorithmic scaling

To establish the inherent hardness of the instances gen-
erated by the RAO algorithm, we have directly compared
their time-to-solution tHFS to the PT mixing time, τ .
This is depicted in Fig. 4. Despite the apparent fluc-
tuations, we observe an agreement between these two
vastly different solvers, which can be quantified by the

dependence τ ∼ t1.4HFS (as measured by the median data
point for the k = 2, 3, 4 groups). This correlation has
in fact allowed us to generate 14 instances (out of the
100 of the k = 4 group) with τ > 5 × 107 EMCS, which
using straightforward ‘mining’ would have required the
generation and subsequent analysis of more than 2× 106

randomly generated instances (as found by Ref. [23]) —
about 100 times more costly in terms of computational re-
sources [56, 57]. Comparing this to the numerics quoted
in the previous subsection (re. generating τ > 107 in-
stances), we see RAO becomes even more beneficial over
conventional methods as the problem difficulty bar is
raised, and is very likely to be the only way to obtain
a large number of such temperature-chaotic instances.

10!3 10!2 10!1 100 101

tHFS (s)

102

103

104

105

106

107

108

=

k = 1
k = 2
k = 3
k = 4
kmax

FIG. 4. (Color online) PT-hardness (mixing time) vs
HFS-hardness. The 400 instances generated as documented
in the main text, examined on parallel tempering (PT). The
linear fit of slope 1.40 is obtained from a least squares fitting
on the median data point (black squares) of each data group,
ignoring the k = 1 group. We also include, indicated by a
green diamond marker, the hardest instance (kmax) found us-
ing our adaptive algorithm, extrapolated using the linear fit
to obtain the corresponding value for τ ≈ 3.7×107. τ is given
in units of Metropolis sweeps.

We perform a similar analysis using the D-Wave Two
QA optimizer as the comparison platform. We define
TTS as measured by DW2, tDW , as the anneal time
divided by the probability of successfully finding the
GS. To establish probabilities of success, we ran each of
the 400 instances on the D-Wave processor for roughly
650,000 anneals with individual anneal times in the range
20-40µs. For the hardest instances according to HFS
(k = 4), about 75% of the instances were not solved even
once by DW2. For this reason we use the lower quartile
as a representative data point in Fig 5.

Here too, as with the PT comparison, large variations
in the data are observed. Nonetheless, we see a strong
correlation between the two solvers on average (as we ex-
pect), with tDW ∼ t2.48

HFS . That DW2 scales unfavorably
with HFS-hardness as compared to how the scaling of PT
mixing time suggests that the QA chip may be detrimen-
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tally affected by ‘classical causes’ such as thermal hard-
ness of instances.

The hardest HFS instance found, kmax, neatly demon-
strates the capabilities of the RAO algorithm applied to
this particular graph. Instances of this type we estimate
to have τ ≈ 3.7 × 107, and tDW ≈ 103 s (that is, would
require ∼ 108 DW2 anneals).

As mentioned above, the HFS ‘easiest’ instances (k =
1) do not seem correlate with the other data groups (as
we also see in Figs. 3 and 4). In fact the reason here
is trivial; since tDW has a minimum equal to the median
annealing time, 30µs ≈ 3×10−5s in this work, the easiest
instances accumulate at this value, as is seen in Fig. 5.
We believe there may be an equivalent scenario occurring
for PT, i.e., practical lower bound on τ (though, note,
quantifying such a bound is non-trivial).

10!3 10!2 10!1 100 101

tHFS (s)

10!5
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100
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k = 1
k = 2
k = 3
k = 4
kmax

FIG. 5. (Color online) DW2-hardness vs HFS-hardness.
We plot the D-Wave TTS, tDW , against tHFS for the 400
problem instances as explained in the main text. Note that
there are fewer blue data points (k = 4), compared to the oth-
ers. This is because many of these instances were not solved
once by the D-Wave machine in 660,000 attempts and so are
left off of this graph. The linear fit of slope 2.48 is obtained
from a least squares fitting on the lower quartile data point
(black squares) of each data group, excluding the k = 1 group.
We also include, indicated by a green diamond marker, the
hardest instance (kmax) found using our adaptive algorithm,
extrapolated using the linear fit to obtain the corresponding
value for tDW ≈ 103s, i.e., require ∼ 108 attempts.

These above correlation analyses all suggest that in-
stances generated using our RAO algorithm are indeed in-
herently more difficult optimization problems, compared
with randomly generated instances. In particular, RAO
problems are more akin to rare events (i.e., the instances
displaying the strongest temperature chaos in a large set
of randomly chosen problems). For example, the hard-
est RAO instances, indexed here by k = 4 (equivalently,
τHFS ≈ 100 s), are in general harder for the D-Wave Two
quantum annealer, as well as for parallel tempering algo-
rithms. Moreover, we see that (Fig. 3) these instances are
thermodynamically more difficult, with larger Hamming

distances between the ground and dominant first-excited
states.

IV. HARD BENCHMARKS WITH KNOWN
GROUND STATE CONFIGURATIONS

The generation of instances with random couplings
does not allow us in general to know the GS energy of
the instances with certainty – an important feature when
carrying out comparison tests. Therefore, this section is
devoted to another adaptive technique, building on work
from Ref. [16], which generates hard instances, but also
crucially allows for knowledge of the GS energy, without
having to resort to exact solvers.

We apply our method to Ising-type instances with
planted solutions— an idea borrowed from constraint sat-
isfaction (SAT) problems [16, 58, 59]. Instances of this
type are constructed around some arbitrary solution, by
splitting the full graph up into smaller subgraphs, i.e., the
Hamiltonian is written as a sum of small subgraph Ising

Hamiltonians, H =
∑M
j=1Hj . The coupling values of

each sub-Ising Hamiltonian are chosen so that the planted
solution is a simultaneous GS of all of the Hj , and there-
fore is also a GS of the total Hamiltonian H. This knowl-
edge circumvents the need for exact (provable) solvers,
which rapidly become too expensive computationally as
the number of variables grows, and as such is very suit-
able for benchmarking. In what follows, we shall choose
our subgraph Hamiltonians to be randomly placed frus-
trated cycles, or loops, along the edges of the hardware
graph [16] such that no configuration of the variables si-
multaneously minimizes all terms in the cost function (see
Fig. 1 of [16] for examples of Hamiltonian loops on the
DW2 graph). This frustration is known to often cause
classical algorithms to get stuck in local minima, since
the global minimum of the problem satisfies only a frac-
tion of the Ising couplings and/or local fields [44, 45].

Unlike the signed Jij = ±1 problems studied above,
planted-solution problems allow for the computation of
certain measures of frustration (the reader is referred to
Ref. [16] for further details, and results pertaining to this
approach in the context of benchmarking of experimental
quantum annealers). By combining the planted solution
technique with the RAO method, one can generate in-
stances which are harder than is possible to generate by
simply using randomly placed loops on the graph, with
the added benefit of still knowing the GS energy.

We initialize the setup as in the above, i.e., we first
pick a random planted solution, and place M random
sub-Hamiltonian loops (either frustrated or not) on the
graph which satisfy the solution. This method allows us
to easily calculate the GS energy as a sum of the indi-
vidual loop energies with respect to the planted solution.
At variance with the RAO method, update attempts now
instead of involving single random edges, involve Hamil-
tonian loops. We remove a random loop from the instance
and add a new random loop, making sure to keep track
of the GS energy, and making sure the new loop respects
the planted solution.
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Algorithm 2 Loop Adaptive Optimization (LAO)

1: procedure GenerateFrustratedProblem
2: Generate (random) solution
3: Place M random loops on graph, each respecting the

planted solution
4: Calculate GS energy
5: for step = 1 to NSTEP do
6: Remove random loop from current instance
7: Pick new random loop and add, respecting planted

solution
8: Get new TTS
9: if TTS increases then

10: Accept Change, update GS energy
11: else
12: Accept with probability e−β|∆TTS|

13: Update GS energy if accepted
14: end if
15: end for
16: end procedure

One now has many different parameters affecting the
performance, e.g., the total number of loops in the in-
stance, the ratio of different sized loops (e.g., one can
use a mix of size 4 and 6 loops etc.), different (positive)
weights on the loops. One can also scrutinize the position
of each loop to try to maximize e.g., the frustration (note
that randomly adding loops can have the affect so as to
cancel out frustration). Also, of course, similar comments
about adjusting the algorithm as mentioned in the RAO
section still apply here.
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FIG. 6. (Color online) Histogram of the ratio of final to
mean initial tHFS for 100 planted-solution instances
(504-bit Chimera graph). We compare the LAO algorithm
after 2000 steps (red) to the 100 random initial (blue) planted-
solution instances, each containing 350 random loops. Up-
dates consisted of adding and removing random loops, where
size 4 (6) loops have a probability of 0.1 (0.9) being chosen,
with integer loop weight chosen randomly in range [1,5]. We

plot the histogram of the ratio final HFS TTS, t
(f)
HFS , after 0

(blue) and 2000 (red) LAO steps, to the mean initial TTS,

〈t(i)HFS〉. The mean TTS ratio after the 2000 steps is ≈ 4.3,
and the maximum final TTS is ≈ 0.15 s.

In Fig. 6 we perform one such version of our LAO al-
gorithm on 100 instances, and compare the final TTS to
the typical TTS a random instance. While there is a
general increase in problem difficulty, from that of a ran-
dom instance, it is by far less than the equivalent figure
for random signed instances (see Fig. 2). Note however
that planted-solution problems may be tuned in numer-
ous ways (see previous paragraph) to provide varying de-
grees of hardness, thereby altering the structure of the
problem (in fact, they may be tuned to be harder than
random signed instances [16]). Thus, the choice of pa-
rameters, which we have not optimized here, may heav-
ily affect the performance of LAO. Nevertheless, we have
demonstrated the successful application of our main al-
gorithm to instances with planted solutions, allowing for
the generation of instances that are about an order of
magnitude more difficult.

V. SUMMARY AND CONCLUSIONS

We developed a technique to practically engineer ex-
tremely hard optimization problems to address the chal-
lenge of generating proper benchmarks for the testing of
experimental quantum annealers. This was accomplished
by treating the generation of hard problem instances as an
optimization problem and subsequently devising a heuris-
tic optimization algorithm to solve it. We demonstrated
that one can successfully engineer Ising-type optimiza-
tion problems with varying degrees of difficulty, defined
by some suitable choice of problem hardness. To estab-
lish and confirm the inherent hardness of the instances,
we measured the correlation between various independent
measures of problem difficulty, in particular, from parallel
tempering configurations we computed a Hamming dis-
tance measure between the ground and main first-excited
states.

We illustrated the ability to generate signed (i.e., Jij =
±1), 512-bit instances for the D-Wave Two Chimera
which are greater in difficulty (as measured by the TTS of
a very successful classical HFS solver) by more than two
orders of magnitude compared to randomly generated in-
stances. As designed, these instances were found to be
more difficult both for the DW2 processor and for Paral-
lel Tempering algorithms to solve. We have further shown
that our technique is significantly faster than straightfor-
ward mining for hard instances which requires the genera-
tion and subsequent costly analysis of very many random
instances.

Since in designing benchmark tests it is often desirable,
and necessary, to know with certainty the GS energy of
the instances used, we have devised an adaptive tech-
nique which also allows one to generate hard instances
for which a GS is known, based on problems with planted
solutions [16]. While in this case the method is somewhat
less effective, it nonetheless allows one to easily generate
problem instances that are rare to find by random gener-
ation of instances.

The generation of hard instances is one of the key tools
to understand some fundamental, but unanswered ques-
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tions in spin glass theory as well as in the field of quantum
annealing. For example, what makes certain problems
hard? What are the most reliable ways to classify prob-
lem difficulty? Is there a marked difference between quan-
tum and classical hardness? The techniques presented in
this work may be further utilized to the end of observing
the elusive quantum speedup (provided that there could
be one). The adaptive generation of hard instances may
be further leveraged to systematically study the proper-
ties (geometric, thermodynamical or otherwise) of the re-
sultant instances, paving the way towards the systematic
generation of inherently hard spin-glass instances.

By simultaneously updating an instance, one may fur-
ther try to use as a figure of merit that is to be maxi-
mized, the ratio of the ‘classical TTS’ to quantum (e.g.,
experimental annealer) TTS. This may hopefully allow

for the engineering of instances which are classically-hard
but quantum-easy. These may consequently be studied
so as to enhance our understanding of the differences be-
tween quantum and classical hardness.
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[4] Roman Martoňák, Giuseppe E. Santoro, and Erio
Tosatti, “Quantum annealing by the path-integral Monte
Carlo method: The two-dimensional random Ising
model,” Phys. Rev. B 66, 094203 (2002).

[5] Giuseppe E. Santoro, Roman Martoňák, Erio Tosatti,
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Appendix A: D-WAVE TWO ANNEALER

The D-Wave Two (DW2) is marketed by D-Wave Sys-
tems Inc. as a quantum annealer, which evolves a phys-
ical system of superconducting flux qubits according to
the time-dependent Hamiltonian

H(t) = A(t)
∑
i∈V

σxi +B(t)Hp , t ∈ [0, tf ] , (A1)

with Hp given in Eq. (1). The annealing schedules given
by A(t) and B(t) are shown in Fig. 7. Our experiments
used the DW2 device housed at the USC Information Sci-
ences Institute, with an operating temperature ≈ 17mK.
The Chimera graph of the DW2 used in our work is shown
in Figure 8. Each unit cell is a balanced K4,4 bipartite
graph. In the ideal Chimera graph (of 512 qubits) the de-
gree of each vertex is 6 (except for the corner unit cells).
In the actual DW2 device we used, 504 qubits were func-
tional.
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FIG. 7. (Color online) Annealing schedule of the DW2
device. The annealing curves A(t) and B(t) are calculated
using rf-SQUID models with independently calibrated qubit
parameters. Units of ~ = 1. The operating temperature of
17mK is also shown.

Appendix B: IMPLEMENTATION DETAILS

All of our numerical results were obtained using A.
Selby’s (heuristic) version of HFS [51, 53] (i.e., with in-
put settings -S3 -m1), running on a single core of an In-
tel Xeon CPU E5-1650 v2 running at 3.50GHz. With
these settings, the code will halt only after it has found
agreement in the lowest energy for Eq. 1, n + 1 con-
secutive times (option -p set to n in Selby’s code), over
independent HFS sweeps (Selby’s code technically solves
Quadratic Unconstrained Binary Optimization (QUBO)
problems, but the mapping from Ising problems of this
sort is trivial).

We define the HFS time-to-solution, tHFS in the main
text, as tHFS := limn→∞ Tstep/(n + 1), where Tstep, de-
pending on n, is the physical wallclock run time of Selby’s

https://github.com/alex1770/QUBO-Chimera
https://github.com/alex1770/QUBO-Chimera
http://link.aps.org/doi/10.1103/PhysRevLett.88.188701
http://link.aps.org/doi/10.1103/PhysRevLett.102.238701
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FIG. 8. (Color online) A 4 by 4 patch of the full 8 by 8
Chimera graph for the DW2 chip. Top left (red) shows
a single K4,4 bipartite graph. The qubits or spin variables
occupy the vertices (circles) and the couplings Jij are along
the edges. Of the 512 qubits, 504 were operative in our ex-
periments.

code, for a single QUBO instance (also see footnote [54]).
That is, Tstep is the time taken to find agreement in the
lowest energy n + 1 times in a row, and as such we de-
fine this quantity as Tstep :=

∑n
i=0 ti, where ti is the

time taken to find ith (i > 0) occurrence of the (pre-
sumed) minima, and t0 the time to first detect this min-
ima. In practice, to obtain a reasonable estimate of tHFS
one should take a ‘large’ value for n, e.g., n > 500.

We face two practical issues: 1) Fixing some value for

n, and adapting the instance under RAO, of course means
that the wallclock runtime of each step Tstep of RAO in-
creases as the problem becomes harder, meaning for a
large number of RAO steps, the algorithm may take a
very long time to complete. 2) We noticed that in addi-
tion to tHFS increasing, so do the differences, |∆tHFS |,
and as such, the acceptance probability, e−β|∆tHFS |, may
quickly become negligible. We provide a quick and easy
solution to these two problems, by varying just one pa-
rameter, n. This is by no means an optimal solution, but
it has enabled us to generate many hard instances with
fewer computational resources compared to what would
otherwise be required.

By defining a cutoff return time, Tmax (we picked
Tmax = 3s), such that if Tstep > Tmax, we reduce n→ n/2
(note we never let n be lower than 16, and initialize it
with n = 512). This allows us to control the growth of
Tstep, and hence bound (at least somewhat) the total run-
time of the RAO algorithm. The accuracy in the estima-
tion of tHFS of course decreases as n decreases, therefore
one should run the final instance (i.e., the instance after
adapting it as per the RAO algorithm) with some large
choice of n.

In addition, we let β depend linearly on n, so that as
tHFS increases (hence |∆tHFS | too), β is lowered, and as
such we can control the acceptance probability (again, at
least somewhat). Our particular choice used to generate
the 100 hardest instances (k = 4) for the results section
was β = 6.5 · n. The value 6.5 is not particularly special;
our version of RAO seemed to perform best with this
choice over a small trial of other values.
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