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The more information a measurement provides about a quantum system’s position statistics, the less informa-
tion a subsequent measurement can provide about the system’s momentum statistics. This information trade-off
is embodied in the entropic formulation of the uncertainty principle. Traditionally, uncertainty relations corre-
spond to resolution limits; increasing a detector’s position sensitivity decreases its momentum sensitivity and
vice-versa. However, this is not required in general; for example, position information can instead be extracted
at the cost of noise in momentum. Using random, partial projections in position followed by strong measure-
ments in momentum, we efficiently determine the transverse-position and transverse-momentum distributions
of an unknown optical field with a single set of measurements. The momentum distribution is directly imaged,
while the position distribution is recovered using compressive sensing. At no point do we violate uncertainty
relations; rather, we economize the use of information we obtain.

PACS numbers: 42.50.Xa, 89.70.Cd, 03.65.Ta, 03.56.Wj,03.67.Hk

Measurements on quantum systems are always constrained
by uncertainty relations. Localizing a particle in one observ-
able, such as position, imparts a disturbance that makes a fol-
lowing measurement of a complementary observable, such as
momentum, unpredictable. Such strong, projective measure-
ments are often said to “collapse” the quantum wavefunction.
For example, in Young’s double slit experiment, it is not possi-
ble to detect through which slit particles pass (position) while
also observing interference fringes in the far field (momen-
tum) [1].

Consequently, the statistics of complementary observables
are usually measured separately; an ensemble of identically
prepared particles is directed to a position detector and a dif-
ferent, similarly prepared ensemble is directed to a momen-
tum detector. If a detector instead measures both observ-
ables simultaneously with strong measurements, its position
resolution ∆x and momentum resolution ∆k are bounded by
Heisenberg’s uncertainty relation, ∆x∆k ≥ 1/2. In its most
basic form, a Shack-Hartmann wavefront sensor is an example
of this kind of detector [2].

Though this resolution limitation applies to strong measure-
ments, it is not true in general. Here, the uncertainty principle
implies an information exclusion principle [3, 4]; the more in-
formation a detector gives about position, the less information
it can provide about momentum and vice-versa. With a sin-
gle, carefully designed experiment, one can simultaneously
recover the statistics of both observables at arbitrary resolu-
tion. This has been demonstrated, albeit very inefficiently,
with weak measurement [5–7].

In this Letter, we efficiently obtain the transverse-position
and transverse-momentum distributions of optical photons
from a single set of measurements at high resolution. We se-
quentially perform a series of random, partial projections in
position followed by strong projective measurements of the
momentum. The partial projections efficiently extract infor-
mation about the photons’ position distribution at the cost of
injecting a small amount of noise into their momentum dis-
tribution. This allows the momentum distribution to be di-
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FIG. 1. Experimental setup for simultaneous position and mo-
mentum imaging. A state is prepared by illuminating an object
mask at z = z0 with a plane wave from an attenuated, HeNe laser.
The field is imaged at z = zx where it is sequentially filtered by
a series of M , 256 × 256 pixel, random, binary filters Fi. Each
filter partially projects the state by blocking about half of the posi-
tion elements. A cooled CCD array in the focal plane z = zk of
a Fourier transforming lens records the momentum distribution for
each filtered state. Position information is mapped to the total optical
power passing each filter; this measures the correlation between the
position intensity distribution at zx with the current filter. Because
the filters do not strongly localize the photons’ position, the momen-
tum distribution is directly recovered by averaging the CCD images.
The position distribution is reconstructed using compressive sensing
techniques such that an N -pixel position image requires M << N
filters.

rectly observed on a charge-coupled device (CCD) camera.
The position distribution is recovered using a computational
technique called compressive sensing (CS) [8].

Consider an optical field at plane z = z0 with transverse,
complex amplitude ψ(~x), where z is the propogation direction
and ~x = (x, y) are transverse, spatial coordinates. The field
also has momentum amplitude ψ(~k) which is related to ψ(~x)

by a Fourier transform, with ~k = (kx, ky).
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To measure the position field intensity |ψ(~x)|2, one could
raster scan a small pinhole through the transverse plane at
z = z0. The fractional power passing through the pinhole
as a function of its position reveals the image. From a quan-
tum perspective, this process constitutes a strong projective
position measurement; the pinhole localizes the position of
photons passing through it and their subsequent momenta are
random. From a classical optics perspective, the pinhole acts
like a spatial filter; light passing through the pinhole diffracts
evenly in all directions. In either case, information about the
original field’s momentum ψ(~k) is lost. Note that one could
instead choose to measure the momentum distribution |ψ(~k)|2
by performing a similar scan in the focal plane of a Fourier
transforming lens. Here, position information would instead
be forfeit.

In our approach (Fig. 1), we perform a series of partially
projective measurements of position followed by strong mea-
surements of momentum. We first prepare a transverse, pho-
tonic state ψ(~x) by illuminating an object mask with a colli-
mated laser. We image this field at plane z = zx with a 4F
imaging system. Here we sequentially perform partial pro-
jections of ψ(~x) by filtering it with a series of M binary am-
plitude masks fi(~x). Each mask consists of a random, N -
pixel pattern, where each pixel either fully transmits or fully
obstructs with equal probability. Note that the total optical
power passing the ith filter gives the correlation between that
filter and the position intensity distribution |ψ(~x)|2. In this
way, a small amount of information about the position distri-
bution is extracted without localizing the field. The filtered
state ψ̃i(~x) = ψ(~x)fi(~x) then passes through a Fourier trans-
forming lens to a CCD array in the lens’ focal plane at z = zk.
The CCD records M images of the momentum distribution
of the filtered field |ψ̃i(~k)|2, one for each filter. This set of
images contains information about both ψ’s position and mo-
mentum.

The momentum distribution |ψ̃(~k)|2 is recovered directly
from the CCD images by simple averaging such that

|ψ(~k)|2 = 〈|ψ̃i(~k)|2〉, (1)

where angled brackets indicate an average over all filters. This
is made possible by the surprising fact that |ψ̃i(~k)|2 is a good
approximation to |ψ(~k)|2, even though |ψ̃i(~x)|2 is missing
half of its coefficients.

By the convolution theorem of Fourier optics [9], the fil-
tered ith momentum distribution is found by convolving the
Fourier transforms of ψ(~x) and fi(~x) such that

|ψ̃i(~k)|2 = |ψ(~k) ∗ fi(~k)|2, (2)

where ∗ denotes convolution. To understand the filter’s effect
on ψ(~k), we must consider its Fourier transform (Fig. 2).

At high resolution, each transmitting filter pixel is approx-
imately a displaced Dirac delta function (Fig. 2a) with unit
amplitude. The Fourier transform of each delta function is
a plane wave propagating at an angle proportional to its dis-
placement from the origin. At ~k = (0, 0), these plane waves
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FIG. 2. Discrete Fourier transform of a 256 pixel, 1D random,
binary pattern. (a) gives a random, binary 1D filter function where
a value 1 is fully transmitting and a value 0 is fully obstructing. (b)
shows the relative power spectrum of its Fourier transform, where the
zero momentum term is scaled to unity. The noise floor is a factor√

2/N weaker in amplitude in both its mean and standard deviation.
The same relationship holds for a 2D filter.

add in phase, producing a sharp peak. For ~k 6= (0, 0), each
plane wave is equally likely to provide a negative or posi-
tive contribution. The coefficients therefore follow a random,
complex Gaussian distribution [10]. A filter’s Fourier trans-
form is approximately a Dirac delta function at zero momen-
tum riding a small noise floor a factor

√
2/N weaker (Fig.

2b)

fi(~k) ∝ δ(~k) +

√
2

N
φi(~k). (3)

Values for φi(~k) follow a random, complex Gaussian white
noise distribution, with real and imaginary parts of zero mean
and standard deviation 1/

√
2.

Because a convolution with a delta function simply returns
the original function, we expect ψ̃i(~k) ≈ ψ(~k) with a small
amount of noise (Fig. 3). From Eq. 2 and Eq. 3, we find

|ψ̃i(~k)|2 = N
{
|ψ(~k)|2 (4)

+
2
√

2√
N

Re[ψ∗(~k)(ψ(~k) ∗ φi(~k))]

+
2

N
|ψ(~k) ∗ φi(~k)|2

}
,

where N is a normalizing constant. The first term is the de-
sired outcome; the following two terms add noise. For large
N , these terms vanish. In the worst case, the signal-to-noise
ratio scales as

√
N . At typical imaging resolutions, such as

N = 256 × 256 pixels used in this letter, these terms are
weak. When averaged over many patterns, the second term
vanishes and the third term approaches a very small constant
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FIG. 3. Partial projections of ψ. The figure simulates the effect of
filtering a triple slit object with a 128 × 128 pixel random, binary
pattern. The momentum images are given as relative powers; where
their maximum value is scaled to unity. A square-root color map-
ping emphasizes weaker momentum values. The filtered momentum
distribution is a slightly noisy version of the true momentum distri-
bution.

value. Eq. 1 is therefore recovered up to a constant offset. The
noiseless case is asymptotically approached for increasing M
and N . This analysis is closely related to similar problems in
wireless communication [11].

Because the filtered momentum distribution is only lightly
perturbed, very little information about the position distribu-
tion can be extracted from each CCD image. To maximize the
usefulness of this information, we turn to compressive sens-
ing [12–14]. Compressive sensing [8] is an extremely efficient
measurement technique for recovering an N -dimensional sig-
nal from M << N measurements, provided the signal can
be compressed in a known way. The use of outside infor-
mation, the prior knowledge that a signal is compressible, is
a powerful tool for economizing measurement. In the past
decade, compressive sensing has taken the signal processing
world by storm with applications ranging from magnetic res-
onance imaging [15] to radio astronomy [16]. More recently,
CS has made inroads into the quantum domain with compres-
sive tomography [17–19], and entanglement characterization
[20]. When used for imaging, compressive sensing is closely
related to computational imaging [21, 22].

Together, the filters and CCD implement a single-pixel
camera for the position distribution. The single-pixel camera
is the textbook example of compressive sensing and has been
extensively investigated [13, 23]. Consider the total power
Yi striking the CCD while filtering with fi, obtained by inte-
grating the ith momentum image |ψ̃i(~k)|2 over all CCD pix-
els. The CCD now acts as a single-element power meter. The
value Yi is a correlation between the position intensity |ψ(~x)|2
and the ith filter.

These correlations are concisely represented by the series
of linear equations

Y = FX. (5)

Here, F is an M × N sensing matrix whose ith row is a 1D
reshaping of the ith filter function. X is an N -dimensional
vector representing a 1D reshaping of the unknown position
distribution |ψ(~x)|2, discretized to the same resolution as the
filters.

The correlations can be used to iteratively recover X by
taking a weighted sum of the filter functions

X =
1

M

M∑
i=1

YiFi, (6)

but many measurements are required (M ≥ N ) [24]. In-
stead, given some reasonable assumptions, compressive sens-
ing dramatically reduces the requisite number of measure-
ments (M << N ).

When M << N , Eq. 5 is under-determined; there are
many possible X consistent with Y . CS posits that the cor-
rect X is the one that is sparsest (has the fewest number of
non-zero elements) in a representation where X is compress-
ible. This X is found by solving the regularized least-squares
optimization problem

min
X

µ

2
||Y − FX||22 + TV (X), (7)

where for example ||q||22 is the `2 norm (Euclidean norm) of
q and µ is a constant. The first penalty is a least-squares term
that is small when X is consistent with the correlation vector
Y . The second penalty TV (X) is the signal’s total variation,

TV (X) =
∑

adj. i,j

|Xi −Xj |, (8)

where indices i, j run over all pairs of adjacent pixels in X so
that TV (X) is just the `1 norm of X’s discrete gradient.

If a signal’s total variation is large, values of adjacent pix-
els vary wildly, indicating a noisy, unstructured signal. Con-
versely, when a signal’s total variation is small, values for ad-
jacent pixels are strongly correlated, indicating structure con-
sistent with a real image. Put more plainly, we seek the sig-
nal with the fewest edges consistent with our measurements;
this leverages compressibility in X’s gradient. Total variation
minimization has proven extremely effective for compressive
imaging; exact recovery of X is possible with M as low as a
few percent of N [25]. In addition to sub-Nyquist sampling,
CS has been shown to give a higher signal-to-noise ratio than
raster- or basis-scan [26].

We tested our technique on four objects: a double slit, a
triple slit, the character ~, and the University of Rochester
logo (Fig. 4). The object and filter masks were introduced
using computer controlled spatial light modulators, which can
change patterns at typical video speeds up to 60 Hz. The filter
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FIG. 4. Recovered position and momentum images for four ob-
jects. A double slit, triple slit, and ~ were reconstructed at N =
256 × 256 resolution from only M = 6553 filters; the university
logo used M = 32768 filters. No additional post-processing has
been performed; position images are those returned by the recon-
struction algorithm and momentum images are the recorded single
or mean CCD images.

spatial resolution was N = 256× 256 pixels. The random fil-
ter functions were rows of a randomly permuted, zero-shifted
Hadamard matrix [27]. This allows Y = FX to be efficiently
computed by a fast transform when solving Eq. 18.

The CCD was a cooled, 12 bit, 1376 × 1040 pixel sensor.
The exposure time for each CCD image was 10 ms. The av-
erage optical power incident on the CCD was of order 10 pW.
For 10 ms exposures, each CCD pixel had dark noise 50± 10
in arbitrary power units of 0 to 4096. When integrating the
CCD image to produce the correlation vector Y , this value
was subtracted. Momentum images are those recorded di-
rectly by the camera; no post-processing is performed beyond
averaging over all images.

For the double slit, triple slit, and character objects, M =
0.1N = 6553 filters were used; for the university logo,
M = 0.5N = 32768 filters were used. These correspond
to total exposure times of 65.5 sec and 327.7 sec respectively.
Note that Nyquist sampling would require N measurements;
for most objects we undersample by an order of magnitude.
The requisite M depends both on object complexity and the
chosen objective function (Eq. 18), sensing matrix, and solv-
ing algorithm. We have chosen conservatively largeM to pro-
duce high quality images. The dependence of image qual-
ity on M is extensively researched; for example see Refs.
[13, 14, 26].

The position distributions were reconstructed by solving
Eq. 18 using the TVAL3 solver [28]. Values of µ ranged
from 210 to 214. Such large µ strongly favors the least squares
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FIG. 5. Simulated Momentum MSE: The simulated momentum
mean squared errors (MSE) of the four objects used in the experiment
are given as a function of the number of random patterns M . The
shaded region encloses one standard deviation above and below the
average MSE for 100 trials. The MSE rapidly approaches a small
constant value as the second term of Eq. 4 vanishes. Even for a
single pattern, the MSE is at least of order 10−7.

penalty of Eq. 18 such that it is effectively a constraint.
In all cases, our technique recovered high fidelity position

and momentum distributions. Even momentum images for a
single filter are good approximations to the true distribution;
these are further improved by averaging.

To show the accuracy of our technique, Fig. 5 gives the
mean squared errors (MSE) of the momentum images for 100
simulations of the objects used in the experiment as a func-
tion of increasing M . Even for a single pattern, the MSE is
at least of order 10−7. Averaging over an increasing number
of patterns, the middle term of Eq. 4 vanishes and the MSE
approaches a constant. This occurs within a few hundred pat-
terns, well before the requisite M for recovering the position
image.

We have demonstrated an efficient technique for measuring
the probability distributions of complementary observables
from a single set of measurements. Beyond fundamental inter-
est, we anticipate that our approach will be useful for a wide
variety of quantum and classical sensing tasks, including con-
tinuous quantum measurement [29], high-dimensional entan-
glement characterization [20], wavefront sensing, and phase
retrieval [30]. We strongly emphasize that our technique does
not violate the uncertainty principle; at no point does a single
detection event give precise information about both position
and momentum. Instead, each detection event gives some in-
formation about both domains. Our approach economizes the
use of this information. More broadly, our system exempli-
fies a trend in sensing away from traditional strong projective
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measurements and raster scans which scale poorly to large di-
mensions. Novel techniques based on compressive sensing,
weak measurement, and other unorthodox strategies are nec-
essary to overcome these limitations.

This work was supported by AFOSR grant FA9550-13-1-
0019 and DARPA DSO InPho grant W911NF-10-1-0404.
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SUPPLEMENTAL MATERIAL

THEORY OF RANDOM, BINARY PARTIAL PROJECTIONS

Here we model partial projective measurements in position
as random, binary, pixellated filter functions fi(~x), where i
is an index for each filter function. We examine the statis-
tics of such random filter functions in transverse-position and
transverse-momentum space, and discuss their effect on the
momentum probability distribution of an object field, |ψ(~k)|2.

Fourier Transforms of Random Binary Patterns

We model the random filter functions in position space as
a sum of Dirac delta functions arranged on a regular lattice,
multiplied either by unity with probability P or zero with
probability 1− P ;

fi(~x) =
∑
`,m

a
(i)
`,mδ(x− g`, y − gm). (9)

Here we have a square lattice of N points centered at ~x =
(0, 0) with spacing g in the x and y directions. The weights
a
(i)
` take values zero or unity according to P . Taking the

Fourier transform of fi(~x), we find

fi(~k) =
1

2π

∑
`,m

a
(i)
`,me

−ig(kx`+kym). (10)

To model these filter functions in momentum, we make
the following assumptions. First, since N is large, and each
weight has probability P of being unity and is otherwise zero,
we represent fi(~k) as a sum of NP unit phasors. Therefore,
fi(~k = 0) is NP/2π.

Second, since the weights are randomly distributed, we rep-
resent fi(~k 6= 0) as a sum ofNP random phasors. This sum is
well described by a two-dimensional, complex random walk
with unit step size [10, 11]. Therefore, nonzero frequency
components have zero-mean and average square-magnitude
NP/(2π)2. When NP is large, it follows from the central
limit theorem that the non-zero frequency components are de-
scribed by a circularly symmetric, complex Gaussian distribu-
tion with real and imaginary widths σ. The momentum ampli-
tude distribution of a typical filter is a sharply peaked function
centered at the origin.

mailto:ghowland@pas.rochester.edu
http://dx.doi.org/ 10.1103/PhysRevLett.105.150401
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fi(~k) can now be written as a weighted sum of a Dirac delta
function δ(~k) and a noise function φi(~k) whose phases vary
uniformly;

fi(~k) ≈ αδ(~k) + βφi(~k), (11)

where α and β are parameters we estimate from the pattern-
averaged values of fi(~k) and |fi(~k)|2. Values for φi(~k) follow
a random, complex Gaussian white noise distribution, with
real and imaginary parts of zero mean and σ = 1/

√
2.

Knowing fi(~k = 0) = NP/2π gives α = NP/2π.
Knowing that 〈fi(~k 6= 0)〉 = 0, and that 〈|fi(~k 6= 0)|2〉 =
NP/(2π)2, we have that β =

√
NP/2π, where 〈·〉 is an av-

erage over many filter functions. Therefore, a viable model
for fi(~k) is

fi(~k) ≈ NP

2π
δ(~k) +

√
NP

2π
φi(~k). (12)

As mentioned previously, our model assumes that fi(~k) is a
sum of NP random phasors. However, since we are sampling
these phasors without replacement, 〈|fi(~k 6= 0)|2〉 is actually
less than NP/(2π)2; NP/(2π)2 is a conservative estimate
which will over-estimate the perturbation to |ψ(~k)|2 due to
fi(~k).

Effect of a random pattern on momentum distribution

Let ψ(~x) be the unperturbed position amplitude of the field.
After interacting with filter fi(~x), the perturbed position am-
plitude is ψ̃(~x) = fi(~x)ψ(~x). Therefore, the perturbed mo-
mentum amplitude is ψ̃(~k) = ψ(~k) ∗ fi(~k), where ∗ denotes
convolution.

Using Eq. (12), we find

ψ̃(~k) =
NP

2π
(ψ(~k) ∗ δ(~k)) +

√
NP

2π
(ψ(~k) ∗ φi(~k)). (13)

Since the first term is a convolution with a delta function, we
find

ψ̃(~k) =
NP

2π
ψ(~k) +

√
NP

2π
(ψ(~k) ∗ φi(~k)). (14)

Taking the modulus square of ψ̃(~k) gives us the perturbed mo-
mentum distribution

|ψ̃(~k)|2 = N
[
|ψ(~k)|2 +

1

NP
|(ψ(~k) ∗ φi(~k))|2+

+ 2
1√
NP

Re[ψ∗(~k)(ψ(~k) ∗ φi(~k))]

]
, (15)

where N is a normalization constant.
To see how |ψ̃(~k)|2 compares to the unperturbed probability

distribution |ψ(~k)|2, it suffices to know that |(ψ(~k) ∗ φi(~k))|2
and [ψ∗(~k)(ψ(~k)∗φi(~k))] are both of the order unity. AsNP

becomes large, 1√
NP

becomes small, and |ψ̃(~k)|2 approaches

|ψ(~k)|2.
More importantly, we recover |ψ(~k)|2 (up to a uniform con-

stant) from averaging |ψ̃(~k)|2 over a large number M of dif-
ferent filter functions fi. Since the mean value of φi(~k) is
zero, this averaging results in an approximation to |ψ(~k)|2 as
an incoherent sum of the two terms,

〈|ψ̃(~k)|2〉M ≈ N ′
[
|ψ(~k)|2 +

1

NP
〈|(ψ(~k) ∗ φi(~k))|2〉M

]
,

(16)
where 〈·〉M is an average over M filter functions.

COMPRESSIVE SENSING

Compressive sensing (CS) is a measurement technique that
uses optimization to obtain a N -dimensional signal X from
M << N linear projections (linear measurements) [12, 25].
CS exploits prior-knowledge about the signal’s compressibil-
ity to require fewer measurements than the Nyquist limit. The
measurement process is

Y = FX + Γ, (17)

where Y is an M -dimensional vector of measurements, F is
an M ×N sensing matrix, and Γ is an M -dimensional noise
vector. Each measured value Yi is therefore the inner-product
of X with sensing vector Fi, where i is an index over rows of
F .

Because M << N , Y does not uniquely specify X . CS
proposes that the correct X is the one which is most com-
pressible by a method expected to compress it. Most com-
monly, one must know a basis or transformation in which X is
expected to be sparse (have few nonzero coefficients). For im-
ages, typical sparse representations include discrete cosines,
various wavelets, and the discrete gradient [14].

This correct X is found by minimizing the objective func-
tion

min
X

µ

2
||Y − FX||22 + g(X), (18)

where for example ||Q||22 is the `2 (Euclidean) norm of Q
and µ is a scalar constant. The first penalty is a least-squares
penalty; it ensures the recovered X is consistent with the mea-
surements. The second penalty g(X) is a term which gets
smaller the more compressible X is. Typical g(X) include
the `1 norm of ΦX

g(X) = ||ΦX||1 =

M∑
i=1

|ΦX|, (19)

where Φ is a transform to a sparse basis (wavelets, cosines),
and X’s total variation

g(X) = TV (X) =
∑

adj. i,j

|Xi −Xj |, (20)
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where i and j run over pairs of adjacent pixels in X . This
is the `1 norm of X’s discrete gradient [31]. The `1 norm is
a useful measure of sparsity because it makes Eq. 18 convex
and therefore easy to solve.

To minimize the required number of measurements M ,
the sensing vectors Fi should be mutually unbiased with the
sparse transform; this gives the counter-intuitive result that
random sensing vectors are extremely effective in almost all
cases. For a K-sparse signal (K nonzero entries in the sparse
representation), CS can give an exact reconstruction with only
M ∝ K log(N/K) measurements [32]. In practice, M can
be as small as a few percent of N .

Single-Pixel Camera

The most illustrative example of compressive sensing is the
Rice single-pixel camera [13]. The camera is composed of

a single pixel detector, a digital micro-mirror device (DMD),
and an imaging lens. A DMD is a mirror array composed of
thousands of mirrors. Each mirror acts as a reflective pixel
with values on and off, reflecting into and away from the
single-pixel detector respectively. The lens images an object
onto the DMD array while the DMD displays a random pat-
tern corresponding to a row in the sensing matrix F . The
single-pixel detector records the intensity of light as a projec-
tion of the random pattern with the object for all M patterns
resulting in a Y vector of length M . The sensing matrix F
and the measurement vector Y are fed into an algorithm to
minimize equation (18).
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