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Abstract

Many information systems use tags and keywords to descrileaanotate con-
tent. These allow for efficient organization and categaioreof items, as well as
facilitate relevant search queries. As such, the seleetedfsags for an item can
have a considerable effect on the volume of traffic that exadlytreaches an item.

In settings where tags are chosen by an item’s creator, wharinis interested
in maximizing traffic, a principled approach for choosinggdaan prove valuable.
In this paper we introduce the problem of optimal taggingemhthe task is to
choose a subset of tags for a new item such that the prolyadfitt browsing user
reaching that item is maximized.

We formulate the problem by modeling traffic using a Markoaioh and asking
how transitions in this chain should be modified to maximizdfic into a cer-
tain state of interest. The resulting optimization probierolves maximizing a
certain function over subsets, under a cardinality coirgtra

We show that the optimization problem is NP-hard, but nogles has a simple
(1 - %)—approximation via a simple greedy algorithm. Furthermahe struc-
ture of the problem allows for an efficient implementatioritoé greedy step. To
demonstrate the effectiveness of our method, we performrargnts on three tag-
ging datasets, and show that the greedy algorithm outpesfother baselines.

1 Introduction

To allow for efficient navigation and search, modern infotiorasystems rely on the usage of non-

hierarchical tags, keywords, or labels to describe itenascamtent. These tags are then used either
explicitly by users when searching for content, or impljcity the system to augment search results
or to recommend related items.

Many online systems where users can create or upload caupport tagging. Examples of such
systems are media-sharing platforms, social bookmarketgsites, and consumer to consumer auc-
tioning services. Typically, an item’s creator is free téese any set of tags or keywords which
they believe best describe their item, where the only cdadmitation is on the number of tags,
words, or characters used. Tags are often chosen on a bals&radbility to best describe, classify,
or categorize items and content. By choosing relevant taggss aid in creating a more organized
information system. However, content creators may havie tven individual objective, such as
maximizing the exposure of other users to their items.

This suggests that choosing tags should in fact be donegttatly. For instance, tagging a song
as ‘Rock’ may be informative, but will probably only contuite marginally to the song'’s traffic, as
the competition for popularity under this tag can be fierce. te other hand, choosing a unique,
obscure tag may be appealing, but will probably not help neittter. Strategic tagging or keyword
selection is more clearly exhibited in search-supportiygtesns, where keywords are explicitly
used for filtering and ordering search results or ad placésneimd users have a clear incentive
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of maximizing the exposure of their item. Nonetheless,rtkelections are typically heuristic or
manual.

Recent years have seen an abundance of work on methods feapeséfic tag recommendations [8,
5]. Such methods aim to support collaborative tagging systevhere any user can tag any item in
the repository. We take a complementary perspective ansfoe taxonomic tagging systems where
only the creator of an item can determine its tags. In thisspag formalize the task afptimal
taggingand suggest an efficient, provably-approximate algorithiviiile the problem is shown to
be NP-hard, we prove that the objective is in fact monotorge @ubmodular, which suggests a
straightforward greedyl — %)-approximation algorithm [13]. We also show how the gree@ps
which consists of solving a set of linear equations, can batfyr simplified as well as parallelized,
resulting in a significant improvement in runtime.

We begin by modeling a user browsing a tagged informatioteayss a random walk. Items and
tags act as states in a Markov chain, whose transition piiitiegdescribe the probability of users
jumping between items and tags. Our framework can incotpareany web search click models
[3]. Given a new item, our task is to choose a subset tdigs for this item. When an item is
tagged, positive probabilities are assigned to transitpfrom the item to the tag and vice versa.
Our objective is to choose the subsetahgs which will maximize traffic to that item, namely the
probability of a random walk reaching the item at some polintuitively, tagging an item causes
probability to flow from the tag to the item, on account of atitems with this tag. Our goal is
hence to ‘leach’ as much probability mass as possible fransyistem as a whole.

As mentioned, we are interested in maximizing the probigtili a random walk reaching the state
corresponding to a new item. Although this measure resenthienotion of the probability of an
item under a stationary distribution (on which the populag&Rank metric is based), it is in fact
quite different. First, while a state’s stationary probi@pincreases with incoming links, it may
decrease with outgoing links. Since assigning a tag resultse addition of both an incoming
and an outgoing link, using the stationary probability of amitevill lead to an undesired non-
monotone objective [1]. Second, a stationary distributioes not always exist, and hence may
require modifications of the Markov chain. Finally, we arghat maximizing the probability of
reaching an item, as opposed to maximizing the proportidimed an infinite random walk spends
in the item’s state, is a better suited objective for the i@ptibns we consider.

Although the Markov chain model we propose for optimal taggs bipartite, our results apply to
general Markov chains. We therefore first formulate a gépeodlem in Sec. 3, where the task is to
choosek states to link a new state to such that the probability ofiearthat state is maximal. Then,
in Sec. 4 we prove that this problem is NP-hard by a reductimm frertex cover. In Sec. 5 we prove
that for a general Markov chain the optimal objective is bmtbnotonically non-decreasing and
submodular. Based on this, in Sec. 6 we suggest a basic g(bed%)—approximation algorithm,
and offer a way of significantly improving its runtime. In Se¢ we revisit the optimal tagging
problem and show how to construct a bipartite Markov chairafgiven tag-supporting information
system. In Sec. 8 we present experimental results on thedeveld tagging datasets (musical
artists in Last.fm, bookmarks in Delicious, and movies inviétens) and show that our algorithm
outperforms plausible heuristics. Concluding remarkgaren in Sec. 9.

2 Reated Work

One the main roles of tags is to aid in the categorization daskiication of content. The hall-
mark of tags is that they are not constrained to a fixed voeapuwr structure. An active line of
research in tagging systems focuses on the task of tag reendations, where the goal is to predict
the set of tags a given user may attribute to an item. Thiggéat especially useful for collabora-
tive tagging systems and folksonomies, where any user cpartaitem. Popular methods for tag
recommendation are based on random walks [8] or tensornfaation [5].While the goal in tag rec-
ommendation is also to output a set of tags, our task is véisreit in nature. Tag recommendation
is a prediction task for item-user pairs, is based on grauuitth-evaluation, and target collaborative
tagging systems. In contrast, ours is an item-centric dpétion task for tag-based taxonomies, and
is counterfactual in nature. As such, tag recommendaticdhoas do not apply to our setting.

A line of work similar to ours is optimizing the PageRank oftwgages in different settings. In [4]
the authors consider the problem of computing the maxindhainimal PageRank value for a set of



“fragile” links. The authors of [1] analyze the effects ofchiibnal outgoing links on the PageRank
value. Perhaps the work most closely related to ours is {#d¢re a constant-factor approximation
algorithm is given for the problem of maximizing the PageRealue by adding at mogtincoming

links. The authors prove that the probability of reachingebywage is submodular and monotone in
a fashion similar to ours (but with a different parameteii@s), and use it as a proxy for PageRank.

Links between absorbing Markov chains and submodular dgaition have been studied for opin-
ion maximization [6] and for computing centrality measyted in networks. Following the classic
work of Nemhauser [13], submodular optimization is now anamtive line of research. Many inter-
esting optimization problems across diverse domains haga bhown to be submodular. Examples
of these are sensor placement [11] and influence maximizatisocial networks [9], to name a few.

3 Problem Formulation

Before we present our approach to optimal tagging, we firstiilee a general ocombinatorial pti-
mization task over Markov chains, of which our task is a splecase. Consider a Markov chain
overn + 1 states. Assume there is a statéor which we would like to add a set & new incom-
ing transitions. In the tagging problesn= n + 1 will be an item (e.g., song or product) and the
incoming transitions will be from possible tags for the iteanfrom related items.

The optimization problem is then to choose a sul$set [n] of k states so as to maximize the prob-
ability of visiting o at some pointin time. Formally, Iet; be the random variable corresponding to
the state of the Markov chain at timeThen the optimal tagging problem is:
max Pg[X; = o for somet > 0] 1)

Seln],|S|<k
Atfirst glance, it is not clear how to compute the objectivediion in Eq. (1). However, with a slight
modification of the Markov chain, the objective function danexpressed as a simple function of
the Markov chain parameters, as explained next.

In generalg may have outgoing edges, and random walks reachimgy continue to other states
afterward. Nonetheless, as we are only interested in theghility of reachingo, the states visited
aftero have no effect on our objective. Henegés outgoing edges can be safely replaced with a sin-
gle self-edge without affecting the probability of reaahin This essentially makesanabsorbing
state and our task becomes to maximize the probability of the Maidhain being absorbed in

In the remainder of the paper we consider this equivalenédation.

When the Markov chain includes other absorbing statesnigitig overS can be intuitively thought
of as trying to “leach” as much probability mass from the emting absorbing states &9 under
a budget on the number of statescan be connected fo.As we discuss in Section 7, having
contending absorbing states arises naturally in optinggjitey.

To fully specify the problem, we need the Markov chain paremse Denote the initial distribution
by . For the transition probabilities, each nadeill have two sets of transitions: one when it is
allowed to transition ta (i.e.,i € S) and one when no transition is allowed. Using two distints$ se
is necessary since in both cases outgoing probabilities sums to one. We use;; to denote the
transition probability from statéto j when transition tar is allowed, andy;; when it is not. We
also denote the corresponding transition matrice@and(@. Note that;, = 0 for all i € [n].

It is natural to assume that when addingransition intoo will become more likely, and transition
to other states can only be less likely. Thus, we add the gstsumthat:

Vi, Vj# 0o : qij < Gij 2

Given a subsef of states from which transitions o are allowed, we construct a new transition
matrix, taking corresponding rows fro@ and@. We denote this matrix by(.S), with
N - qij iesS
pa)={ 81153 ®)
In what follows, we focus on the optimization problem in Efy).( Sec. 4 shows that it is NP
hard. Sec. 5 then shows that the objective of Eq. (1) is maeoémd submodular and therefore the
optimization problem has h— % factor approximation via a simple greedy algorithm.

1 In an ergodic chain with one absorbing state, all walks reashp. 1, and the problem becomes trivial.



4 NP-Hardness

We now show that for a general Markov chain, the optimal taggiroblem in Eq. (1) is NP-hard
by a reduction from vertex cover. Given an undirected gr@ph (V, E) with n nodes as input to
the vertex cover problem, we construct an instance of optiagaing such that there exists a vertex
coverS C V of size at most: iff the probability of reachingr reaches some threshold.

To create the absorbing Markov chain, we create a trandietetiSor every node; € V', and add
two absorbing stateg ando. We set the initial distribution to be uniform, and for sothe ¢ < 1
set the transitions for transient staiess follows:

| j—o 0 j =0
Qij—{ ' ) Qij = € J=9 (4)
0 j#o le‘(j) otherwise

LetU C V of sizek, andS(U) the set of states corresponding to the nodds.iWe claim that/
is a vertex cover i iff the probability of reachingr whenS(U) is chosenid — @e.

AssumeU is a vertex cover. For everye S(U), as noted a walk starting inwill reach o with
probability 1. For everyi ¢ S(U), with probabilitye a walk will reachg in one step, and with
probability 1 — e it will visit one of its neighborg. SinceU is a vertex cover, it will then reach
in one step with probability 1. Hence, in total it will reaehwith probability1 — . Overall, the

probability of reaching is £+n=R0=c _ 1 _ (n— k)e as needed. Note that this is the maximal
possible probability of reaching for anysubset ot of sizek.

Assume now thall/ is not a vertex cover, then there exists an edgg) € E such thatbotti ¢ S(U)
andj ¢ S(U). A walk starting in; will reach in one step with probability, and in two steps (via
J) with probabilitye- g;; > 0. Hence, it will reachr with probability strictly smaller that — ¢, and

the overall probability of reachingwill be strictly smaller tharl — ("—;’“)e.

5 Proof of Monotonicity and Submodularity

Denote byPg [A] the probability of eventl when transitions fron$ to o are allowed. We define:

cgk)(S) =Pg [X; = o for somet < k| X, = i (5)
¢i(S) = Pg [ Xy = o for somet| Xy = i] = limy— o0 c§k> (6)

Fore(S) = (c1(S), ..., cn(5)), the objective in Eq. (1) now becomes:
Sg[%%lgkf(S), f(S) = (m,¢(9)) = Pg [X; = o for somet] (7)

We now prove thaf (S) is both monotonically non-decreasing and submodular.

5.1 Monotonicity

When a link is fromi o, the probability of reaching it directly frorhgoes up. However, due to the
renormalization constraints, the probability of reachtnga other paths may go down. Nonetheless,
our proof of monotonicity shows that the overall probapitiannot decrease, as stated next.

Theorem 5.1. For everyk > 0 and: € [n], cgk) is non-decreasing. Namely, for &l C [n] and
€ [n]\ S, it holds thate!™ (5) < (S U {2}).

Proof. We prove by induction o&. Fork = 0, asw is independent of andz, we have:
G(S) = molfizey = G (SU{z})
Assume now that the claim holds for some> 0. We separate into cases. Wheg z, we have:

(k+1) quj C; “"qia < Z‘hg ()SUZ +Qza—ck+1)(SU )

(k+1) Z Qm

qu (k) (SUz) (-k+l)(SUz)

IN



fori € Sandi ¢ S, respectively. I = z then:

n n

cgkﬂ)(S) < Zq” M(SUz) :Zq”ck)SUz —|—Z dij — Gij)cC M(SUz)
j=1

J=1

< ZQU (k) SUZ +Z(ng Qij)
J

j=1

3

gijc (k)(S Uz2)+ ¢0 =c¢ kﬂ)(S Uz)

<
HM:
I,

|
—

due to togi; > gij, ¢ < 1,35, Gy = 1, andd>>T_ qij = 1 — gio- U

Corollary 5.2. Vi € [n], ¢;(S) is non-decreasing, heng&S) = (m, ¢(S)) is non-decreasing.

5.2 Submodularity
Submodularity captures the principle of diminishing resirA functionf (S) is submodular if:

VS Cln], 21,22 € [n]\ S,  f(SU{z1})+ f(SU{22}) > fF(SU {21, 22}) + f(5)

It turns out thatf (S) as defined in Eq. (7) is submodular, as shown in following teeoand corol-
lary.

Theorem 5.3. For everyk > 0 and: € [n], (k)(S) is a submodular function.

Proof. We prove by induction ok. The case fok = 0 is trivial sincer is independent of and
hencec? is modular. Assume now that the claim holds for sdme 0. For brevity we define:

P =B (s5), B =M sufa)), B =dPsulz)), =M (S Uz 2))

For anyT' C [n], we have:
M UT) = 3 0y (D) (T) + piot ey ®)

We’d like to show that:l(»kf;l) + cz(-’”l) < cl(»kfrl) + cl(»k;l). For everyj € [n], we'll prove that:

pij (S U {21, 221)el0 + pis (S)et < pig(S ULz D)) + pi (S U {z2})ely 9)

which together with Eq. (8) and subtracupg]l{ieT} from both sides will conclude our proof. We
separate into different cases forlf i € S, then we have,; (S U {z1,22}) = pi; (S U{z1}) =
pij (SU{z2}) = pi; (S) = qi;. Similarly, if ¢ ¢ SU{z1, 22}, then all terms now equal;. Therefore
by the inductive assumption Eg. (9) follows. Assuine z; = z (and analogously = z5). From
the assumption in Eq. (2) we can wrifg = (1 + «)g;; for somea > 0. Then Eq. (9) becomes:

k
Qijclg'71)2 + (1 + o‘)Qij § ) < qijC; ( ) (1 =+ Oé)q” 52) (10)
Reorder to get:
k k k k
5 1) + CJ 9 65-71)2 — cg» ) 4 oz(c;i2 - C.g' )) >0 (11)
This indeed holds since the first four terms are non-negftive the inductive assumption, and the
last term is non-negative because of monotonicity are 0. O

Corollary 5.4. Vi € [n], ¢;(S) is submodular, hencg(S) = (m, ¢(S)) is submodular.

6 Optimization

Maximizing submodular functions is hard in general. Howeseclassic result by Nemhauser [13]
shows that a non-decreasing submodular set funct|0n, suahrg (S), can be efficiently optimized
via a simple greedy algorithm, with a guaranteed )-approximation of the optimum. The greedy
algorithm initializesS = (), and then sequentially adds elementStdFor a givens, the algorithm
iterates over alt € [n] \ S and computeg (S U {z}). Then, it adds the highest scoringo S, and
continues to the next step. We now discuss its implememtédioour problem.



Algorithm 1

1: function SIMPLEGREEDYTAGOPT(Q, Q, 7, k) > See supp. for efficient implementation
Initialize S = ()

3 fori<« 1 to kdo

4 for z € [n]\ S do

5: c= (T —-ASU{z})\ b(SU{z}) > A, b are set using Egs. (3), (12)
6.

7

8

v(z) = (m,¢)
S« SUargmax, v(z)
ReturnS

Computingf (S) for a givenS reduces to solving a set of linear equations. For a Markoinahith

transient state§l, ..., n—r} and absorbing stat§s. — 1+ 1,...,n+1 = o}, the transition matrix
p(S) can be written as:
A(S) B(S
s = (15 P (12)

whereA(S) are the transition probabilities between transient stdéS) are the transition probabil-
ities from transient states to absorbing states, laisdthe identity matrix. When clear from context
we will drop the dependence df, B on S. Note thatp(S) has at least one absorbing state (namely
o). We denote by the column ofB corresponding to state (i.e., B’s rightmost column).

We would like to calculatg’(S). From Eq. (6), the probability of reachimggiven initial state; is:

a($) =Y Y Ps[Xi=0lXi 1 =j]Ps[X; 1 =j|Xo=1i] = <Z A%)
t=0

t=0 je[n—r]

K2

The above series has a closed form solution:
A =(I-A" = S =T-A)""b
t=0

Thus,c(S) is the solution of the set of linear equations, whose satutgadily gives ug(.S):
f(S)=(m,c(S)) st (I—Aec(S)=0>b (13)

The greedy algorithm can thus be implemented by sequentialisidering candidate sefs of
increasing size, and for eaelcalculatingf (S U {z}) by solving a set of linear equations (see Algo.
1). Though parallelizable, this naive implementation maybite costly as it requires solviii(n?)
sets ofn — r linear equations, one for every additionoto S. Fast submodular solvers such as
CELF++ [7] can reduce the number of callsf@S) by an order of magnitude. As we now show, a
significant speedup in the computationfdfS) itself can be achieved using problem’s structure.

A standard method for solving the set of linear equatidns A)c = b if to first compute anLU P
decomposition fof7 — A), namely find lower and upper diagonal matride€/ and a permutation
matrix P such thatLU = P(I — A). Then, if suffices to solvéy = PbandUc = y. SinceL andU
are diagonal, solving these equations can be performedbettic, the costly operation is computing
the decomposition in the first place. Recall tha$) is composed of rows fror® corresponding to
S and rows from) corresponding t¢n] \ S. This means that(S) andp(S U {z}) differ only in
one row, or equivalently, that(S U {z}) can be obtained from(S) by adding a rank-1 matrix.

With this in mind, given anLU P decomposition of(S), we can efficiently computg(S U {z})
(and its corresponding decomposition) using rank-1-uptithniques such as Bartels-Golub-Reid
[15] or others.Such methods are especially efficient forspanatrices. As a result, it suffices
to compute only asingle LU P decomposition for the input at the beginning, and performagh
updates at every step. See the supplementary material &ffieient implementation.

7 Optimal Tagging

In this section we return to the task of optimal tagging armhshow the Markov chain optimization
framework described above can be applied. We use a randden suvdel, where a browsing user
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Figure 1: The probability of reaching a focal iterrunder a budget of tags for various methods.

hops between items and tags in a bipartite Markov chain.slexplicit form, our model captures
the activity of browsing users whom, when viewing an itene, presented with the item’s tags and
may choose to click on them (and similarly when viewing tags)

In reality, many systems also (or mainly) include diredkéithetween related items, often in the form
of a ranked list of item recommendations. The relatednesw@fitems is often, at least to some
extent, based on the set of mutual tags. Our model captusasdtion of similarity by the (implicit)
transitions to and from tag states. This allows us to encagleds variables in the objective. As our
results apply to general Markov chains, adding direct iteoms between items is straightforward.
Our framework easily incorporates click models [3], in whadding an item to a rank list modifies
the clicking probabilities. Note that in contrast to modelstag recommendations, we do not need
to explicitly model the system’s users, as our setup defingsane distinct optimization task per
item.

In what follows we formalize the above notions. Considerstesy ofm itemsQ = {w1,...,wm}
andn tagsT = {7,...,7,}. Each itemw; has a set of tag$; C T', and each tag; has a set of
items(2; C Q. The items and tags constitute the states of a bipartite d¥eskain, where users hop
between items and tags. Specifically, the transition matdgan have non-zero entrigs; andp;;
for itemsw; tagged byr;. To model the fact that browsing users eventually leave yistem, we
add a global absorbing stageand add transition probabilitiesy = ¢; > 0 for all itemsw;. For
simplicity we assume that = ¢ for all 4, and thatr can be non-zero only for tag states.

In our setting, when a new itemis uploaded, the uploader may choose a%&t 7' of at mostk

tags foro. Her goal is to choosg such that the probability of an arbitrary browsing user héeg

(or equivalently, being absorbed im)while browsing the system is maximal. As in the general case,
the choice ofS effects the transition matrix(.S).

Denote byP;; the transition probability from iterw; to tagr;, by R;;(.S) the transition probability
from 7; to w; underS, and letr;(S) = R;,(S). Using Eq. (12)p can be written as:

o =(a B) A= (D) (29 m=(49)

where0 and1 are appropriately sized vectors or matrices. Since thehgiapipartite, since we
assume the walks start at a tag state, and since we are teteoesy in choosing tags, the Markov
chain can be “folded” to include only the tag-states and th&oebing states. Looking af(S),
the transition probabilities between tags are now giverhigymatrix R(S) P, while the transition
probabilities from tags te remainr(.S). Our objective of the probability of reachirgunders is:

f(S) = (m,c(S)) st (I—R(S)P)c(S)=r(S) (14)

which is a special case of the general objective presented,.if13), and hence can be optimized
efficiently. In the supplementary material we prove thad #pecial case is still NP-hard.

8 Experiments

To demonstrate the effectiveness of our approach, we perfaperiments on optimal tagging in
data collected from Last.fm, Delicious, and Movielenstakrom the HetRec 2011 workshop [2].
The datasets include all items (between 10,197 and 59,22b0a@s (between 11,946 and 53,388)
reached from crawling a set of about 2,000 users in eachrsystewell as some metadata.



For each dataset, we first created a bipartite graph of itehtags. Next, we generated 100 different
instances of our problem per dataset by expanding each aDdighest-degree tags and creating
a Markov chain for their items and all their associate tage digcarded nodes with less than 10
edges.

To create an interesting tag selection setup, for each itezac¢h instance we augmented its true tags
with up to 100 similar tags (based on [16]). These servedeaséhof candidate tags for that item.
We focused on items which were ranked first in at least 10 of il candidate tags, giving a total
of 18,167 focal items for comparison. For each such itemtask was to choose thetags out of
the 100 candidate tags which maximize the probability ofinézg the focal item.

Transition probabilities from tags to items were set to bapprtional to the item weights - num-
ber of listens for artists in Last.fm, tag counts for bookksain Delicious, and averaged ratings
for movies in Movielens. As the datasets do not include wisigbr tags, we used uniform transi-
tion probabilities from items to tags. The initial distrimn was set to be uniform over the set of
candidate tags, and the transition probability from itemthe absorbing state was set ta = 0.1.

We compared the performance of our greedy algorithm witkersdbaselines. Random-walk based
methods included PageRank and a vafiafiBiFolkRank [10], a state-of-the-art tag recommenda-
tion method that operates on item-tag relations. Heusisticluded taking thé tags with highest
degree, lowest degree, the true labels (for relekas)t and random. To measure the added value of
taking into account long random walks, we also display tlubability of reachingr in one step.

Results for all three datasets are provided in Figure 1, wsihows the average probability of reach-
ing the focal item for values df € {1,...,25}. As can be seen, the greedy method clearly outper-
forms other baselines. In our setup choosing low degreedaigperforms both random-walk based
methods and heuristics. Considering paths of all lengtipsones results by a considerable 20-30%
for k = 1, and roughly 5% fork = 25. An interesting observation is that the performance of
the true tags is rather poor. A plausible explanation fog thithat the data we use are taken from
collaborative tagging systems, where items can be taggethpyiser. In such systems, tags typi-
cally play a categorical or hierarchical role, and as suetpanbably not optimal for promoting item
popularity.

9 Conclusions

In this paper we introduced the problem of optimal taggithgng with the general problem of opti-
mizing probability mass in Markov chains, by adding linkse Woved that the problem is NP-hard,
but can bg(1 — %)-approximated due to the submodularity and monotonicitthefobjective. Our
efficient greedy algorithm can be used in practice for chwpsptimal tags or keywords in various
domains. Our experimental results show that simple héesiahd PageRank variants underperform
our disciplined approach, and naively selecting the trge imtypically suboptimal.

In our work we assumed access to the transition probakiligween tags and items and vice versa.
While the transition probabilities for existing items cam dasily estimated by a system’s operator,
estimating the probabilities from tags mewitems is non-trivial. This is an interesting problem to
pursue. Even so, users do not typically have access to themation required for estimation. Our
results suggest that users can simply apply the greedy steppentially via trial-and-error.

Finally, as our task is of a counterfactual nature, it is hardraw conclusions from the experiments
as to the effectiveness of our method in real settings. Itldvbe interesting to test it in realty, and
compare it to strategies used by both lay users and expepecklly interesting in this context are
competitive domains such as ad placements and viral magkétie leave this for future research.
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