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Summary. In many applications it is of interest to identify anomalous behavior within a dynamic
interacting system. Such anomalous interactions are reflected by structural changes in the network
representation of the system. We propose and investigate the use of a dynamic version of the degree
corrected stochastic block model (DCSBM) to model and monitor dynamic networks that undergo a
significant structural change. We apply statistical process monitoring techniques to the estimated
parameters of the DCSBM to identify significant structural changes in the network. Application of
our surveillance strategy to the dynamic U.S. Senate co-voting network reveals that we are able to
detect significant changes in the network that reflect both times of cohesion and times of polarization
among Republican and Democratic party members. These findings provide valuable insight about
the evolution of the bipartisan political system in the United States. Our analysis demonstrates that
the dynamic DCSBM monitoring procedure effectively detects local and global structural changes in
dynamic networks. The DCSBM approach is an example of a more general framework that combines
parametric random graph models and statistical process monitoring techniques for network surveil-
lance.

Keywords: anomaly detection, community detection, dynamic graphs, statistical process moni-
toring, online surveillance

1. Introduction

Time-varying, or dynamic, networks are often used to model the interactions of a group of
actors through time. In many applications, it is of interest to identify anomalous behavior among
the actors within a dynamic network. For example, organizers of the Arab Spring uprisings in
2012 tended to interact with one another more frequently on Facebook at the onset of the uprisings
(Vargas, 2012). Similarly, central players in the ENRON scandal exchanged an increased number of
emails prior to fraud investigations (Shetty and Adibi, 2005). In both of these examples, anomalous
activity occurred among the interactions of the actors of the system; as a result, these changes can
be observed in the network describing the actors.

The monitoring of dynamic networks for anomalous changes through time is known as network
surveillance. Network surveillance techniques have been successfully applied in a number of set-
tings, including the detection of fraud in large online networks (Chau et al., 2006; Pandit et al.,
2007; Akoglu and Faloutsos, 2013), the identification of central players in terrorist groups (Krebs,
2002; Reid et al., 2005; Porter and White, 2012), and the detection of spammers in online social
networks (Fire et al., 2012). As recent applications of network surveillance have grown in complex-
ity, there has been an increased interest in developing new scalable network surveillance techniques,
especially in the area of social network monitoring (see Savage et al. (2014), Bindu and Thilagam
(2016), and Woodall et al. (2016) for recent reviews). A useful area to help guide network surveil-
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lance is statistical process monitoring (SPM)†. In general, statistical process monitoring provides
a methodology for the real-time surveillance of any characteristic of interest. The philosophy be-
hind SPM is that anomalous behavior in such a characteristic can be identified by distinguishing
unusual variation from typical variation in an ordered sequence of observations. Stemming from
applications in industrial manufacturing and public health surveillance, SPM has a rich history
and many methods have been developed (see Woodall and Montgomery (1999), Frisén (2009) and
Woodall and Montgomery (2014) for reviews of methods and applications).

In this article we propose a network surveillance framework that applies statistical process
monitoring to the estimated parameters of a dynamic random graph model. We propose the use
of a dynamic version of the degree corrected stochastic block model (DCSBM) from Karrer and
Newman (2011). The DCSBM is a probability distribution on the family of undirected graphs
with discrete-valued edge weights. Importantly, the DCSBM dictates the propensity of connection
between actors and captures two important aspects of social networks: heterogeneous connectivity,
and community structure. As many monitoring applications involve social communications, e.g.,
the terrorist networks in Pandit et al. (2007) and Akoglu and Faloutsos (2013), the DCSBM can
be used to simulate realistic networks.

The DCSBM is characterized by parameters for which closed-form maximum likelihood estima-
tors (MLEs) can be readily derived. We use statistical process monitoring to identify time points
at which the parameter estimates of the DCSBM change. Here, we investigate two widely-studied
SPM methods for surveillance, the Shewhart control chart for individual observations and the
exponentially weighted moving average (EWMA) control chart (Montgomery, 2013). We apply
our surveillance strategy to the dynamic co-voting network of the U.S. Senate, which models the
voting behavior of U.S. Senators from 1867 to 2015. We find that our surveillance strategy is able
to identify eras of cohesion and division among the Republican and Democrat parties, and that
these changes coincide with significant political events in U.S. history. This analysis, as well as our
simulation study, reveals that our network surveillance method with the DCSBM is an effective
monitoring strategy for dynamic networks that undergo change.

Our proposed monitoring strategy establishes one practically useful technique among a gen-
eral family of methods for surveillance. Our framework relies on two components: a parametric
dynamic random graph model for modeling the features of the graph, and control charts from
statistical process monitoring for the detection of changes in the parameters. Here, we consider a
dynamic DCSBM random graph model and the Shewhart and EWMA control charts for surveil-
lance. However, this same framework can be used for any parametric dynamic random graph
model and any control chart of the user’s choice. For example, one could investigate dynamic
exponential random graph models like those described by Hanneke et al. (2010) and Krivitsky and
Handcock (2014), or dynamic latent space models such as that introduced in Sewell and Chen
(2015). Furthermore, one could further investigate the use of other univariate SPM methods such
as cumulative sum (CUSUM) control charts or control charts for attributes and perhaps multivari-
ate SPM approaches such as Hotelling T 2 or multivariate EWMA control charts (Montgomery,
2013). Our current proposal serves only as a first step in understanding the utility of our proposed
framework.

The remainder of this manuscript is organized as follows. In Section 2 we describe the network
surveillance problem in detail and discuss general approaches in the area. Section 3 describes re-
lated model-based surveillance approaches. Section 4 provides a description of the degree corrected
stochastic block model for networks with discrete-valued edges, and how to simulate dynamic DCS-
BMs with structural change. Next we discuss how to estimate and monitor the DCSBM using SPM
techniques in Section 5. In Sections 6 and 7 we investigate the utility of our proposed model and
surveillance strategy on simulated networks and through application to the U.S. Senate co-voting
network. We end with a discussion of open areas for future research in Section 8.

†Historically the field of SPM has been referred to as statistical process control, but recently many replace
the word “control” with “monitoring” (Woodall, 2016).
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2. The Network Surveillance Problem

Consider a collection of actors or individuals [n] = {1, . . . , n}, whose interactions have been
recorded at times t = 1, . . . ,m. In many applications, it is convenient to represent the interactions
of [n] at time t by an undirected network Gt = ([n],Wt). Here, the actors [n] are treated as nodes
or vertices in the graph, and Wt = {wu,v(t) : u, v ∈ [n]} is the set of edge weights, where wu,v(t)
quantifies the strength of the relationship between nodes u and v at time t. A dynamic network
model of the individuals [n] over time t = 1, . . . ,m is the ordered sequence of undirected graphs
G(n,m) = {G1, . . . , Gm}. The edge weight w{u,v}(t) may, for example, represent the number
of communications between individuals u and v at time t in a dynamic social network, or the
number of interactions between two genes u and v at time t in a biological network. Note that
an unweighted graph, where each edge weight is binary, is a special case where edges indicate the
presence or absence of a specified level of connection between nodes u and v at time t.

The goal of network surveillance is to prospectively monitor the interactions of [n] so as to
detect abnormal behavior among the actors. To perform surveillance, one generally first specifies a
statistic St, or more generally a vector of statistics St, that provides some local or global summary
of the network Gt based on the types of anomalies to be detected. The choice of St is flexible.
In the simplest case, one can choose a statistic that summarizes some topological aspect of Gt,
such as the connectivity of each node, the clustering of nodes, or the average shortest distance
between each pair of nodes (Priebe et al., 2005; Marchette, 2012; Neil et al., 2013; Park et al.,
2013). In many cases, the choice of statistic is driven by the application, such as the Enron email
network analysis in Priebe et al. (2005). Alternatively, one can model Gt by a family of probability
distributions governed by parameters Ψ. In this case, one may specify St as an estimator, or some
likelihood ratio statistic, associated with Ψ. We discuss these model-based approaches in more
detail in Section 3.

Once a statistic St has been chosen, SPM is used to distinguish unusual behavior from typical
behavior. In network surveillance, this corresponds to the real-time identification of unusually
large or small values of St. The most popular technique used to determine the extremity of St is
a control chart – a time series plot of St constructed with control limits that indicate boundaries
of typical behavior. An observed value of St is considered anomalous if it deviates significantly
from what previous observations suggest is typical. Monitoring consists of two phases, Phase I
and Phase II, which are described below.

Phase I: The statistic St is calculated for all graphs Gt ∈ G(n,m). The mean µ and variance σ2 of
St are estimated using the m sampled statistics. A tolerance region R(µ̂, σ̂2) is constructed based
on the estimated values for µ and σ2. The upper and lower bounds of this region are referred to as
upper and lower control limits, respectively. Variation within these limits defines typical behavior.

Phase II: For each new graph Gt, with t > m, St is calculated, and Gt is deemed “typical” if
St ∈ R(µ̂, σ̂2) and deemed “anomalous” otherwise. When an observed value of St exceeds these
limits, we say that the control chart has signalled ; this serves as an indication that a structural
change has occurred.

Data collected within Phase I serves as a baseline to establish what defines “typical” variation
in St. Prospective monitoring begins in Phase II. For t > m, we formally decide whether the graph
Gt demonstrates anomalous behavior by comparing St to the control limits defined in Phase I.
Figure 1 illustrates a toy example of this procedure.

As G(n,m) is used to determine the tolerance region R(µ̂, σ̂2), successful monitoring in Phase
II requires that the data in Phase I provide an accurate representation of typical variation; if µ
and σ2 are not accurately estimated, then the control limits defined by R(µ̂, σ̂2) are unlikely to
be applicable beyond the Phase I time frame. Ideally the control limits will balance the need
for a control chart that is sensitive enough to detect important changes, while not signalling too
frequently and creating an excessive number of false alarms. Jones-Farmer et al. (2014) discuss
the importance of effectively collecting and analyzing baseline data during Phase I. If the network
being monitored is expected to evolve over time, then we recommend moving window approaches
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Fig. 1. Toy example illustrating network surveillance using the statistic St, and the distinction between
Phase I and Phase II.

as opposed to a fixed Phase I sample as in Zhao et al. (2016).
The performance of a surveillance technique depends also on the definition of R(µ̂, σ̂2), which

largely depends on the goal of the control chart and the type of data being plotted. Abnormal
activity in Phase II networks may be brief - where as few as one or two anomalous graphs are
observed, or it may persist over an extended period of time. To detect sudden large changes a
standard Shewhart control chart is typically used (Montgomery, 2013). However, if sensitivity to
sustained small and medium-sized changes is of interest, one might consider using an exponentially
weight moving average (EWMA) control chart. See Saleh et al. (2015) and Sparks and Wilson
(2016) for recent advances in EWMA control chart techniques.

In practice, the choice of statistic St and type of control chart will depend on the types of
network changes one wishes to detect. For instance if one seeks to detect a global change in the
network (where there is an overall change in the structure, e.g. communications on average increase
or decrease over the entire network) the choice of statistic and chart will be different than if one
needs to detect a local change in the network (where there is a change in structure among some
sub-graph of the network, e.g. communications on average increase or decrease within a particular
community).

In Section 7 we use the DCSBM to simulate a variety of local and global network changes and
we use a Shewhart control chart for individuals to detect these changes. The control limits for this
control chart are defined as R(µ̂, σ̂2) = µ̂ ± 3σ̂. The performance of this surveillance technique
will be quantified using the average run length (ARL); the average number of graphs until a signal
indicates a change in the network. One would like the ARL to be small if a change has been
simulated and large otherwise. McCulloh and Carley (2011) defined an average detection length
metric, and Zhao et al. (2016) define an average time-to-signal metric, which are both equivalent
to the ARL. We propose that our results be used as a performance benchmark, against which other
surveillance techniques can be evaluated and compared. We also make recommendations regarding
which statistics to use given the type of change one wishes to detect.
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3. Related Work

The DCSBM generalizes several families of well-studied and widely-applied random graph mod-
els, such as the (non-degree corrected) stochastic block model from Holland et al. (1983); Snijders
and Nowicki (1997); Nowicki and Snijders (2001). The dynamic stochastic block model from Xu
and Hero (2013), like the DCSBM, can be used to model time-varying community structure in
a network. However, the dynamic stochastic block model can only be applied to networks with
binary edges, and does not address degree hetergeneity in the network. Fu et al. (2009) devel-
oped a mixed membership stochastic block model, a dynamic extension to the mixed membership
stochastic block model from Airoldi et al. (2009), which models networks with potentially over-
lapping community structure. We describe the relationship of the DCSBM with several other
important families of random graph models in the Appendix.

There are other model-based approaches for network surveillance that have been recently devel-
oped; we briefly describe some of them here. Azarnoush et al. (2016) proposed a longitudinal logistic
model that describes the (binary) occurence of an edge at time t as a function of time-varying edge
attributes in the sequence of networks G([n], T ). This model dictates edge probabilities by the
values β = (β1, . . . , βp), where βj parameterizes the effect of the edge attribute j on the probability
of an edge. To identify anomalous behavior at time t, one first calculates the maximum likelihood
estimates β̂1 and β̂2 for graphs G1 = {G1, . . . , Gt−1} and G2 = {Gt, . . . , GT }, respectively under

the longitudinal model. A likelihood ratio test is used to test the null hypothesis that β̂1 and β̂2

are equal; a rejection of the null hypothesis suggests a significant change between G1 and G2.
Peel and Clauset (2014) developed a generalized hierarchical random graph model (GHRG) to

model G([n], T ). To detect anomalies, the authors used the GHRG as a null model to compare
observed graphs in G([n], T ) via a Bayes factor. At each time t, Bayesian posterior inference via
Markov Chain Monte Carlo is used to fit the GHRG to the graph Gt. Anomalies are detected
using a sliding window approach on the Bayes factor that compares observed graphs to the GHRG
fit for previous observations.

In Heard et al. (2010) the authors considered monitoring changes in communication volume
between subgroups of targeted people over time. Their approach evaluates pairwise communication
counts and determines whether these have significantly increased using a p-value. The p-value
assesses the deviation of the communication rate at time t and what is considered normal behavior
under conjugate Bayesian models describing the discrete-valued time series of communications up
to time t. While their focus is detecting changes on the entire network, our approach considers
detecting anomalies for members of a community within a dynamic network.

Sparks and Wilson (2016) consider the monitoring of abrupt changes among an unknown set
of actors in a dynamic network. They establish an EWMA strategy for detecting such changes,
which incorporates the uncertaintly of the type and size of the subset of actors undergoing a
change. In particular, they develop strategies for collaborative teams, where actors in the team each
communicate more regularly; dominant leader teams, where one actor’s communication greatly
increases to the remainder of the team; and global outbreaks.

The change point approach developed in Barnett and Onnela (2016) seeks significant changes
in correlation networks, where the correlation network at time t represents the correlation of
some underlying multivariate stochastic process at that time. For each t, the Frobenius distance
F (t, t−) between the correlation network at time t and the average of the correlation networks
from times 1, . . . , t − 1 is calculated. The authors then generate a sample of “null” networks by
bootstrapping a sample of t networks where no change is introduced. The graph Gt is said to
demonstrate anomalous behavior if F (t, t−) is significantly different than the Frobenius distance
under the bootstrapped sample of networks. Roy et al. (2014) considered the detection of a change
point in a sequence of evolving Markov random fields. They proposed and analyzed the statistical
properties of a maximum penalized pseudo-likelihood estimate, under appropriate sparsity (in the
total number of edges) assumptions on the networks in G([n], T ).
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4. The Degree Corrected Stochastic Block Model

In this section we describe the degree corrected stochastic block model (DCSBM) for weighted
networks. Let G = ([n],W ) be an undirected network that represents the interactions of actors
[n]. The DCSBM models two important features of real networks: (i) community structure and
(ii) degree heterogeneity, which we now briefly discuss.

Empirically the nodes of a network G can often be divided into k ≥ 1 disjoint vertex sets as
[n] = V1 ∪ V2 . . . ∪ Vk in such a way that the number (or density) of edges within each vertex set
Vj ⊆ [n] is substantially greater than the number of edges between differing sets. The vertex sets
are commonly referred to as communities. In many applications, the communities of a network
provide structural or functional insights about the modeled complex system. For example, recently
community structure has been used to help develop hypotheses about gene interactions and antibi-
otic resistance (Parker et al., 2015), and about the dynamics of social interactions using cell phone
data (Greene et al., 2010). The substantial relevance of communities in network systems has lead
to a large and growing literature about community structure and the identification of statistically
meaningful communities (see Porter et al. (2009) or Fortunato (2010) for reviews).

In addition to naturally dividing into densely connected communities, actors in a network tend
to have a highly variable propensity to make connections. In these situations, the degree distribution
of the nodes are variable, where the degree du of a node u ∈ [n] is the total number of interactions
in which u takes part, namely

du =
∑
x∈[n]

wu,x.

The scale-free family of networks is one common family of networks with heterogenous degrees.
In scale-free networks, the degree distribution approximately follows a power law (Barabási and
Albert, 1999; Clauset et al., 2009). Scale-free networks commonly arise in economic, social, and
ecological networks (e.g., Kasthurirathna and Piraveenan (2015) studied a recent example). The
tendency of degree heterogeneity in real networks has lead to significant work in the development of
fixed-degree random graph models (Chatterjee et al., 2011), and in the development of community
detection methods (Newman, 2006).

Next in Section 4.1, we first fully describe the DCSBM model for a single network, and then in
Section 4.2, we describe how to simulate a dynamic DCSBM that undergoes a structural change.
We discuss the relationship of the DCSBM with several other important random graph models in
the Appendix.

4.1. The Model
Let G represent the family of all undirected networks with n nodes and k disjoint communities.

The DCSBM is a probability distribution P(·) = P(· | θ,π, P ) on G that is characterized by (i) non-
negative degree parameters θ = (θ1, . . . , θn), which reflect the tendency of the nodes to connect, (ii)
containment probabilities π = (π1, . . . , πk) that satisfy πr > 0 and

∑
r∈[k] πr = 1, where πr specifies

the probability of a node belonging to community r and (iii) the k × k symmetric connectivity
matrix P = (Pr,s), where entries Pr,s > 0 express the propensity of connection between nodes in
communities r and s.

Let Ĝ ∈ G be a random graph with n nodes and k communities generated under P. Then Ĝ
can be obtained by a simple generative procedure, which can be described as follows:

(a) Parameters θ, π, and P are pre-specified and fixed. These are chosen to control the de-
gree variability, relative size of communities, and connection propensity between and within
communities, respectively.

(b) Vertices are randomly assigned community labels c = (c1, . . . , cn) according to the multino-
mial draws:

cu
i.i.d∼ Multinomial(1,π). (1)
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(c) Given θ, c, and P , edge weights {wu,v : u, v ∈ [n]} are assigned according to independent
Poisson draws, where

E[wu,v | c,θ, P ] = θu θv Pcu,cv (2)

The graph Ĝ is then defined as the network with nodes [n], community labels c, and edge weights
w = {wu,v : u, v ∈ [n]} resulting from (1) and (2). For an observed network with community labels
c and edge weights w, we define

nr =
∑
u∈[n]

I(cu = r)

as the number of vertices in community r. Further we define

mr,s =
∑

u:cu=r

∑
v:cv=s

wu,v

as the total weight of edges between community r and s (twice the weight of edges when r = s). It

follows by combining (1) and (2) that the joint distribution of the random graph Ĝ and community
labels C is described by the joint probability mass function P(·, ·), where when ignoring constants,

P(Ĝ = G,C = c | θ,π, P ) ∝
∏
r∈[k]

πnr
r

∏
u∈[n]

θdu
u

∏
r,s∈[k]

P
mr,s

2
r,s e−

nrnsPr,s

2 (3)

×
∏

u<v∈[n]

1

wu,v!
.

The distribution P(Ĝ = G | θ,π, P ) is obtained by summing P(·, ·) in (3) over all possible
realizations of c. We note that the model in (3) is not identifiable without some constraint on θ
since the likelihood is unaffected by certain opposing magnitude shifts in θ and P (Yan et al., 2014).
To ensure that the model is identifiable, we require that the sum of θu in the same community
equal the number nodes in that community, namely∑

u:cu=r

θu = nr, (4)

for all r = 1, . . . , k. For simulation, it is often of interest to specify the community labels c
deterministically rather than randomly as in (1). To distinguish these assignment strategies, we
will write P(· | θ, c, P ) to represent the probability distribution of the DCSBM when the community
labels are pre-specified a priori.

We now demonstrate how to simulate dynamic graphs using the DCSBM as a starting point.

4.2. Simulating a Dynamic DCSBM with a Structural Change
We are interested in simulating an ordered sequence of graphs on the vertex set [n] that

demonstrate various types of significant structural change. The DCSBM P(· | θ, c, P ) provides
a flexible means to model change in a random dynamic graph. To model a dynamic graph with
a significant structural change, we generate an ordered sequence of random graphs Ĝ(n, T ) =

{Ĝ1, . . . Ĝt∗ , . . . , ĜT } according to

Ĝt ∼

{
P(G | θ, c, P ), t < t∗

P(G | θ∗, c∗, P ∗) t ≥ t∗
. (5)

By simulating Ĝ(n, T ) as in (5), we introduce a structural change in the graph at time t∗ that

persists across the remaining networks in the sequence. In this way, Ĝ1 = {Ĝ1, . . . , Ĝt∗−1} are

simulated as “typical” graphs; whereas, Ĝ2 = {Ĝt∗ , . . . , ĜT } are “anomalous” graphs. The goal of
a surveillance method then is to signal as quickly as possible following the time point of change
t∗. For network monitoring simulations, we require t∗ > m so that the change occurs after Phase
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I. We note that in principle one can simulate networks with multiple changes, as well as networks
with changes that affect a small number of networks.

The changes θ → θ∗, c→ c∗, and P → P ∗ each reflect a different type of structural change in
the simulated dynamic network. We first describe how to simulate Ĝ(n, T ), and then discuss the

effects of each of these three types of changes. To simulate a dynamic network Ĝ(n, T ) according
to (5), one can readily use the Algorithm outlined below.

Algorithm

Simulating a dynamic DCSBM with structural change

Given: c, c∗, P , P ∗, {δr, δ∗r ∈ [0, 1]}r=1,...,k

Step I: For t = 1, . . . , t∗ − 1

– Generate propensity parameters θ
(0)
u

i.i.d∼ U(1− δcu , 1 + δcu)

– Scale θ
(0)
u values to ensure identifiability:

θu =
ncuθ

(0)
u∑

v:cv=cu

θ(0)v

– Generate edges of Ĝt as independent Poisson draws

wu,v ∼ Poisson (θu θv Pcu,cv )

Step II: For t = t∗, . . . , T

– Repeat Step I with updated parameters: P → P ∗, δr → δ∗r , and c→ c∗

We choose the uniform random variable to simulate θ to (i) induce stochastic variability of the
degree sequence of the graphs through time and (ii) parameterize the mean and variability of the
propensity of connection of the nodes within community r with a single parameter δr. In practice,
any non-negative continuous or discrete random variable with finite mean and variance can be
used here and depends on the application. For example, if one observes that the degree sequence is
constant through time when the process is stable, then one can simulate θ once and use the same
values for each graph in the dynamic sequence.

By altering the parameters that dictate the DCSBM from time t∗−1 to t∗, we are able to model
several types of structural change among the actors [n] in Ĝ(n, T ), including the following:

(i) Change in rates of interaction: In general, one can introduce a mean shift in interaction
rate in community r by specifying P ∗r,r 6= Pr,r. Doing so will also affect the variance of the
interaction rate in the community. In particular, the mean and variance of the number of
interactions in community r will decrease at time t∗ when P ∗r,r < Pr,r, and increase when
P ∗r,r > Pr,r. One can introduce a change in variance of the interaction rate in community r by
specifying δ∗r 6= δr; in particular, this variance will increase if δ∗r > δr and decrease if δ∗r < δr.

(ii) Communication outbreaks: In network surveillance, one is often interested in identifying “com-
munication outbreaks” among the members of some sub-graph Ω ⊆ [n] in the network. A
communication outbreak corresponds to an increase in the average number of interactions
among the members of Ω. Using the DCSBM, we can model communication outbreaks
among any number of communities in the network. For example, a communication outbreak
among the members of community j is modeled by specifying P ∗r,r > Pr,r as the mean and
variance of the interactions in community r will increase at time t∗. We can model a global
communication outbreak by specifying P ∗r,s > Pr,s for all r, s ∈ [k].
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(iii) Change in community structure: A change in community structure of a social network can
signify an important transition in the modeled system. For example, in the political voting
network we consider in Section 6, the community structure associated with the members of
the U.S. Senate significantly changes at times of extreme polarization of the Republicans
and Democrats (Moody and Mucha, 2013). Chen et al. (2012) describe six general types
of community structure changes in a network, including growth, shrinkage, birth, death,
the merging of two communities, or the splitting of a single community into two or more
communities. In general, each of these types of changes can be implemented at time t∗ by
specifying new community labels c∗ 6= c.

Using the DCSBM, we are able to generate a dynamic random graph Ĝ([n], T ) that reflects a

structural change at time t∗. In this way, we can use Ĝ([n], T ) as a ground truth on which one can
assess the strengths and weaknesses of any network surveillance method.

5. Monitoring the Dynamic DCSBM

Suppose that we observe a dynamic graph sequence G(n, T ) = {G1, . . . , GT } that is generated
under the dynamic DCSBM according to (5). Our goal is to identify time points at which there is
a change in the distribution that generated G(n, T ). To detect such changes, we propose a surveil-
lance strategy that proceeds in two steps. First, the dynamic DCSBM is fitted to G(n, T ) using
maximum likelihood estimation. Next, control charts are applied to functions of these maximum
likelihood estimators to detect changes. In general, any control chart can be used to detect changes
and indeed this should be further explored in future work; however, in this manuscript we consider
the use of the Shewhart and EWMA control charts for individuals. We first describe estimation of
the DCSBM and then our monitoring strategy.

5.1. Fitting the dynamic DCSBM
5.1.1. Estimation of Communities

The estimation of the community labels c, otherwise known as community detection, is known to
be an NP hard problem; as a result one must estimate the labels using an approximate algorithm.
Many detection methods have been developed for weighted and unweighted networks (see Porter
et al. (2009); Fortunato (2010) for reviews). The spectral clustering algorithm (Von Luxburg, 2007)
is particularly well-suited for this setting due to its theoretical guarantees (Han et al., 2015; Qin
and Rohe, 2013; Sussman et al., 2012), which we now briefly mention.

Let m denote the number of Phase I graphs in G(n, T ), and assume that m < t∗. Define the
average Phase I graph by

G =
1

m

m∑
j=1

Gj ,

where the sum of two graphs G1 = ([n],W1) and G2 = ([n],W2) is the graph with node set [n] and
edge weights W1 +W2. If the probability matrix P has no identical rows, then spectral clustering
of the graph G will provide asymptotically consistent community label estimates ĉ, as m → ∞.
This is stated formally in the next theorem.

Theorem 1. Let G(n, T ) = {G1, . . . , GT } be a sequence of graphs generated under the dynamic
DCSBM with binary edges given by (5), where 1 < t∗ ≤ T is the time of structural change. That is
for t < t∗, Gt is generated under the DCSBM with community labels c, propensity parameters θ,
and probability matrix P . Let m < t∗ and define G = 1

m

∑m
j=1Gj. Let ĉ = (ĉ1, . . . , ĉn) denote the

community label estimates obtained from applying spectral clustering to the graph G. If P has no
identical rows and θ satisfies the constraint in (4), then up to permutation, ĉ = c, a.s. as m→∞.

Theorem 1 is an immediate consequence of the main result presented in Han et al. (2015).
The result of the theorem suggests that if the number of Phase I graphs is large enough, we can
obtain consistent estimators for the community structure for the sequence of graphs before t∗.
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This theorem suggests that one should use as many Phase I graphs as possible, but in practice the
choice of m depends on the judgement of the practitioner.

For monitoring purposes, we suggest using the regularized spectral method from Qin and Rohe
(2013) on the Phase I graphs in the sequence and monitoring the parameter estimates conditional
on the estimated community labels for the entire sequence of graphs. As we will see, in many cases
changes in the community structure will be reflected by changes in the parameter estimates de-
scribing the DCSBM. Though we do not pursue it here, future work should investigate surveillance
of community labels themselves.

5.1.2. Maximum Likelihood Estimation of Parameters
We now briefly summarize the maximum likelihood estimation of the DCSBM, which was

derived in Yan et al. (2014). We assume that c is fixed for all t and is equal to the estimators ĉ
obtained from spectral clustering described above. From (3), we can show that the log likelihood of
(θ,π, P ) given an observed graph G = ([n],W ) and community labels is, when ignoring constants,

`(θ,π, P | G, c) ∝
∑
r∈[k]

nr log(πr) +
∑
u∈[n]

du log(θu)

+
1

2

∑
r,s∈[k]

(mr,s log(Pr,s)− nrnsPr,s) (6)

Taking derivatives, it is readily shown from (6) that the maximum likelihood estimator (MLE)
for each parameter has a closed-form solution. For u ∈ [n] and r, s ∈ [k], the maximum likelihood
estimators are given by

θ̂u =
du

n−1r

∑
w:cw=cu

dw
, π̂r =

nr
n
, P̂r,s =

mr,s

nrns
. (7)

5.2. Monitoring Strategy
To develop a monitoring strategy that detects local and global changes in a network, we first

suppose that the community labels c are fixed throughout time. Let k be the number of distinct
community labels. Given c, we directly monitor the MLE P̂ , where at each time t we estimate
the

(
k
2

)
unique entries of P̂ for graph Gt. This statistic reflects the overall connection propensity

among communities. To monitor for changes in θ, one could in principle monitor each statistic θ̂u
separately; however, this leads to an unmanageable number of control charts. Instead we monitor
the sample standard deviation of the estimates {θ̂j : cj = r} at each time t. In particular we
monitor the statistic given by

sr =

(
1

nr − 1

∑
u:cu=r

(θ̂u − 1)2

)1/2

, r = 1, . . . , k. (8)

Our choice in using the standard deviation is motivated by the fact that subject to (4), the
expectation of {θu : cu = r} is fixed to be exactly 1. Thus, we use sr to capture the variability in
overall connection within community r.

We note that it is possible for δr to remain fixed while the propensity parameters change. For
example, in yet to be published work Yu et al. (2016) define a θ for each individual within a
community, and treat these propensities as fixed parameters to be modeled and monitored. Their
focus is the detection of change in individual connection propensities within communities.

In summary, our surveillance plan monitors
(
k
2

)
+ k statistics {P̂q,r, sq : q ≤ r ∈ [k]} through

time. Even though our statistics are derived with the assumption of fixed community structure, we
expect these statistics to capture some community structure changes as well, since in this scenario
the mean connectivity of nodes in the network will also likely change.
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5.2.1. Shewhart Control Chart
For each of the statistics that we estimate, we use a Shewhart and EWMA control charts to

determine what values indicate a significant change. Let St be a statistic at time t, and let m be
the number of Phase I networks. For t > m, the Shewhart control chart for individual outcomes
signals a change in the statistic if St lies outside of the control limits µ̂±3σ̂, where µ̂ is the sample
mean of the m Phase I observations, and σ̂ is the moving range estimate for the standard deviation
of these m observations given by

σ̂ =

√
π

2(m− 1)

m∑
j=2

|Sj − Sj−1|.

Note that the constant 2/
√
π is equivalent to d2, the normalization constant used in the control

chart literature.

5.2.2. EWMA Control Chart
Whereas the Shewhart control chart is designed to detect sudden large changes in St, the width

of the ±3σ̂ limits results in reduced sensitivity to persistent changes that are small to medium in
size. In this situation the EWMA control chart is to be preferred over the Shewhart control chart.

Instead of plotting the observed values of St directly, for t > m the EWMA control chart is a
time series plot of Zt, the exponentially weighted moving average of the St, where

Zt = λSt + (1− λ)Zt−1,

Z0 = µ̂ is a common choice for the starting value of the moving average and λ (0 < λ ≤ 1) is
a smoothing constant. Through empiral investigation Crowder (1989) provides guidance on the
choice of λ that optimizes the performance of the EWMA control chart. Montgomery (2013)
suggests that values of λ in the interval 0.05 ≤ λ ≤ 0.25 work well in practice with λ = 0.2 being
a popular choice. The control limits of the EWMA control chart are given by

µ̂± 3σ̂

√
λ

(2− λ)
[1− (1− λ)2t].

Note that as t increases, i.e., as the number of Phase II observations increases, these control limits
approach the steady-state values given by

µ̂± 3σ̂

√
λ

(2− λ)
. (9)

If Zt lies outside these control limits, it signals that a small and persistent change has occurred.
Because the current observation St is de-emphasized in this moving average, the EWMA control
chart will not signal sudden large changes as quickly as a Shewhart control chart. Thus the nature
of change one wishes to detect should dictate which control chart is used. In practice, it is sensible
to simultaneously monitor St using both approaches. We explore the utility of both the Shewhart
and EWMA control charts when applied to the U.S. Senate co-voting network in Section 6 and we
use simulation to investigate the detection properties of the Shewhart control chart in Section 7.

6. Application to the U.S. Senate Voting Network

We now use the DCSBM surveillance procedure to investigate the dynamic relationship between
Republican and Democrat Senators in the U.S. Congress. We analyzed the co-voting network of
the U.S. Senate from 1867 (Congress 40) to 2015 (Congress 113). This network was first analyzed
in Moody and Mucha (2013) and has been since investigated in Roy et al. (2014). In Moody and
Mucha (2013) the modularity, or extent of divisiveness, of the network was calculated over time,
and it was found that generally Republicans and Democrats have become more polarized over
time. The dynamic DCSBM framework provides a means to formally model this network and test
for changes in the community structure and voting patterns among party members.



12 James D. Wilson et al.

6.1. Description of Data
We generated a dynamic network to model the co-voting patterns among U.S. Senators in

the following manner. We first collected the roll call voting data for each Congress from http:

//voteview.com. This data set contains the voting decision (either yay, nay, or abstain) of each
Senator for every bill submitted to the Senate. For each Congress, we model the Senators in that
Congress as the collection of nodes. Binary edges are placed between two Senators if they vote
concurrently (either both yay or both nay) for at least 75% of the total number of bills on which
either of them voted. Three of the networks that we analyze are shown in Figure 2. This figure
illustrates the tendency of the Senators to vote according to his or her own party affiliation. We
summarize the number of Senators, number of bills, and the total number of edges in each Congress
in Figure 3.

Fig. 2. An illustration of the 40th, 70th, and 100th Senate networks in the U.S. Senate voting network.
Each network was drawn using the Fruchterman Reingold layout. Nodes are colored according to political
affiliation, where red represents Republican and blue represents Democratic affiliation.

Fig. 3. Features of the dynamic U.S. Senate voting network.

6.2. Results
To analyze political polarization, we applied the DCSBM surveillance strategy with Shewhart

and EWMA control charts to this dynamic network. Since node labels across graphs are not
registered, i.e., nodes do not represent the same Senators across time, estimating the community
labels using the spectral clustering strategy mentioned in Section 5.1.1 is not appropriate. As we
are interested in understanding political polarization, we instead set the community labels at time
t according to the political affiliation of each Senator (1 for Democrat and 2 for Republican). We

http://voteview.com
http://voteview.com
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set the Phase I size to be m = 25 and compute the Shewhart and EWMA control charts for the
estimators {P̂q,r, sq : q, r = 1, 2}. For the EWMA chart, we calculated the control limits in (9)
and set λ = 0.2. Estimation of the DCSBM and surveillance took approximately two minutes to
run on this data set using R software on a laptop with a 2.6 GHz Intel Core i5 processor. The
Shewhart and EWMA control charts are shown in Figure 4.

The control charts in Figure 4 reveal three interesting and relevant features about the U.S.
Senate voting patterns. First, both the Shewhart and EWMA control charts signal large values
of P̂1,2 from Congress 91 (1969 - 1971) to Congress 94 (1975 - 1977). This finding suggests that
Republicans and Democrats tended to vote concurrently more often than expected during this
period of time. Furthermore, the EWMA control chart signals large values of s1 during this time
period. This suggests that the voting propensity of the Democratic party during this time is
significantly more variable than expected. Interestingly, this time frame lies at the second half of
the so-called “Rockefeller Republican” era, which lasted from 1960 to 1980. During this era, many
Republican Senators had moderate views that reflected the ideals of the governor of New York,
Nelson Rockefeller (Rae, 1989; Smith, 2014). The Rockefeller Republicans were strong supporters
of the civil rights movement, including the Civil Rights Act of 1968, and held especially moderate
fiscal views under the Presidency of Richard Nixon (93rd Congress). Notably, this general cohesion

among parties - marked by large values of P̂1,2 in the control charts - ended in Congress 94. This
Congress coincides with the end of Nelson Rockefeller’s role as Vice President of the United States
in 1977. To the best of our knowledge, this is the first work to identify this political era using
Senatorial co-voting data.

Next, the EWMA control charts for P̂1,1 and P̂2,2 signal large values at Congress 104. This sug-
gests that the intra-party co-voting propensities for both the Democratic and Republican parties
became exceedingly large at that time. This finding supports the theory of recent polarization of
the parties at the beginning of Bill Clinton’s first term as President (Congress 103). According
to Moody and Mucha (2013), this time period marked an important transition at which conser-
vative Democrats and liberal Republicans joined majority-party coalitions in both Congress 103
(Democratic majority) and Congress 104 (Republican majority). This transition left the middle
ground between parties empty, which may have lead to an enduring polarization. These results
also coincide with the findings of Roy et al. (2014). The Shewhart control chart did not as clearly
signal this change; however, in each of the charts there is an increasing trend beginning in Congress
100. We note that the Shewhart lower control limit for P̂1,1, P̂1,2, and P̂2,2 is less than zero. This
indicates that the variability of these values in Phase I was too large to construct tight control
limits. As Shewhart charts are better suited for large sudden changes, it is expected that these
charts will identify this polarization change later than the EWMA chart, as shown.

Finally, we see from the EWMA control charts for s1 and s2 signals a significantly small value
of these statistics at Congress 105. This suggests that the variability of total interaction of the
Senators steadily and significantly reduced during this period. This finding complements the
polarization theory described above, and suggests that since Congress 105, each U.S. Senator
tends to vote according to his or her party, regardless of the bill.
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Fig. 4. Shewhart (top) and EWMA (bottom) control charts for each of the DCSBM statistics for the dynamic
voting network of the U.S. Senate, when using a Phase I size of 25. The red dashed lines represent
the upper and lower control limits for the Shewhart chart. Blue dots represent Congresses for which
Democrats held a majority in Senate. These control charts illustrate a recent schism among Republican
and Democratic voting patterns in the Senate as well as an era of political cohesion during the ”Rockefeller
Republican” era.
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Table 1. A description of the changes introduced to the dynamic DCSBMs in
our simulation study.
Simulation Change Description

1 P ∗
1,1 = P1,1 + ε local outbreak in community 1

2 P ∗
i,j = Pi,j + ε global outbreak (i = 1, 2, j = 1, 2)

3 δ∗1 = δ1 + τ local variability increase in community 1
4 δ∗i = δi + τ global variability increase (i = 1, 2)
5 c→ c∗ merge communities
6 c→ c∗ split community 1 into 2 communities

7. Simulation Study

In this section, we investigate the detection of structural changes in a network Ĝ(n, T ) =

{Ĝ1, . . . , ĜT } generated under a dynamic DCSBM. We consider local and global changes in the
network as parameterized by changes in P → P ∗, δ → δ∗, and c → c∗ at time t∗. Note that
we assume the community labels c are known and so we do not surveil the maximum likelihood
estimates π̂. Because these local and global changes are large and introduced suddenly, we use
Shewhart control charts as the monitoring strategy.

In Section 7.1 we evaluate this monitoring strategy on a collection of illustrative examples to
gain an intuition of the DCSBM and the performance of the proposed methodology. In Section 7.2
we quantify the strengths and weaknesses of our method using an analysis of average run lengths
under a variety of simulated conditions. To evaluate the performance of our detection strategy,
we altered the network size and the magnitude of the change being introduced. This simulation
strategy can be readily used to assess the performance of any network surveillance method.

7.1. Illustrative Examples
We begin our simulation study by demonstrating the Shewhart control charts on a collection of

six dynamic networks, each of which reflects a different structural change at time t∗. We investigate
changes in the mean and variance of interaction rate, both locally and globally, as well as changes in
community structure. For each simulation, we generated a dynamic network according to (5) with
n = 50 nodes, k = 2 equally sized communities, T = 50 time points, and a change implemented
at time t∗ = 30. We use the first m = 25 simulated networks for Phase I, and implemented
the Shewhart control chart for the statistics {P̂q,r, sq : q, r = 1, 2} using the surveillance strategy
described in Section 5.2. In all six simulations, we set

P =

(
0.2 0.1
0.1 0.2

)
, δr ≡ 0.5 for r = 1, 2.

Control charts are shown for each simulation in Figures 5, 6, and 7. Below, we describe the six
simulated networks and the results of our monitoring plan. To conserve space we do not present
charts for s2, and instead describe them qualitatively where appropriate. The implemented changes
for each simulation are described in Table 1.
Simulations 1 - 2: Mean Interaction Rate Changes

In the first two simulations, we monitor changes in the mean interaction rates in the network.
In simulation 1, we introduce a local mean interaction outbreak in community 1 by setting P ∗1,1 =

P1,1 + ε with ε = 0.10. The top of Figure 5 reveals that the control chart for P̂1,1 efficiently signals
a change at time 30; whereas, all other statistics remain in control over the entire time interval.
In simulation 2, we introduce a global mean interaction outbreak by increasing all entries of P by
ε = 0.10. In this case, the probability estimates P̂1,1, P̂1,2 and P̂2,2 all lead to a signal for a change
at time 30, and s1 and s2 remain in control, though the chart for s2 is not shown here. We note
that P̂1,2 appears to signal the most dramatic change. This is due to the fact that the signal to
noise ratio introduced by increasing the overall interaction rate in the network is highest for the
inter community interactions.
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Fig. 5. Shewhart control charts for the dynamic networks generated for simulations 1 and 2 estimated
using the first 25 networks.
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Simulations 3 - 4: Variance of Interaction Rate Changes

Next we monitor changes in the variation of the interaction rate in the simulated network. In
simulation 3 we increase δ1 by τ = 0.25, which results in a change in the variability of interaction
in community 1. The top of Figure 6 reveals that this change is indeed signalled by the s1 chart
near t = 30. We expect the reaction of the chart, and hence the signal delay, to depend on the
magnitude of change. We investigate this further in the next section. In simulation 4 we simulated
a global change in δ = (δ1, δ2), which increases the variability of interactions among all nodes.
In this case δ1 and δ2 are both increased by τ = 0.25. The bottom of Figure 6 reveals that s1
signals the change almost immediately. Although not shown here, the control chart for s2 behaves
similarly. Importantly, the connection probability estimates remain in control in these simulations
suggesting, as desired, that the mean interaction rate in the network does not change.

Simulations 5 - 6: Change in Community Structure

In simulations 5 and 6, we consider two common changes in community structure: merging and
splitting of communities. In simulation 5, we simulate networks with two equally sized communities
up to time t∗ = 30. At time t∗, we then merge the two communities into one and set the connection
value to the average of the former connection probabilities, that is P ∗ = 0.15. Structurally, this
change results in an increase of P̂1,2 by 0.05 and a decrease in P̂1,1 and P̂2,2 by 0.05. Our control
charts from Figure 7 detect this trend, and we see that the change is appropriately detected using
P̂1,2. Although we witness a decrease in P̂1,1 and P̂2,2, the control chart does not signal a change
immediately. Because this change is relatively small, it would be better detected by EWMA control
charts for P̂1,1 and P̂2,2.

In simulation 6, we once again begin with two equally sized communities. At time t∗ = 30, we
split community 1 into two communities of size 12 and 13, respectively. For the three communities
after time t∗, we fix Pi,i = 0.20 and Pi,j = 0.10 as before. Structurally such a change will be

reflected by an overall decrease in P̂1,1. We see this trend in the chart in the bottom of Figure

7; however, the change was not identified until time t = 42, where P̂1,1 went below the control
limits. We expect that this type of change will be more readily detected in larger networks and in
networks where the split community is large. We investigate this further in the next section.

7.2. Average Run Length Analysis
For each scenario described in Table 1, we evaluated our monitoring methodology by simulating

the situation 1000 times. On each of these 1000 simulated runs, we calculated the number of
networks until the control chart detects a change, i.e., the run length, and we then estimate the
average run length (ARL) from these 1000 simulations. Because µ and σ are estimated from Phase
I, there will be practitioner-to-practioner sampling differences in observed ARL values, which is the
basis for an ARL distribution. Thus the average run lengths we report are estimates of the mean
of this distribution, which we refer to as the average ARL (AARL) as in Saleh et al. (2015). This
AARL is the basis upon which different surveillance methods can be compared. In what follows,
we describe the performance of the surveillance technique discussed in the previous two sections.

In each of the scenerios discussed below we assume the same initial form of P and δ as discussed
in the previous section, with n = 100 nodes in each network. We investigated the performance of
the method with m = 25, m = 50 and m = 1000 Phase I samples. In all cases we implemented
the appropriate change at time t∗ = 25 in Phase II and thereafter generated as many networks
required to observe the first signal on each control chart. Here we investigate the performance of
control charts for P̂1,1, P̂1,2, P̂2,2, and s which is a pooled estimate of the standard deviation of θ̂
based on s1 and s2 since we assume δ1 = δ2 in Phase I.

We found comparable performance of our surveillance technique under Phase I sizes of m =
25,m = 50 and m = 1000. However, as Saleh et al. (2015) indicate, it is unwise to guarantee specific
ARL values when the control chart parameters are estimated from small sample sizes. As such, we
present the results of the m = 1000 case here, and provide the results for the m = 25 and m = 50
cases in the Appendix. Note that when m = 1000, we gain insight into the performance of the
methodology under favorable conditions (i.e., when information about each statistic’s distribution
is ample).
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Fig. 6. Shewhart control charts for the dynamic networks generated for simulations 3 and 4 estimated
using the first 25 networks.
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Fig. 7. Shewhart control charts for the dynamic networks generated for simulations 5 and 6 estimated
using the first 25 networks.
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Simulation 0: No Change

We begin by considering the performance of the methodology when no structural change has
occurred. Doing so allows us to quanitify the prevalence of false alarms, i.e., when the control
chart incorrectly indicates a change has occurred. The AARLs associated with the control charts
for s, P̂1,1, P̂1,2, and P̂2,2 are shown in Table 2. Although there will be variation in in-control
ARLs, the large AARL values shown in the Simulation 0 row are reassuring; they indicate that
false alarms are not expected to occur until hundreds of “in-control” networks have been observed.
When structural changes have occurred, we expect much smaller AARLs to be associated with at
least one of the four control charts. We discuss these scenarios below.

Simulations 1 - 2: Mean Interaction Rate Changes

We quantify the method’s ability to detect local changes in P , specifically in community 1,
by adding ε = 0.01, 0.05, 0.10 to P1,1. As mentioned previously, such a change is expected to be

detected on the P̂1,1 control chart. The Simulation 1 AARLs in the P̂1,1 column of Table 2 indicate

that this is indeed the case; on average we expect the P̂1,1 control chart to detect such a change
in roughly ten networks for moderate sized changes in P1,1, and roughly two networks for large
changes. On the other hand, the large AARL values for the other three statistics indicate that
none of them is likely to detect this change, as desired.

We similarly quantify the method’s ability to detect global changes in P by adding ε =
0.01, 0.05, 0.10 to each Pi,j . In this situation, we expect all entries of P̂ to signal a change. The

Simulation 2 AARLs in the P̂1,1, P̂1,2, and P̂2,2 columns of Table 2 support this hypothesis. As

expected, we see that the P̂1,2 control chart signals this change fastest since ε is much larger relative
to P1,2 than it is to P1,1 and P2,2.

Simulations 3 - 4: Variance of Interaction Rate Changes

We introduced local changes in interaction variability among the nodes in community 1 by
adding τ = 0.05, 0.10, 0.25 to δ1, and we introduce global changes in interaction variability among
all nodes in the network by adding τ = 0.05, 0.10, 0.25 to each δj , j = 1, 2. In both cases, we
expect the s control chart to signal this change. The AARLs in the Simulation 3 and Simulation 4
rows of Table 2 support this claim. In particular, we can expect this control chart to detect global
changes more quickly than local changes, and in both cases large changes will be detected more
quickly than small changes.

Simulations 5 - 6: Change in Community Structure

As discussed in the previous section, Simulation 5 corresponds to the merging of communities.
Since P1,2 is most affected by this change, we expect the P̂1,2 control chart to signal quickest. The

AARLs in the “Simulation 5” row of Table 2 agree with this intuition; while, P̂1,1 and P̂2,2 tend

to detect this change more quickly than s, the P̂1,2 chart detects the change almost immediately.
Interestingly, this result does not appear to depend on the size of the network.

When community j is split into two (equally sized) communities, the illustrative example in

Section 7.1 suggests that a control chart for P̂j,j should signal most quickly. The results in the
Simulation 6 row of Table 2 substantiate this; when community 1 is split into two communities, the
control for P̂1,1 detects this more quickly than the other control charts, but perhaps not as quickly
as a practitioner would like. This suggests that the proposed surveillance methodology may not
be ideal for detecting community splitting, even though it is highy effective at detecting each of
the other types of structural change considered.

8. Discussion

In this paper we have illustrated the utility of the dynamic degree corrected stochastic block
model (DCSBM) in modeling and simulating realistic dynamic networks with local and global
structural changes. Our proposed model is flexible, and can capture both degree heterogeneity and
community structure in networks, two important features that are common in social and biological
networks. We proposed a fast and effective monitoring methodology based on the surveillance
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Table 2. Average ARLs for Simulations in Section 7.2 when m = 1000.
Simulation Change s P̂1,1 P̂1,2 P̂2,2

0 none 317.18 439.25 446.50 338.25
ε = 0.01 294.80 134.00 413.70 332.4

1 P ∗
1,1 = P1,1 + ε ε = 0.05 284.90 9.87 257.27 207.70

ε = 0.10 524.40 2.23 289.90 325.90
ε = 0.01 498.80 140.90 64.65 142.30

2 P ∗
i,j = Pi,j + ε ε = 0.05 211.10 9.48 1.71 12.17

ε = 0.10 93.30 2.01 1.01 2.28
τ = 0.05 106.51 221.40 260.10 202.70

3 δ∗1 = δ1 + τ τ = 0.10 115.70 152.33 305.29 544.60
τ = 0.25 18.81 63.35 107.20 431.00
τ = 0.05 93.58 232.30 246.10 216.10

4 δ∗i = δi + τ τ = 0.10 36.33 142.00 185.94 218.50
τ = 0.25 4.94 52.88 92.23 53.87
n = 50 327.60 74.97 1.64 40.81

5 Merge comm. n = 100 247.00 39.79 1.66 27.61
n = 500 72.70 37.56 1.61 37.32
n = 50 152.10 32.88 168.30 427.80

6 Split comm. n = 100 127.50 33.90 313.39 426.20
n = 500 72.70 33.37 315.50 446.50

of maximum likelihood estimates from the DCSBM using Shewhart and EWMA control charts
for individuals. When applying our method to the U.S. Senate co-voting network, we were able
to identify relevant and significant changes in the bipartisan nature of the U.S. Congress. Our
analysis reveals that the dynamic DCSBM can effectively model a variety of dynamic networks
with structural changes, and that our proposed surveillance strategy can detect relevant changes
in a real dynamic system.

Our proposed monitoring strategy establishes one practically useful technique among a general
family of methods for surveillance. Our framework relies on two components: a parametric dynamic
random graph model for modeling the features of the graph, and a control chart from statistical
process monitoring for the detection of changes in the parameters. We considered a dynamic
DCSBM random graph model and the Shewhart and EWMA control charts for surveillance. This
serves only as a first step in understanding the utility of our proposed surveillance strategy. In
future work, it would be useful to explore the use of other parametric random graph models and
control charts and to assess the advantages and disadvantages of each strategy. In particular,
future work will explore the utility of dynamic latent space models like that discussed in Sewell
and Chen (2015) as well as dynamic exponential random graph models like the TERGM family
described in Hanneke et al. (2010).

Our current surveillance framework requires the surveillance of on the order of
(
k
2

)
statistics,

where k is the number of communities in the network. If the number of communities is large,
e.g., if k = O(n), our proposed surveillance strategy will become cumbersome and may suffer
from multiple testing issues. For this reason, an important next step is to develop a surveillance
methodology that is not limited by the number of nodes or communities in the network. For
example, one could develop a formal likelihood ratio test for the DCSBM from one time point to
the next. At every time point in Phase II, the likelihood ratio test statistic could be plotted on
a control chart whose control limits are based on the exact or an approximate distribution of the
statistic. The development of a likelihood ratio test for this network model is an important, but
difficult, problem. Yan et al. (2014) provides some intuition for how to proceed here, but more
work needs to be done.

Finally, the majority of contemporary surveillance methodologies are based on the assump-
tion that the observed dynamic graph is unweighted. As a consequence, model-based approaches
generally model the existence of an edge as a Bernoulli random variable and often rely on some
thresholding technique to binarize count data. The DCSBM flexibly models the edge weight as-
sociated with each edge using a Poisson random variable. Thus, one can utilize the DCSBM to
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investigate and quantify the loss of information when count data is thresholded to binary outcomes.

Appendix

Appendix A: Relationship of DCSBM with other Random Graph Models
The DCSBM generalizes several families of well-studied and widely-applied random graph mod-

els. For the convenience of the reader, we describe three important families of random graph models
and their relationship with the DCSBM below. The analysis of random graphs has a rich history,
and a variety of models have been developed and used in a wide range of applications. Goldenberg
et al. (2010) and Fienberg (2012) provide two recent surveys of random graph models, and Durrett
(2007) provides a book level treatment of the topic. We refer the reader to these references and
those mentioned below for more details about random graph theory and its application.

• Stochastic block model: When θu ≡ 1 for all u ∈ [n] and Pr,s ∈ (0, 1) for all r, s ∈ [k],
the degree corrected stochastic block model reduces to the (non-degree corrected) stochastic
block model from Holland et al. (1983); Snijders and Nowicki (1997); Nowicki and Snijders
(2001). In this special case connection probabilities are fully described by the k×k probability
matrix P . In this random graph, vertices in the same community are treated as stochastically
equivalent in the sense that vertices of the same community have the same degree propensity.

• Erdős-Rényi (p): Suppose that θu ≡ 1 and that Pr,s ≡ p ∈ (0, 1) for all r, s ∈ [k]. Then
the DCSBM reduces to the Erdős-Rényi random graph model with probability parameter p
(Erdös and Rényi, 1960). The Erdős-Rényi random graph model treats edges as independent
and identically distributed random variables with connection probability p. As a result,
the model does not distinguish vertices of different communities. The Erdős-Rényi random
graph is often used as a null model to which significant network features can be detected
through comparison. For example, the Erdős-Rényi random graph plays an important role
in community detection both as a means to identify communities (Newman, 2006), and as a
means to analyze the theoretical properties of community detection algorithms (Bickel et al.,
2011).

• Chung-Lu model: An important family of random graph models is the family of fixed
degree random graphs. These models are used to characterize the degree heterogeneity of
an observed graph with degree sequence d = {d(1), . . . , d(n)}. A fixed degree random graph
is a probability measure on the family of undirected graphs that have degree sequence d.
Important examples of fixed degree random graphs include the configuration model (Bender
and Canfield, 1978; Bollobás, 1979; Molloy and Reed, 1995), the β-model (Chatterjee et al.,
2011), and the Chung-Lu model (Aiello et al., 2000). As a special case, we consider the Chung-

Lu fixed degree model with degree sequence d. For k = 1, when θu = d(u)/
√∑

w∈[n] d(w),

and P1,1 = 1, then the resulting expected edge weight between nodes u, v ∈ [n] is given by:

E[wu,v] =
d(u)d(v)∑
w∈[n] d(w)

.

This is precisely the expected edge weights associated with the Chung-Lu random graph
model. The Chung-Lu model is often used as a null random graph model against which the
features of an observed network is compared. For example, this model is often used for the
detection and evaluation of community structure in networks (Newman, 2006; Wilson et al.,
2013, 2014).

Appendix B: Additional Results for Simulation study
We provide the average ARL for the simulations conducted in Section 7.2 for Phase I size

m = 25 and m = 50 in Tables 3 and 4, respectively.
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Table 3. Average ARLs for Simulations in Section 7.2 when m = 25.
Simulation Change s P̂1,1 P̂1,2 P̂2,2

0 none 425.50 507.53 512.40 534.40
ε = 0.01 474.20 299.50 487.64 506.20

1 P ∗
1,1 = P1,1 + ε ε = 0.05 613.67 19.75 494.40 482.20

ε = 0.10 649.00 2.67 474.52 474.80
ε = 0.01 587.50 280.60 149.50 297.00

2 P ∗
i,j = Pi,j + ε ε = 0.05 555.70 18.44 1.98 17.84

ε = 0.10 350.60 2.61 1.01 2.66
τ = 0.05 366.70 383.30 482.40 490.17

3 δ∗1 = δ1 + τ τ = 0.10 193.70 299.80 419.50 481.90
τ = 0.25 35.80 118.90 306.00 509.40
τ = 0.05 229.90 380.00 480.70 382.80

4 δ∗i = δi + τ τ = 0.10 107.90 312.90 342.00 288.50
τ = 0.25 6.98 132.90 188.50 108.00
n = 50 451.90 288.30 1.90 271.30

5 Merge comm. n = 100 452.30 268.30 1.84 269.10
n = 500 443.60 283.00 1.91 247.70
n = 50 226.00 224.00 497.20 509.85

6 Split comm. n = 100 247.50 275.00 506.50 487.00
n = 500 220.60 269.30 551.40 480.80

Table 4. Average ARLs for Simulations in Section 7.2 when m = 50.
Simulation Change s P̂1,1 P̂1,2 P̂2,2

0 none 398.10 408.99 436.10 429.50
ε = 0.01 432.20 210.80 456.20 434.10

1 P ∗
1,1 = P1,1 + ε ε = 0.05 577.83 12.27 443.30 473.50

ε = 0.10 604.00 2.36 435.99 424.50
ε = 0.01 551.90 204.70 81.72 213.80

2 P ∗
i,j = Pi,j + ε ε = 0.05 497.10 12.30 1.78 12.77

ε = 0.10 217.10 2.34 1.01 2.34
τ = 0.05 261.40 294.10 378.20 410.48

3 δ∗i = δi + τ τ = 0.10 136.68 225.10 359.90 427.50
τ = 0.25 26.05 80.83 250.40 460.80
τ = 0.05 172.20 303.29 361.90 328.50

4 δ∗ = δ + τ τ = 0.10 58.94 232.80 290.20 319.00
τ = 0.25 5.68 90.87 139.40 88.58
n = 50 414.46 177.90 1.80 155.60

5 Merge comm. n = 100 366.99 171.90 1.88 169.50
n = 500 386.70 142.90 1.83 162.60
n = 50 172.10 165.10 472.40 457.50

6 Split comm. n = 100 163.90 145.00 480.90 436.02
n = 500 169.50 165.30 428.15 424.00
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