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Abstract

Many information systems use tags and keywords to describe and annotate con-
tent. These allow for efficient organization and categorization of items, as well as
facilitate relevant search queries. As such, the selected set of tags for an item can
have a considerable effect on the volume of traffic that eventually reaches an item.
In settings where tags are chosen by an item’s creator, who inturn is interested
in maximizing traffic, a principled approach for choosing tags can prove valuable.
In this paper we introduce the problem of optimal tagging, where the task is to
choose a subset of tags for a new item such that the probability of a browsing user
reaching that item is maximized.
We formulate the problem by modeling traffic using a Markov chain, and asking
how transitions in this chain should be modified to maximize traffic into a cer-
tain state of interest. The resulting optimization probleminvolves maximizing a
certain function over subsets, under a cardinality constraint.
We show that the optimization problem is NP-hard, but nonetheless has a simple
(1 − 1

e
)-approximation via a simple greedy algorithm. Furthermore, the struc-

ture of the problem allows for an efficient implementation ofthe greedy step. To
demonstrate the effectiveness of our method, we perform experiments on three tag-
ging datasets, and show that the greedy algorithm outperforms other baselines.

1 Introduction

To allow for efficient navigation and search, modern information systems rely on the usage of non-
hierarchical tags, keywords, or labels to describe items and content. These tags are then used either
explicitly by users when searching for content, or implicitly by the system to augment search results
or to recommend related items.

Many online systems where users can create or upload contentsupport tagging. Examples of such
systems are media-sharing platforms, social bookmarking websites, and consumer to consumer auc-
tioning services. Typically, an item’s creator is free to select any set of tags or keywords which
they believe best describe their item, where the only concrete limitation is on the number of tags,
words, or characters used. Tags are often chosen on a basis oftheir ability to best describe, classify,
or categorize items and content. By choosing relevant tags,users aid in creating a more organized
information system. However, content creators may have their own individual objective, such as
maximizing the exposure of other users to their items.

This suggests that choosing tags should in fact be done strategically. For instance, tagging a song
as ‘Rock’ may be informative, but will probably only contribute marginally to the song’s traffic, as
the competition for popularity under this tag can be fierce. On the other hand, choosing a unique,
obscure tag may be appealing, but will probably not help mucheither. Strategic tagging or keyword
selection is more clearly exhibited in search-supporting systems, where keywords are explicitly
used for filtering and ordering search results or ad placements, and users have a clear incentive
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of maximizing the exposure of their item. Nonetheless, their selections are typically heuristic or
manual.

Recent years have seen an abundance of work on methods for user-specific tag recommendations [8,
5]. Such methods aim to support collaborative tagging systems, where any user can tag any item in
the repository. We take a complementary perspective and focus on taxonomic tagging systems where
only the creator of an item can determine its tags. In this paper we formalize the task ofoptimal
taggingand suggest an efficient, provably-approximate algorithm.While the problem is shown to
be NP-hard, we prove that the objective is in fact monotone and submodular, which suggests a
straightforward greedy(1 − 1

e
)-approximation algorithm [13]. We also show how the greedy step,

which consists of solving a set of linear equations, can be greatly simplified as well as parallelized,
resulting in a significant improvement in runtime.

We begin by modeling a user browsing a tagged information system as a random walk. Items and
tags act as states in a Markov chain, whose transition probabilities describe the probability of users
jumping between items and tags. Our framework can incorporate many web search click models
[3]. Given a new item, our task is to choose a subset ofk tags for this item. When an item is
tagged, positive probabilities are assigned to transitioning from the item to the tag and vice versa.
Our objective is to choose the subset ofk tags which will maximize traffic to that item, namely the
probability of a random walk reaching the item at some point.Intuitively, tagging an item causes
probability to flow from the tag to the item, on account of other items with this tag. Our goal is
hence to ‘leach’ as much probability mass as possible from the system as a whole.

As mentioned, we are interested in maximizing the probability of a random walk reaching the state
corresponding to a new item. Although this measure resembles the notion of the probability of an
item under a stationary distribution (on which the popular PageRank metric is based), it is in fact
quite different. First, while a state’s stationary probability increases with incoming links, it may
decrease with outgoing links. Since assigning a tag resultsin the addition of both an incoming
and an outgoing link, using the stationary probability of an item will lead to an undesired non-
monotone objective [1]. Second, a stationary distributiondoes not always exist, and hence may
require modifications of the Markov chain. Finally, we arguethat maximizing the probability of
reaching an item, as opposed to maximizing the proportion oftime an infinite random walk spends
in the item’s state, is a better suited objective for the applications we consider.

Although the Markov chain model we propose for optimal tagging is bipartite, our results apply to
general Markov chains. We therefore first formulate a general problem in Sec. 3, where the task is to
choosek states to link a new state to such that the probability of reaching that state is maximal. Then,
in Sec. 4 we prove that this problem is NP-hard by a reduction from vertex cover. In Sec. 5 we prove
that for a general Markov chain the optimal objective is bothmonotonically non-decreasing and
submodular. Based on this, in Sec. 6 we suggest a basic greedy(1 − 1

e
)-approximation algorithm,

and offer a way of significantly improving its runtime. In Sec. 7 we revisit the optimal tagging
problem and show how to construct a bipartite Markov chain for a given tag-supporting information
system. In Sec. 8 we present experimental results on three real-world tagging datasets (musical
artists in Last.fm, bookmarks in Delicious, and movies in Movielens) and show that our algorithm
outperforms plausible heuristics. Concluding remarks aregiven in Sec. 9.

2 Related Work

One the main roles of tags is to aid in the categorization and classification of content. The hall-
mark of tags is that they are not constrained to a fixed vocabulary or structure. An active line of
research in tagging systems focuses on the task of tag recommendations, where the goal is to predict
the set of tags a given user may attribute to an item. This setting is especially useful for collabora-
tive tagging systems and folksonomies, where any user can tag any item. Popular methods for tag
recommendation are based on random walks [8] or tensor factorization [5].While the goal in tag rec-
ommendation is also to output a set of tags, our task is very different in nature. Tag recommendation
is a prediction task for item-user pairs, is based on ground-truth evaluation, and target collaborative
tagging systems. In contrast, ours is an item-centric optimization task for tag-based taxonomies, and
is counterfactual in nature. As such, tag recommendation methods do not apply to our setting.

A line of work similar to ours is optimizing the PageRank of web pages in different settings. In [4]
the authors consider the problem of computing the maximal and minimal PageRank value for a set of
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“fragile” links. The authors of [1] analyze the effects of additional outgoing links on the PageRank
value. Perhaps the work most closely related to ours is [14],where a constant-factor approximation
algorithm is given for the problem of maximizing the PageRank value by adding at mostk incoming
links. The authors prove that the probability of reaching a web page is submodular and monotone in
a fashion similar to ours (but with a different parameterization), and use it as a proxy for PageRank.

Links between absorbing Markov chains and submodular optimization have been studied for opin-
ion maximization [6] and for computing centrality measures[12] in networks. Following the classic
work of Nemhauser [13], submodular optimization is now a very active line of research. Many inter-
esting optimization problems across diverse domains have been shown to be submodular. Examples
of these are sensor placement [11] and influence maximization in social networks [9], to name a few.

3 Problem Formulation

Before we present our approach to optimal tagging, we first describe a general ocombinatorial pti-
mization task over Markov chains, of which our task is a special case. Consider a Markov chain
overn + 1 states. Assume there is a stateσ for which we would like to add a set ofk new incom-
ing transitions. In the tagging problemσ = n + 1 will be an item (e.g., song or product) and the
incoming transitions will be from possible tags for the item, or from related items.

The optimization problem is then to choose a subsetS ⊆ [n] of k states so as to maximize the prob-
ability of visiting σ at some point in time. Formally, letXt be the random variable corresponding to
the state of the Markov chain at timet. Then the optimal tagging problem is:

max
S∈[n], |S|≤k

PS [Xt = σ for somet ≥ 0] (1)

At first glance, it is not clear how to compute the objective function in Eq. (1). However, with a slight
modification of the Markov chain, the objective function canbe expressed as a simple function of
the Markov chain parameters, as explained next.

In general,σ may have outgoing edges, and random walks reachingσ may continue to other states
afterward. Nonetheless, as we are only interested in the probability of reachingσ, the states visited
afterσ have no effect on our objective. Hence,σ’s outgoing edges can be safely replaced with a sin-
gle self-edge without affecting the probability of reachingσ. This essentially makesσ anabsorbing
state, and our task becomes to maximize the probability of the Markov chain being absorbed inσ.
In the remainder of the paper we consider this equivalent formulation.

When the Markov chain includes other absorbing states, optimizing overS can be intuitively thought
of as trying to “leach” as much probability mass from the contending absorbing states toσ, under
a budget on the number of statesσ can be connected to.1 As we discuss in Section 7, having
contending absorbing states arises naturally in optimal tagging.

To fully specify the problem, we need the Markov chain parameters. Denote the initial distribution
by π. For the transition probabilities, each nodei will have two sets of transitions: one when it is
allowed to transition toσ (i.e.,i ∈ S) and one when no transition is allowed. Using two distinct sets
is necessary since in both cases outgoing probabilities must sum to one. We useqij to denote the
transition probability from statei to j when transition toσ is allowed, and̄qij when it is not. We
also denote the corresponding transition matrices byQ andQ̄. Note thatq̄iσ = 0 for all i ∈ [n].

It is natural to assume that when addingσ, transition intoσ will become more likely, and transition
to other states can only be less likely. Thus, we add the assumption that:

∀i , ∀j 6= σ : qij ≤ q̄ij (2)

Given a subsetS of states from which transitions toσ are allowed, we construct a new transition
matrix, taking corresponding rows fromQ andQ̄. We denote this matrix byρ(S), with

ρij(S) =

{

qij i ∈ S
q̄ij i /∈ S

(3)

In what follows, we focus on the optimization problem in Eq. (1). Sec. 4 shows that it is NP
hard. Sec. 5 then shows that the objective of Eq. (1) is monotone and submodular and therefore the
optimization problem has a1− 1

e
factor approximation via a simple greedy algorithm.

1 In an ergodic chain with one absorbing state, all walks reachσ w.p. 1, and the problem becomes trivial.
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4 NP-Hardness

We now show that for a general Markov chain, the optimal tagging problem in Eq. (1) is NP-hard
by a reduction from vertex cover. Given an undirected graphG = (V,E) with n nodes as input to
the vertex cover problem, we construct an instance of optimal tagging such that there exists a vertex
coverS ⊆ V of size at mostk iff the probability of reachingσ reaches some threshold.

To create the absorbing Markov chain, we create a transient statei for every nodei ∈ V , and add
two absorbing states∅ andσ. We set the initial distribution to be uniform, and for some0 < ǫ < 1
set the transitions for transient statesi as follows:

qij =

{

1 j = σ
0 j 6= σ

, q̄ij =







0 j = σ
ǫ j = ∅

1−ǫ
deg(i) otherwise

(4)

Let U ⊆ V of sizek, andS(U) the set of states corresponding to the nodes inU . We claim thatU
is a vertex cover inG iff the probability of reachingσ whenS(U) is chosen is1− (n−k)

n
ǫ.

AssumeU is a vertex cover. For everyi ∈ S(U), as noted a walk starting ini will reachσ with
probability 1. For everyi 6∈ S(U), with probabilityǫ a walk will reach∅ in one step, and with
probability1 − ǫ it will visit one of its neighborsj. SinceU is a vertex cover, it will then reachσ
in one step with probability 1. Hence, in total it will reachσ with probability1 − ǫ. Overall, the
probability of reachingσ is k+(n−k)(1−ǫ)

n
= 1 − (n−k)

n
ǫ as needed. Note that this is the maximal

possible probability of reachingσ for anysubset ofV of sizek.

Assume now thatU is not a vertex cover, then there exists an edge(i, j) ∈ E such that bothi 6∈ S(U)
andj 6∈ S(U). A walk starting ini will reach∅ in one step with probabilityǫ, and in two steps (via
j) with probabilityǫ· q̄ij > 0. Hence, it will reachσ with probability strictly smaller than1− ǫ, and

the overall probability of reachingǫ will be strictly smaller than1− (n−k)
n

ǫ.

5 Proof of Monotonicity and Submodularity

Denote byPS [A] the probability of eventA when transitions fromS to σ are allowed. We define:

c
(k)
i (S) = PS [Xt = σ for somet ≤ k|X0 = i] (5)

ci(S) = PS [Xt = σ for somet|X0 = i] = limk→∞ c
(k)
i (6)

Forc(S) = (c1(S), . . . , cn(S)), the objective in Eq. (1) now becomes:

max
S⊆[n],|S|≤k

f(S), f(S) = 〈π, c(S)〉 = PS [Xt = σ for somet] (7)

We now prove thatf(S) is both monotonically non-decreasing and submodular.

5.1 Monotonicity

When a link is fromi σ, the probability of reaching it directly fromi goes up. However, due to the
renormalization constraints, the probability of reachingit via other paths may go down. Nonetheless,
our proof of monotonicity shows that the overall probability cannot decrease, as stated next.

Theorem 5.1. For everyk ≥ 0 and i ∈ [n], c(k)i is non-decreasing. Namely, for allS ⊆ [n] and

z ∈ [n] \ S, it holds thatc(k)i (S) ≤ c
(k)
i (S ∪ {z}).

Proof. We prove by induction onk. Fork = 0, asπ is independent ofS andz, we have:

c0i (S) = πσ1{i=σ} = c0i (S ∪ {z})

Assume now that the claim holds for somek ≥ 0. We separate into cases. Wheni 6= z, we have:

c
(k+1)
i (S) =

n
∑

j=1

qijc
(k)
j (S) + qiσ ≤

n
∑

j=1

qijc
(k)
j (S ∪ z) + qiσ = c

(k+1)
i (S ∪ z)

c
(k+1)
i (S) =

n
∑

j=1

q̄ijc
(k)
j (S) ≤

n
∑

j=1

q̄ijc
(k)
j (S ∪ z) = c

(k+1)
i (S ∪ z)

4



for i ∈ S andi /∈ S, respectively. Ifi = z then:

c
(k+1)
i (S) ≤

n
∑

j=1

q̄ijc
(k)
j (S ∪ z) =

n
∑

j=1

qijc
(k)
j (S ∪ z) +

n
∑

j=1

(q̄ij − qij)c
(k)
j (S ∪ z)

≤
n
∑

j=1

qijc
(k)
j (S ∪ z) +

n
∑

j=1

(q̄ij − qij) =
n
∑

j=1

qijc
(k)
j (S ∪ z) + qzσ = c

(k+1)
i (S ∪ z)

due to toq̄ij ≥ qij , c ≤ 1,
∑n

j=1 q̄ij = 1, and
∑n

j=1 qij = 1− qiσ .

Corollary 5.2. ∀i ∈ [n], ci(S) is non-decreasing, hencef(S) = 〈π, c(S)〉 is non-decreasing.

5.2 Submodularity

Submodularity captures the principle of diminishing returns. A functionf(S) is submodular if:

∀S ⊆ [n], z1, z2 ∈ [n] \ S, f(S ∪ {z1}) + f(S ∪ {z2}) ≥ f(S ∪ {z1, z2}) + f(S)

It turns out thatf(S) as defined in Eq. (7) is submodular, as shown in following theorem and corol-
lary.

Theorem 5.3. For everyk ≥ 0 andi ∈ [n], c(k)i (S) is a submodular function.

Proof. We prove by induction onk. The case fork = 0 is trivial sinceπ is independent ofS and
hencec0i is modular. Assume now that the claim holds for somek ≥ 0. For brevity we define:

c
(k)
i = c

(k)
i (S), c

(k)
i,1 = c

(k)
i (S ∪ {z1}), c

(k)
i,2 = c

(k)
i (S ∪ {z2}), c

(k)
i,12 = c

(k)
i (S ∪ {z1, z2})

For anyT ⊆ [n], we have:

c
(k+1)
i (T ) =

n
∑

j=1

ρij(T )c
(k)
j (T ) + ρiσ1{i∈T} (8)

We’d like to show thatc(k+1)
i,12 + c

(k+1)
i ≤ c

(k+1)
i,1 + c

(k+1)
i,2 . For everyj ∈ [n], we’ll prove that:

ρij(S ∪ {z1, z2})c
(k)
j,12 + ρij(S)c

(k)
j ≤ ρij(S ∪ {z1})c

(k)
j,1 + ρij(S ∪ {z2})c

(k)
j,2 (9)

which together with Eq. (8) and subtractingρiσ1{i∈T} from both sides will conclude our proof. We
separate into different cases fori. If i ∈ S, then we haveρij(S ∪ {z1, z2}) = ρij(S ∪ {z1}) =
ρij(S∪{z2}) = ρij(S) = qij . Similarly, if i /∈ S∪{z1, z2}, then all terms now equal̄qij . Therefore
by the inductive assumption Eq. (9) follows. Assumei = z1 = z (and analogouslyi = z2). From
the assumption in Eq. (2) we can writeq̄ij = (1 + α)qij for someα ≥ 0. Then Eq. (9) becomes:

qijc
(k)
j,12 + (1 + α)qijc

(k)
j ≤ qijc

(k)
j,1 + (1 + α)qijc

(k)
j,2 (10)

Reorder to get:
c
(k)
j,1 + ckj,2 − c

(k)
j,12 − c

(k)
j + α(ckj,2 − c

(k)
j ) ≥ 0 (11)

This indeed holds since the first four terms are non-negativefrom the inductive assumption, and the
last term is non-negative because of monotonicity andα ≥ 0.

Corollary 5.4. ∀ i ∈ [n], ci(S) is submodular, hencef(S) = 〈π, c(S)〉 is submodular.

6 Optimization

Maximizing submodular functions is hard in general. However, a classic result by Nemhauser [13]
shows that a non-decreasing submodular set function, such as ourf(S), can be efficiently optimized
via a simple greedy algorithm, with a guaranteed(1− 1

e
)-approximation of the optimum. The greedy

algorithm initializesS = ∅, and then sequentially adds elements toS. For a givenS, the algorithm
iterates over allz ∈ [n] \ S and computesf(S ∪ {z}). Then, it adds the highest scoringz to S, and
continues to the next step. We now discuss its implementation for our problem.
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Algorithm 1

1: function SIMPLEGREEDYTAGOPT(Q, Q̄,π, k) ⊲ See supp. for efficient implementation
2: Initialize S = ∅
3: for i← 1 to k do
4: for z ∈ [n] \ S do
5: c =

(

I −A(S ∪ {z})
)

\ b(S ∪ {z}) ⊲ A,b are set using Eqs. (3), (12)
6: v(z) = 〈π, c〉

7: S ← S ∪ argmaxz v(z)

8: ReturnS

Computingf(S) for a givenS reduces to solving a set of linear equations. For a Markov chain with
transient states{1, . . . , n−r} and absorbing states{n−1+1, . . . , n+1 = σ}, the transition matrix
ρ(S) can be written as:

ρ(S) =

(

A(S) B(S)
0 I

)

(12)

whereA(S) are the transition probabilities between transient states,B(S) are the transition probabil-
ities from transient states to absorbing states, andI is the identity matrix. When clear from context
we will drop the dependence ofA,B onS. Note thatρ(S) has at least one absorbing state (namely
σ). We denote byb the column ofB corresponding to stateσ (i.e.,B’s rightmost column).

We would like to calculatef(S). From Eq. (6), the probability of reachingσ given initial statei is:

ci(S) =

∞
∑

t=0

∑

j∈[n−r]

PS [Xt = σ|Xt−1 = j]PS [Xt−1 = j|X0 = i] =

(

∞
∑

t=0

At
b

)

i

The above series has a closed form solution:
∞
∑

t=0

At = (I −A)−1 ⇒ c(S) = (I − A)−1
b

Thus,c(S) is the solution of the set of linear equations, whose solution readily gives usf(S):

f(S) = 〈π, c(S)〉 s.t. (I −A)c(S) = b (13)

The greedy algorithm can thus be implemented by sequentially considering candidate setsS of
increasing size, and for eachz calculatingf(S ∪ {z}) by solving a set of linear equations (see Algo.
1). Though parallelizable, this naïve implementation may be quite costly as it requires solvingO(n2)
sets ofn − r linear equations, one for every addition ofz to S. Fast submodular solvers such as
CELF++ [7] can reduce the number of calls tof(S) by an order of magnitude. As we now show, a
significant speedup in the computation off(S) itself can be achieved using problem’s structure.

A standard method for solving the set of linear equations(I −A)c = b if to first compute anLUP
decomposition for(I −A), namely find lower and upper diagonal matricesL,U and a permutation
matrixP such thatLU = P (I−A). Then, if suffices to solveLy = Pb andUc = y. SinceL andU
are diagonal, solving these equations can be performed efficiently; the costly operation is computing
the decomposition in the first place. Recall thatρ(S) is composed of rows fromQ corresponding to
S and rows fromQ̄ corresponding to[n] \ S. This means thatρ(S) andρ(S ∪ {z}) differ only in
one row, or equivalently, thatρ(S ∪ {z}) can be obtained fromρ(S) by adding a rank-1 matrix.

With this in mind, given anLUP decomposition ofρ(S), we can efficiently computef(S ∪ {z})
(and its corresponding decomposition) using rank-1-update techniques such as Bartels-Golub-Reid
[15] or others.Such methods are especially efficient for sparse matrices. As a result, it suffices
to compute only asingleLUP decomposition for the input at the beginning, and perform cheap
updates at every step. See the supplementary material for anefficient implementation.

7 Optimal Tagging

In this section we return to the task of optimal tagging and show how the Markov chain optimization
framework described above can be applied. We use a random surfer model, where a browsing user

6
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Figure 1: The probability of reaching a focal itemσ under a budget ofk tags for various methods.

hops between items and tags in a bipartite Markov chain. In its explicit form, our model captures
the activity of browsing users whom, when viewing an item, are presented with the item’s tags and
may choose to click on them (and similarly when viewing tags).

In reality, many systems also (or mainly) include direct links between related items, often in the form
of a ranked list of item recommendations. The relatedness oftwo items is often, at least to some
extent, based on the set of mutual tags. Our model captures this notion of similarity by the (implicit)
transitions to and from tag states. This allows us to encode tags as variables in the objective. As our
results apply to general Markov chains, adding direct transitions between items is straightforward.
Our framework easily incorporates click models [3], in which adding an item to a rank list modifies
the clicking probabilities. Note that in contrast to modelsfor tag recommendations, we do not need
to explicitly model the system’s users, as our setup defines only one distinct optimization task per
item.

In what follows we formalize the above notions. Consider a system ofm itemsΩ = {ω1, . . . , ωm}
andn tagsT = {τ1, . . . , τn}. Each itemωi has a set of tagsTi ⊆ T , and each tagτj has a set of
itemsΩj ⊆ Ω. The items and tags constitute the states of a bipartite Markov chain, where users hop
between items and tags. Specifically, the transition matrixρ can have non-zero entriesρij andρji
for itemsωi tagged byτj . To model the fact that browsing users eventually leave the system, we
add a global absorbing state∅ and add transition probabilitiesρi∅ = ǫi > 0 for all itemsωi. For
simplicity we assume thatǫi = ǫ for all i, and thatπ can be non-zero only for tag states.

In our setting, when a new itemσ is uploaded, the uploader may choose a setS ⊆ T of at mostk
tags forσ. Her goal is to chooseS such that the probability of an arbitrary browsing user reaching
(or equivalently, being absorbed in)σ while browsing the system is maximal. As in the general case,
the choice ofS effects the transition matrixρ(S).

Denote byPij the transition probability from itemωi to tagτj , byRji(S) the transition probability
from τj to ωi underS, and letrj(S) = Rjσ(S). Using Eq. (12),ρ can be written as:

ρ(S) =

(

A B
0 I2

)

, A =

(

0 R(S)
P 0

)

, B =

(

0 r(S)
1· ǫ 0

)

, I2 =

(

1 0
0 1

)

where0 and1 are appropriately sized vectors or matrices. Since the graph is bipartite, since we
assume the walks start at a tag state, and since we are interested only in choosing tags, the Markov
chain can be “folded” to include only the tag-states and the absorbing states. Looking atρ2(S),
the transition probabilities between tags are now given by the matrixR(S)P , while the transition
probabilities from tags toσ remainr(S). Our objective of the probability of reachingσ underS is:

f(S) = 〈π, c(S)〉 s.t. (I −R(S)P ) c(S) = r(S) (14)

which is a special case of the general objective presented inEq. (13), and hence can be optimized
efficiently. In the supplementary material we prove that this special case is still NP-hard.

8 Experiments

To demonstrate the effectiveness of our approach, we perform experiments on optimal tagging in
data collected from Last.fm, Delicious, and Movielens.taken from the HetRec 2011 workshop [2].
The datasets include all items (between 10,197 and 59,226) and tags (between 11,946 and 53,388)
reached from crawling a set of about 2,000 users in each system, as well as some metadata.
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For each dataset, we first created a bipartite graph of items and tags. Next, we generated 100 different
instances of our problem per dataset by expanding each of the100 highest-degree tags and creating
a Markov chain for their items and all their associate tags. We discarded nodes with less than 10
edges.

To create an interesting tag selection setup, for each item in each instance we augmented its true tags
with up to 100 similar tags (based on [16]). These served as the set of candidate tags for that item.
We focused on items which were ranked first in at least 10 of their 100 candidate tags, giving a total
of 18,167 focal items for comparison. For each such item, ourtask was to choose thek tags out of
the 100 candidate tags which maximize the probability of reaching the focal item.

Transition probabilities from tags to items were set to be proportional to the item weights - num-
ber of listens for artists in Last.fm, tag counts for bookmarks in Delicious, and averaged ratings
for movies in Movielens. As the datasets do not include weights for tags, we used uniform transi-
tion probabilities from items to tags. The initial distribution was set to be uniform over the set of
candidate tags, and the transition probability from items to the absorbing state∅ was set toǫ = 0.1.

We compared the performance of our greedy algorithm with several baselines. Random-walk based
methods included PageRank and a variant2 of BiFolkRank [10], a state-of-the-art tag recommenda-
tion method that operates on item-tag relations. Heuristics included taking thek tags with highest
degree, lowest degree, the true labels (for relevantk-s), and random. To measure the added value of
taking into account long random walks, we also display the probability of reachingσ in one step.

Results for all three datasets are provided in Figure 1, which shows the average probability of reach-
ing the focal item for values ofk ∈ {1, . . . , 25}. As can be seen, the greedy method clearly outper-
forms other baselines. In our setup choosing low degree tagsoutperforms both random-walk based
methods and heuristics. Considering paths of all lengths improves results by a considerable 20-30%
for k = 1, and roughly 5% fork = 25. An interesting observation is that the performance of
the true tags is rather poor. A plausible explanation for this is that the data we use are taken from
collaborative tagging systems, where items can be tagged byany user. In such systems, tags typi-
cally play a categorical or hierarchical role, and as such are probably not optimal for promoting item
popularity.

9 Conclusions

In this paper we introduced the problem of optimal tagging, along with the general problem of opti-
mizing probability mass in Markov chains, by adding links. We proved that the problem is NP-hard,
but can be(1 − 1

e
)-approximated due to the submodularity and monotonicity ofthe objective. Our

efficient greedy algorithm can be used in practice for choosing optimal tags or keywords in various
domains. Our experimental results show that simple heuristics and PageRank variants underperform
our disciplined approach, and naïvely selecting the true tags is typically suboptimal.

In our work we assumed access to the transition probabilities between tags and items and vice versa.
While the transition probabilities for existing items can be easily estimated by a system’s operator,
estimating the probabilities from tags tonewitems is non-trivial. This is an interesting problem to
pursue. Even so, users do not typically have access to the information required for estimation. Our
results suggest that users can simply apply the greedy stepssequentially via trial-and-error.

Finally, as our task is of a counterfactual nature, it is hardto draw conclusions from the experiments
as to the effectiveness of our method in real settings. It would be interesting to test it in realty, and
compare it to strategies used by both lay users and experts. Especially interesting in this context are
competitive domains such as ad placements and viral marketing. We leave this for future research.
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