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Abstract: Inspired by the successful synthesis of several allotropes, boron sheets have 

been one of the hottest spot areas of focus in various fields. Here, we study phonon 

transport in three types of boron nanoribbons with zigzag and armchair edges by using a 

non-equilibrium Green’s function combined with first principles methods. Diverse 

transport properties are found in the nanoribbons. At the room temperature, their highest 

thermal conductance can be comparable with that of graphene, while the lowest thermal 

conductance is less than half of graphene's. The three boron sheets exhibit different 

anisotropic transport characteristics. Two of these sheets have stronger phonon transport 

abilities along the zigzag edges than the armchair edges, while in the case of the third, the 

results are reversed. With the analysis of phonon dispersion, bonding charge density, and 

simplified models of atomic chains, the mechanisms of the diverse phonon properties are 

discussed. Because all boron allotropes consists of hexagonal and triangular rings, many 

hybrid patterns can be constructed naturally without doping, adsorption, and defects. Our 

results are useful in materials and devices design using boron sheets for thermal 

management. 
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Thermal management is critical in electronics. Graphene is considered to be an 

outstanding thermal material because of its super high thermal conductivity.1-4 In thermal 

devices based on graphene, phonon transport needs to be modulated to obtain different 

functions and applications, such as phonon rectifiers,5,6 phonon filters,7 phonon 

transistors8,9, and thermoelectric devices.10,11 Heterostructures and periodic patterns are 

frequently used modulation structures, which can be obtained by adsorption,12,13 

doping,14 and defects.15,16 For example, periodic linear or rectangular patterns can be 

created by regular hydrogen adsorption;10,12 antidot periodic patterns can be formed by 

vacancy defects.16,17 It has been proven that the periodic patterns indeed tune phonon 

transport effectively.11-13,16 However, to obtain the different patterns, the lattice of 

graphene must be destroyed and accurate experimental conditions are required.18,19 

Boron is another element possessing rich chemical properties in addition to 

carbon.20-22 Many two-dimensional (2D) single layer boron allotropes have been 

predicted theoretically, such as α-, β-, ɡ-boron.21-23 In these boron sheets, boron exhibits 

more diverse bonds than carbon. It is known that, in the 2D carbon sheets, one carbon 

atom may have 2, 3, and 4 bonds with its nearest neighboring atoms, while one boron 

atom can have 3 to 7 bonds connected with other boron atoms.21,24,25 Because boron 

atoms appear to form triangular or hexagonal rings, almost all boron allotropes have close 

lattice geometries, which can be considered as inserting atoms to parts of hexagonal rings 

in a honeycomb lattice or removing parts of atoms from a triangular lattice.21,26,27 A 

parameter, the so-called hexagonal vacancy density 𝜂𝜂,21,23 is used to describe the ratio of 

hexagon holes to the number of atomic sites in the original triangular lattice within one 

unit cell. Boron allotropes with different 𝜂𝜂 show different electronic properties, such as 

high anisotropy21,28 and superconductivity,29,30 which have attracted much attention. More 

inspiringly, several boron allotropes have been synthesized successfully.28,31 Feng et al. 

obtained 𝛽𝛽12 and 𝜒𝜒3 using molecular beam epitaxy on a Ag (111) surface.31 A triangular 

boron sheet was reported by Andrew et al. in their experiment.28 This further suggests 

boron materials to be one of the hottest areas of research in various fields. However as far 

as we know, phonon transport in boron sheets has not been reported to date. An 

intriguing question is: what is the phonon transport ability of these 2D boron sheets? 

Moreover, boron allotropes consisting of triangular or hexagonal rings can form various 
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patterns without destroying their pristine lattices, and thus provide rich hybrid structures 

to modulate thermal transport.  

In this work, we study phonon transport in boron nanoribbons curt from three types 

of boron sheets, as shown in Fig. 1, by using a non-equilibrium Green’s function (NEGF) 

combined with first principles methods.32-35 The three boron sheets show different 

phonon transports along zigzag and armchair directions, and the transport mechanisms 

are explained by phonon dispersion, bonding charge densities, and simplified models of 

atomic chains. Based on the three boron sheets, various hybrid boron structures with 

different patterns are proposed, and their potential applications are also suggested. 

Model and Simulation methods 

Three types of boron sheets are considered, as show in Figs. 1(b)-1(d), named boron 

1, 2, and 3 respectively. Boron 1and 2 have been synthesized successfully,31 while boron 

3 is a boron allotrope that is highly stable even if it has not been reported to have been 

experimentally synthesized.23,36 All of them can be viewed as boron structures by 

periodically inserting atoms to honeycomb or periodically removing atoms from 

triangular lattices. Different insertion or removal methods lead to distinct patterns and 

atomic densities of boron allotropes. To study the phonon transport properties along 

different edges and directions, 2D sheets are always cut into quasi-one-dimensional 

nanoribbons. For example, graphene has two typical nanorbbons: zigzag-edged 

nanoribbons (G-ZNR) and armchair-edged nanoribbons (G-ANR). Similarly, boron 1/2/3 

can also be cut into zigzag- and armchair-edged nanoribbons, named as B1/2/3-ZNR and 

B1/2/3-ANR, respectively. The two types of boron nanoribbons are denoted by solid 

atoms in Figs. 1(b-d), whose widths are labeled as WZ and WA, respectively. 

Phonon transport properties of the boron nanoribbons can be calculated by a NEGF 

method combined with first principles calculations. Each nanoribbon can be divided into 

three parts: left lead, right lead, and the center scattering region. According to the NEGF 

scheme, the retarded Green’s function of the nanoribbon is expressed as33,34,37-39 

𝐺𝐺𝑟𝑟 = �(𝜔𝜔 + 𝑖𝑖0+)2𝐼𝐼 − 𝐾𝐾𝐶𝐶 −� −�  
𝑟𝑟

𝑅𝑅

𝑟𝑟

𝐿𝐿
�
−1

,                                 (1) 

where 𝜔𝜔 is the frequency of phonons, KC is the mass-weighted force constants matrix of 

the center region, and ∑ = 𝑉𝑉𝐶𝐶𝛽𝛽𝑟𝑟
𝛽𝛽 g𝛽𝛽

𝑟𝑟 𝑉𝑉𝛽𝛽𝛽𝛽  (β = L, R, corresponding to the left and right) 
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denotes the self-energy of the (left or right) lead β , in which 𝑉𝑉𝐶𝐶𝛽𝛽 = (𝑉𝑉𝛽𝛽𝛽𝛽 )𝑇𝑇  is the 

coupling matrix of the lead β to the center region and g𝛽𝛽
𝑟𝑟  is the surface Green's function 

of the lead. Once the retarded Green’s function 𝐺𝐺𝑟𝑟 is obtained, we can calculate 

transmission coefficient 𝑇𝑇[𝜔𝜔] and then the thermal conductance 𝜅𝜅 of the nanoribbon: 

𝑇𝑇[𝜔𝜔] = 𝑇𝑇𝑇𝑇{𝐺𝐺𝑟𝑟𝛤𝛤𝐿𝐿𝐺𝐺𝑎𝑎𝛤𝛤𝑅𝑅},                                                (2) 

𝜅𝜅(𝑇𝑇) = ℏ
2π∫ 𝑇𝑇[𝜔𝜔]𝜔𝜔 𝜕𝜕𝜕𝜕 (𝜔𝜔)

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑∞

0 ,                                        (3) 

where 𝛤𝛤𝛽𝛽 = 𝑖𝑖�∑ −∑  𝑎𝑎
𝛽𝛽

𝑟𝑟
𝛽𝛽 � = −2𝐼𝐼𝐼𝐼𝑉𝑉𝛽𝛽𝛽𝛽g𝛽𝛽

𝑟𝑟 𝑉𝑉𝛽𝛽𝛽𝛽  is the coupling function of the 𝛽𝛽 lead, and  

𝑓𝑓(𝜔𝜔) = �𝑒𝑒𝑒𝑒𝑒𝑒 � ℏ𝜔𝜔
𝜅𝜅𝐵𝐵𝑇𝑇

� − 1�
−1

 is the Bose-Einstein distribution function for heat carriers at 

the leads. In addition, the phonon spectrum of the nanoribbons can be obtained from the 

generalized eigenvalue method: 

�𝜔𝜔
2𝐼𝐼 − 𝐾𝐾11 𝐼𝐼
𝐾𝐾10 0� �

𝜀𝜀
𝜉𝜉� = 𝜆𝜆 �𝐾𝐾01 0

0 𝐼𝐼� �
𝜀𝜀
𝜉𝜉�,                               (4) 

After diagonalizing this generalized eigenvalue matrix, one can get the eigenvalues 𝜆𝜆. By 

setting the traveling waves eigenvalue to be (𝜆𝜆 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 ), the wave number 𝑞𝑞 for a special 

𝜔𝜔 is found. And then, the phonon spectrum of the nanoribbons is obtained. 

The force constant KC
 in Eq. (1) can be calculated from first principles method based 

on the following form:40,41 

𝐾𝐾𝑥𝑥𝑥𝑥
𝑖𝑖𝑖𝑖 =

𝜕𝜕2𝑢𝑢𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

,                                                        (5) 

where 𝐾𝐾𝑥𝑥𝑥𝑥
𝑖𝑖𝑖𝑖  is the force constant between the ith and jth neighboring atoms in the x and y 

directions, and 𝑢𝑢𝑖𝑖𝑖𝑖  is the potential energy between the ith and jth atoms, respectively. 

That is, the force constant 𝐾𝐾𝑥𝑥𝑥𝑥
𝑖𝑖𝑖𝑖  is calculated from the second derivative of potential 

energy with small displacements in𝜕𝜕𝜕𝜕  and 𝜕𝜕𝜕𝜕 . In order to accurately describe the 

interactions between atoms, the considered force constants are up to the third neighboring 

atom in each direction. 

Results and Discussions 

In Figs. 2(a) and 2(b), the thermal conductance 𝜅𝜅 for ZNRs and ANRs of the three 

types of boron sheets as a function of temperature T are shown (WZ/A ≈ 5.0 nm), 
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respectively. The 𝜅𝜅 for G-ZNR and G-ANR are also shown for comparison. All the 𝜅𝜅 

curves increase with T because the phonon modes are gradually excited by high 

temperatures. Both G-ANR and G-ZNR have higher 𝜅𝜅  values than those of boron 

nanoribbons. The three types of boron sheets exhibit diverse phonon transport abilities. 

For the ZNRs, the 𝜅𝜅 of B1-ZNR is the highest, while that of B3-ZNR is the lowest, as 

shown in Fig. 2(a). Moreover, the former is nearly two times of the latter. For the ANRs, 

the 𝜅𝜅 values of the three boron sheets have little difference (see Fig. 2(b)). This implies 

that the three boron sheets possess a completely different transport anisotropy. 

Previous studies reported that 2D materials have different dependence relationships 

between 𝜅𝜅 and T.37,42-44 For example, many 2D materials exhibit T and T2 dependences of 

𝜅𝜅,42,43 while a T1.5 dependence has been found in graphene and BN.37,42,44 We fit the 𝜅𝜅 

curves of boron nanoribbons in Figs. 2(a) and 2(b) by the following formula: 

𝜅𝜅(W,T) =(𝑎𝑎1 + 𝑏𝑏1W)𝑇𝑇 + (𝑎𝑎2 + 𝑏𝑏2W)𝑇𝑇1.5 + (𝑎𝑎3 + 𝑏𝑏3W)𝑇𝑇2,                   (6) 

where 𝑎𝑎𝑖𝑖  and 𝑏𝑏𝑖𝑖  are parameters. The optimal fitting parameters for the boron nanoribbons 

are given in Table 1. It is found that, similar to graphene, the T1.5 term in Eq. (6) has an 

important contribution to 𝜅𝜅. The detailed analysis of the contributions of T, T1.5, and T2 is 

given in the Supplementary Information (SI). 

Figures 2(c) and 2(d) present the dependences of 𝜅𝜅  on the width WZ/A of boron 

ZNRs and ANRs (T = 300K), respectively. Because the number of phonon channels 

depends linearly on the widths of the nanoribbons, all the 𝜅𝜅 values vary linearly as WZ/A 

increases. However, the slopes of the lines are different. B1-ZNR has the largest slope 

that is close to graphene, indicating that its 𝜅𝜅 values are close to graphene's at the room 

temperature. The slope of the B3-ZNR is the smallest, and thus the difference in 𝜅𝜅 

between B3-ZNR and B1-ZNR increases with the width. However, the difference in 𝜅𝜅 

between boron ANRs is very small with an increase in width. Therefore, the anisotropies 

of 𝜅𝜅 in the boron sheets will increase with the widths. 

To directly compare the anisotropies of intrinsic transport properties of boron 

nanoribbons, the scaled thermal conductivities (𝜎𝜎/𝐿𝐿) for both ZNRs and ANRs at 300K 

are shown in Fig. 3. Thermal conductivity 𝜎𝜎  is calculated by 𝜎𝜎 = 𝜅𝜅/S × 𝐿𝐿 , where 

S = W𝑍𝑍/𝐴𝐴× h is the cross sectional area (h = 0.32 nm is the thickness of boron sheets)45 
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and 𝐿𝐿  is the mean free path of phonons. Because 𝐿𝐿  has not been reported, here we 

calculate the 𝐿𝐿  scaled thermal conductivity. One can find from Fig. 3 that, with an 

increase in width, the thermal conductivities drop at first and then approach converged 

values. The different transport abilities of the ZNRs are shown again (see Fig. 3(a)), 

while the difference between the ANRs is small (see Fig. 3(b)). We define 𝜀𝜀 = 1 −

(𝜎𝜎/𝐿𝐿)𝐴𝐴𝐴𝐴𝐴𝐴 (𝜎𝜎/𝐿𝐿)𝑍𝑍𝑍𝑍𝑍𝑍⁄  to indentify the anisotropic degree of phonon transport in different 

boron sheets. Then, 𝜀𝜀 =39.1%, 47.2%, and -14.4% for boron 1, 2, and 3, respectively. 

This indicates that boron 1 and 2 possess very strong transport anisotropies (𝜀𝜀 ≈ 20% for 

graphene).46 The thermal conductivities of the ZNRs are much higher than those of the 

ANRs. Interestingly, the anisotropy of boron 3 is a negative value, i.e., thermal 

conductivities of ANRs are higher than those of ZNRs. The different transport 

characteristics on one hand demonstrate wide ranges of thermal conductivities of boron 

sheets, on the other hand show diverse transport phenomena. 

Phonon transport properties are related to the phonon dispersions. To explain the 

difference of phonon transport in the boron sheets, in Fig. 4, the phonon spectra of the 

boron nanoribbons and also graphene nanoribbons are given. The comparison of the 

phonon spectra reveals that the frequency ranges and the acoustic phonon velocities 

determine transport abilities. For example, the phonon dispersions of B1-ZNR are much 

closer to those of G-ZNR, and thus it has the highest thermal conductivity in all boron 

nanoribbons. While the lower thermal conductivity of B3-ZNR is because of its small 

group velocities of both optical and acoustic phonons. The different anisotropies of boron 

sheets are also reflected by the spectra. The group velocities of acoustic phonons in the 

B1- and B2-ZNRs are obviously faster than those in the ANRs, while the case of boron 3 

is opposite. Therefore, the anisotropies of the former two are opposite to that of the third 

one. In addition, it is noted that there exist quadratic acoustic branches in the spectra, 

which are responsible for the T1.5 dependence in Eq. (6).42 

The different phonon transport properties in the boron sheets can be understood 

from their bonding charge densities (BCD),47 which are the charge density difference 

between the valence charge density of the system and the superposition of the valence 

charge density of the neutral constituent atoms. Figures 5(a-d) show BCD contours of 

ground state graphene and boron 1, 2, and 3, respectively. They directly reflect the 
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strength of interactions between atoms. In Fig. 5(a), electrons are evenly distributed 

between the carbon atoms and thus form a honeycomb geometry, which has been 

explained as an intrinsic reason of the high conductivity of graphene.42,44 The BCD 

contour of boron 1 is somewhat similar to that of graphene except the interactions are 

weaker, as shown in Fig. 5(b). Therefore, its phonon transport properties are mostly close 

to those of graphene. Seen from Figs. 5(c) and 5(d), boron 2 and 3 have completely 

different contours. In boron 2, the BCD contour exhibits strong directionality: along the 

zigzag direction the contour forms channels while the channels are truncated along the 

armchair direction. This is the cause for the high transport anisotropy. In boron 3, the 

contour forms channels along both zigzag and armchair directions. However, the 

channels along the armchair direction are linear, while those along zigzag direction are 

zigzag. The former are more advantageous to transport, and thus the thermal conductivity 

along the armchair direction is higher than that along the zigzag direction. Consequently, 

boron 3 has inverse anisotropy compared to boron 1 and 2.Meanwhile, the contour of 

boron 3 implies that the interactions between atoms are weaker, which results in low 

acoustic phonon velocities and thermal conductivity. 

To further understand the relations between pattern geometries and phonon transport 

properties, we simplify the boron nanoribbons to single atomic chains or two coupled 

atomic chains. For comparison, the simplified models of graphene nanoribbons are first 

given in the inset of Fig. 6. Both G-ZNR and G-ANR can be simplified to monatomic 

chains, because all hexagonal rings are equivalent. However, the hexagonal rings in the 

boron nanoribbons are not equivalent any more, and thus complicated atomic chains are 

needed to describe their properties. For example, in born 1, its ZNR is simplified to a 

monatomic chain whereas AGR is simplified to a diatomic chain, because the hexagonal 

rings with and without inserting atoms alternately appear along the armchair direction. 

The case of boron 2 is the same to boron 1. As to the boron 3, both ZNR and ANR are 

simplified to two coupled diatomic chains because of their relatively complicated 

periodic geometries. On the basis of atomic chains of graphene, the atomic masses m and 

lattice force constants K in the boron atomic chains are figured out (see the insets in Fig. 

6). Figure 6 shows 𝜅𝜅 values of the corresponding simplified models. One can find that the 

simplified models reproduce the phonon transport characteristics of the boron 
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nanoribbons. This not only explains the origination of diverse transport properties in the 

three types of boron sheets, but also provides an effective method to predict phonon 

properties of boron allotropes with other patterns. 

As mentioned above, with the character that boron allotropes consisting of triangular 

or hexagonal rings can form various patterns without destroying their pristine lattices. In 

Fig. 7, some patterns based on boron 1, 2 and 3 are proposed and several potential 

applications are suggested. Figures 7(a-c) present perpendicular, parallel and array 

patterns constructed by boron 1 and 3, and Fig. 7(d) presents a hybrid pattern constructed 

by three types of boron nanoribbons. Because the transport properties of boron 1, 2 and 3 

are different, these patterns will modulate thermal transport in different ways, and thus 

various functions and related devices are expected to be obtained. In Fig. 7(e), a 

triangular heterostructure is constructed by boron 1 and 3.Itcan be served as a phonon 

rectifier, because the big asymmetry of geometry and the difference of phonon properties 

between two sides.  Figure 7(f) shows a three-terminal T-shaped junction consisting of 

boron 1, 2 and 3. It may be a potential phonon transistor where the boron 1 and 2 are two 

leads while the boron 3 is served as a gate. Besides boron 1, 2 and 3, there are many other 

boron allotropes consisting of triangular or hexagonal rings.21,23,24 Therefore, many 

hybrid patterns can be constructed naturally without doping, adsorption and defects, to 

fulfill the demands of thermal management.  

In summary, we have studied phonon transport in three types of boron sheets with 

different edges, using a combined method of NEGF and first principles calculations. The 

boron sheets exhibit diverse phonon transport abilities and different anisotropies. The 

highest thermal conductivity is comparable to that of graphene, while the lowest thermal 

conductivity is less than half of graphene's. Moreover, boron 1 and 2 exhibit stronger 

transport abilities along the zigzag edges than the armchair edges, while the case of boron 

3 is opposite. The phonon dispersions and BCD contours reveal the originations of the 

transport properties. The boron nanoribbons are simplified to atomic chains to further 

explore the difference between the transport properties, which provides an effective 

method to predict phonon transport of other boron allotropes. Hybrid patterns based on 

the boron sheets are constructed. All the hybrid structures have natural interfaces without 

doping, adsorption and defects. Some potential applications of hybrid boron sheets in 
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thermal devices, such as rectifier and transistors, are proposed. With the analytic formula 

of the thermal conductivity with respect to the width and temperature of these three base 

units, the thermal conductance of the hybrid structures are ready to predict. Our study is 

useful in material and devices design for thermal management. 

Acknowledgments 

This work was supported by the National Natural Science Foundation of China (Nos. 

51376005 and 11474243). 

Notes 

The authors declare no competing financial interest. 

References  

(1) Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. 

N., Nano Lett 2008, 8, 902-907. 

(2) Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E. P.; Nika, D. L.; Balandin, A. A.; 

Bao, W.; Miao, F.; Lau, C. N., Appl Phys Lett 2008, 92, 151911. 

(3) Balandin, A. A., Nat Mater 2011, 10, 569-581. 

(4) Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H., 

Small 2011, 7, 1876-1902. 

(5) Hu, J.; Ruan, X.; Chen, Y. P., Nano Lett 2009, 9, 2730-2735. 

(6) Ouyang, T.; Chen, Y.; Xie, Y.; Wei, X. L.; Yang, K.; Yang, P.; Zhong, J., Phys Rev B 

2010, 82, 245403. 

(7) Kaike, Y.; Yuanping, C.; Yuee, X.; Tao, O.; Jianxin, Z., Euro Phys Lett 2010, 91, 

46006. 

(8) Li, B.; Wang, L.; Casati, G., Appl Phys Lett 2006, 88, 143501. 

(9) Pop, E.; Varshney, V.; Roy, A. K., MRS Bulletin 2012, 37, 1273-1281. 

(10) Kim, J. Y.; Grossman, J. C., Nano Lett 2015, 15, 2830-2835. 

(11) Yang, K.; Chen, Y.; D'Agosta, R.; Xie, Y.; Zhong, J.; Rubio, A., Phys Rev B 2012, 

86, 045425. 

(12) Pei, Q.-X.; Sha, Z.-D.; Zhang, Y.-W., Carbon 2011, 49, 4752-4759. 

(13) Zhang, Z.; Xie, Y.; Peng, Q.; Chen, Y., Solid State Commun 2015, 213-214, 31-36. 

(14) Chen, S.; Wu, Q.; Mishra, C.; Kang, J.; Zhang, H.; Cho, K.; Cai, W.; Balandin, A. 

A.; Ruoff, R. S., Nat Mater 2012, 11, 203-207. 

(15) Feng, T.; Ruan, X.; Ye, Z.; Cao, B., Phys Rev B 2015, 91, 224301. 

(16) Ng, T. Y.; Yeo, J. J.; Liu, Z. S., Carbon 2012, 50, 4887-4893. 

(17) Fthenakis, Z. G.; Zhu, Z.; Tománek, D., Phys Rev B 2014, 89, 125421. 



10 

 

(18) Liu, Z.; Ma, L.; Shi, G.; Zhou, W.; Gong, Y.; Lei, S.; Yang, X.; Zhang, J.; Yu, J.; 

Hackenberg, K. P.; Babakhani, A.; Idrobo, J. C.; Vajtai, R.; Lou, J.; Ajayan, P. M., 

Nat Nanotechnol 2013, 8, 119-124. 

(19) Sessi, P.; Guest, J. R.; Bode, M.; Guisinger, N. P., Nano Lett 2009, 9, 4343-4347. 

(20) Albert, B.; Hillebrecht, H., Angew Chem Int Ed 2009, 48, 8640-8668. 

(21) Wu, X.; Dai, J.; Zhao, Y.; Zhuo, Z.; Yang, J.; Zeng, X. C., ACS Nano 2012, 6, 7443-

7453. 

(22) Tang, H.; Ismail-Beigi, S., Phys Rev Lett 2007, 99, 115501. 

(23) Tang, H.; Ismail-Beigi, S., Phys Rev B 2010, 82, 115412. 

(24) Liu, Y.; Penev, E. S.; Yakobson, B. I., Angew Chem Int Ed Engl 2013, 52, 3156-

3159. 

(25) Özdoğan, C.; Mukhopadhyay, S.; Hayami, W.; Güvenç, Z. B.; Pandey, R.; Boustani, 

I., J Chem Phys C 2010, 114, 4362-4375. 

(26) Liu, H.; Gao, J.; Zhao, J., Sci Rep 2013, 3, 3238. 

(27) Lau, K. C.; Pandey, R., J Phys Chem B 2008, 112, 10217-10220. 

(28) Mannix, A. J.; Zhou, X.-F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, 

X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. 

R.; Hersam, M. C.; Guisinger, N. P., Science 2015, 350, 1513-1516. 

(29) Penev, E. S.; Kutana, A.; Yakobson, B. I., Nano Lett 2016, 16, 2522-2526. 

(30) Zhao, Y.; Zeng, S.; Ni, J., Phys Rev B 2016, 93, 014502. 

(31) Feng, B.; Zhang, J.; Zhong, Q.; Li, W.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; 

Wu, K., Nat Chem 2016, doi:10.1038/nchem.2491. 

(32) Blase, X.; Charlier, J.-C.; De Vita, A.; Car, R., Appl Phys Lett 1997, 70, 197-199. 

(33) Mingo, N., Phys Rev B 2006, 74, 125402. 

(34) Yamamoto, T.; Watanabe, K., Phys Rev Lett 2006, 96, 255503. 

(35) Ouyang, T.; Hu, M., Nanotechnol 2014, 25, 245401. 

(36) Peng, Q.; Han, L.; Wen, X.; Liu, S.; Chen, Z.; Lian, J.; De, S., Phys Chem Chem 

Phys 2015, 17, 2160-2168. 

(37) Ouyang, T.; Chen, Y.; Xie, Y.; Yang, K.; Bao, Z.; Zhong, J., Nanotechnol 2010, 21, 

245701. 

(38) Ouyang, T.; Chen, Y.; Xie, Y.; Stocks, G. M.; Zhong, J., Appl Phys Lett 2011, 99, 

233101. 

(39) Zhang, Z.; Xie, Y.; Peng, Q.; Chen, Y., Sci Rep 2016, 6, 21639. 

(40) Kresse, G.; Furthmüller, J., Comput Mater Sci 1996, 6, 15-50. 

(41) Togo, A.; Oba, F.; Tanaka, I., Phys Rev B 2008, 78, 134106. 

(42) Mingo, N.; Broido, D. A., Phys Rev Lett 2005, 95, 096105. 

(43) Hong, Y.; Zhang, J.; Huang, X.; Zeng, X. C., Nanoscale 2015, 7, 18716-18724. 

(44) Jiang, J.-W.; Wang, J.-S.; Li, B., Phys Rev B 2009, 79, 205418. 

(45) Liu, F.; Shen, C.; Su, Z.; Ding, X.; Deng, S.; Chen, J.; Xu, N.; Gao, H., J Mater 

Chem 2010, 20, 2197-2205. 

(46) Xu, Y.; Chen, X.; Gu, B.-L.; Duan, W., Appl Phys Lett 2009, 95, 233116. 



11 

 

(47) Ouyang, T.; Hu, M., Phys Rev B 2015, 92, 235204. 

 

Figure Captions: 

Figure 1. Atomic structures of graphene and three types of boron sheets: graphene (a), 

boron 1 (b), boron 2 (c), and boron 3 (d). The solid atoms between the red and blue lines 

represent ZNRs and ANRs, respectively, whose widths are labeled as WZ and WA. The 

dark green atoms in (b), (c), and (d) represent the inserting atoms in the honeycomb 

structure. 

Figure 2. Thermal conductance𝜅𝜅 of (a) G-ZNR, B1-ZNR, B2-ZNR, and B3-ZNR, and (b) 

G-ANR, B1-ANR, B2-ANR, and B3-ANR as a function of temperature at WZ/A ≈ 5.0 nm, 

respectively. Thermal conductance 𝜅𝜅 of (c) G-ZNR, B1-ZNR, B2-ZNR, and B3-ZNR, 

and (d) G-ANR, B1-ANR, B2-ANR, and B3-ANR as a function of widths WZ/A at T = 

300K, respectively. 

Figure 3. (a) Scaled thermal conductivities 𝜎𝜎/𝐿𝐿 of boron ZNRs as a function of WZ at T = 

300K. (b) Scaled thermal conductivities 𝜎𝜎/𝐿𝐿 of boron ANRs as a function of WA at T = 

300K. The inserted blank dots represent the corresponding values of graphene 

nanoribbons. 

Figure 4. Phonon spectrums of (a) G-ZNR and G-ANR, (b) B1-ZNRand B1-ANR, (c) 

B2-ZNR and B2-ANR, and (d) B3-ZNR and B3-ANR, respectively. 

Figure 5. BCD contours for (a) graphene, (b) boron 1, (c) boron 2, and (d) boron 3, 

respectively. Black circles represent the positions of atoms and black lines represent 

strong bonds. 

Figure 6. Normalized 𝜅𝜅 of simplified models of atomic chains corresponding to graphene 

and boron nanoribbons. The inset figures are simplified models of atomic chains where 

the parameters of mass m and force constant K are shown. 

Figure 7. Atomic structures of hybrid boron patterns. (a) Perpendicular pattern, (b) 

parallel pattern, and (c) array pattern consisting of boron 1 and 3. (d) Multi-Perpendicular 

pattern consisting of boron 1, 2, and 3. (e) A phonon rectifier with triangular shape based 

on boron 1 and 3. (f) A three-terminal phonon transistor based on boron 1, 2, and 3. 

 

Table 1. The values of fitting parameters 𝑎𝑎𝑖𝑖  and 𝑏𝑏𝑖𝑖  (i =1, 2, 3) in Eq. (6). 
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Figure 2. Thermal conductance 𝜅𝜅 of (a) G-ZNR, B1-ZNR, B2-ZNR, and B3-ZNR, and (b) 

G-ANR, B1-ANR, B2-ANR, and B3-ANR as a function of temperature at WZ/A ≈ 5.0 nm, 

respectively. Thermal conductance 𝜅𝜅 of (c) G-ZNR, B1-ZNR, B2-ZNR, and B3-ZNR, 

and (d) G-ANR, B1-ANR, B2-ANR, and B3-ANR as a function of widths WZ/A at T = 

300K, respectively. 
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Figure 3. (a) Scaled thermal conductivities 𝜎𝜎/𝐿𝐿 of boron ZNRs as a function of WZ at T = 

300K. (b) Scaled thermal conductivities 𝜎𝜎/𝐿𝐿 of boron ANRs as a function of WA at T = 

300K. The inserted blank dots represent the corresponding values of graphene 

nanoribbons. 
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Figure 4. Phonon spectrums of (a) G-ZNR and G-ANR, (b) B1-ZNRand B1-ANR, (c) 

B2-ZNR and B2-ANR, and (d) B3-ZNR and B3-ANR, respectively. 
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Figure 5. BCD contours for (a) graphene, (b) boron 1, (c) boron 2, and (d) boron 3, 

respectively. Black circles represent the positions of atoms and black lines represent 

strong bonds. 
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Figure 6. Normalized 𝜅𝜅 of simplified models of atomic chains corresponding to graphene 

and boron nanoribbons. The inset figures are simplified models of atomic chains where 

the parameters of mass m and force constant K are shown. 
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Figure 7. Atomic structures of hybrid boron patterns. (a) Perpendicular pattern, (b) 

parallel pattern, and (c) array pattern consisting of boron 1 and 3. (d) Multi-Perpendicular 

pattern consisting of boron 1, 2, and 3. (e) A phonon rectifier with triangular shape based 

on boron 1 and 3. (f) A three-terminal phonon transistor based on boron 1, 2, and 3. 
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Table 1. The values of fitting parameters 𝑎𝑎𝑖𝑖  and 𝑏𝑏𝑖𝑖  (i =1, 2, 3) in Eq. (6). 
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Figure S1. Thermal conductance 𝜅𝜅 of (a) B1-ZNR, B2-ZNR and B3-ZNR, and (b) B1-ANR, 

B2-ANR and B3-ANR as a function of temperature at WZ/A ≈ 5.0 nm, respectively. The scatters 

are the calculated data from NEGF, and the solid lines are the fitting curves by Eq. (6) with 

parameters in Table 1.  

 As shown in Fig. S1, the thermal conductances of boron nanoribbons with 

different edges are well fitted by the Eq. (6) with the parameters in Table 1. To 

analysis the different contributions from T, T1.5 and T2 terms to phonon transport, in 



Fig. S2 we have presented the prated 𝜅𝜅 at room temperature and WZ/A ≈ 5.0 nm. (The 

used fitting parameters are listed in Table 1.) As one can see, the T1.5 term play a great 

positive contribution to phonon transport in boron nanoribbons of both zigzag and 

armchair edges, which should dominate the phonon conduct process. Contradictorily, 

the terms of T and T2 play negative contributions and their values are small. Moreover, 

the devise anisotropies transport ability can also be reflected in the variation of T1.5 

term. In boron 1 and 2, the T1.5 term’s contributions are greater along zigzag edges 

than the one in armchair edges, correspondingly to the positive thermal conductance 

anisotropies. While, in boron 3 the contribution has reversed, which lead to a negative 

anisotropy. 

 

Figure S2. Contributions of T, T1.5 and T2 terms in Eq. (6) of boron 1, 2 and 3 with 

different edges.  
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