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The dynamics of frictional interfaces play an important role in many physical systems spanning a
broad range of scales. It is well-known that frictional interfaces separating two dissimilar materials
couple interfacial slip and normal stress variations, a coupling that has major implications on their
stability, failure mechanism and rupture directionality. In contrast, interfaces separating identical
materials are traditionally assumed not to feature such a coupling due to symmetry considerations.
We show, combining theory and experiments, that interfaces which separate bodies made of macro-
scopically identical materials, but lack geometrical reflection symmetry, generically feature such a
coupling. We discuss two applications of this novel feature. First, we show that it accounts for a
distinct, and previously unexplained, experimentally observed weakening effect in frictional cracks.
Second, we demonstrate that it can destabilize frictional sliding which is otherwise stable. The
emerging framework is expected to find applications in a broad range of systems.

I. INTRODUCTION

Understanding frictional sliding is a long-standing
challenge with important practical and theoretical impli-
cations. It is relevant in diverse physical systems span-
ning a broad range of scales, from the nano-scale to the
planetary-scale. A complete analytic treatment of sliding
frictional interfaces is generally a formidable task. Two
major factors are responsible for the complexity of the
problem. First, the friction law, i.e. the constitutive re-
lation that describes the shear traction at the frictional
interface, poses experimental challenges and depends on
the slip rate and slip history in a highly nonlinear fash-
ion [1–10]. The second factor is the elastodynamics of the
sliding bodies, i.e. the time-dependent long-range stress
transfer mechanisms between different points along the
interface. It is particularly challenging when the two
bodies are made of different materials and in the generic
case in which spontaneously-generated interfacial rupture
fronts dynamically propagate along the interface [11–23].

A significant simplification in relation to the second
factor is obtained when the system possesses reflection
symmetry across the interface, i.e. when the two mate-
rials are identical, the geometry is symmetric, and the
loading configuration is antisymmetric (here and else-
where we consider macroscopic geometry. Differences in
small-scale roughness typically exist and are effectively
incorporated into the interfacial constitutive relation).
A prototypical example of such a situation is that of
two semi-infinite half-spaces made of identical elastic ma-
terials, a situation that was extensively studied in the
literature (see, for example, [24–36]). The main sim-
plification comes from the fact that such a symmetry
precludes a coupling between tangential slip and vari-
ations in the normal stress. The lack of such symme-
try has important implications on the stability of slid-
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FIG. 1. Examples of physical systems featuring fric-
tional interfaces separating bodies made of identical
materials without geometrical reflection symmetry:
(a) A thin block sliding over a thicker block. (b) A block of
finite height H sliding atop a semi-infinite bulk. Sliding oc-
curs in the x-direction. (c) An idealized schematic geometry
of tectonic subduction motion.

ing [11, 15, 16, 20, 21, 23, 37, 38], the failure mechanism
and rupture directionality [17, 21, 23, 37–45]. Physically,
this happens because sliding can enhance (reduce) the
normal stress, which in turn can inhibit (facilitate) fric-
tional sliding.

The origin of the absence of reflection symmetry is tra-
ditionally assumed to be constitutive in nature, i.e. slid-
ing of dissimilar materials is usually considered. This
is known as the bi-material effect. Sliding along such
bi-material interfaces has been quite extensively studied
in the literature and this material contrast is thought
to have important implications for frictional dynam-
ics [11, 15–17, 20–23, 37–45]. The purpose of this paper
is to explore the possibility of asymmetry of a geometric
origin, i.e. sliding of two bodies made of the same mate-
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rial without geometrical reflection symmetry. Examples
of such geometries are depicted in Fig. 1: sliding of two
blocks with different thickness in the direction orthogo-
nal to sliding, an experimental setup that was used in
various recent works [46–50] and will be theoretically ad-
dressed below (panel a); sliding of a block of finite height
H over a semi-infinite bulk, a simple example to be ana-
lyzed in depth in this work (panel b); finally, an idealized
sketch of tectonic subduction motion is shown (panel c),
a situation in which one lithospheric plate is subducted
beneath another one and is responsible for most of the
large magnitude earthquakes (“megathrust”) occurring
on the Earth’s crust [51–56, for example]. Obviously,
many other sliding geometries which lack reflection sym-
metry can be conceived. Generally speaking, this situa-
tion is expected to be the rule rather than the exception,
since no physical system features perfect reflection sym-
metry.

In this paper we lay out a rather general theoretical
framework to address frictional sliding in the absence of
geometrical reflection symmetry and support it by ex-
tensive experiments. A major outcome is that the effect
of geometric asymmetry resembles, sometimes qualita-
tively and sometimes semi-quantitatively, that of mate-
rial asymmetry. Consequently, many results obtained for
bi-material interfaces are also relevant to interfaces sep-
arating bodies made of identical materials with different
geometry. As first applications, two main results are ob-
tained within the newly developed framework:

• A novel explanation of a sizable weakening effect ob-
served in recent experiments on rupture fronts propa-
gation along frictional interfaces [49]. The weakening
effect is directly linked to geometric asymmetry and
is shown experimentally to disappear in its absence.
This result has important implications for the failure
dynamics of frictional interfaces.

• We demonstrate that geometric asymmetry can desta-
bilize frictional sliding which is otherwise stable. We
consequently expect geometric asymmetry to play an
important role in frictional instabilities.

The emerging framework should find additional applica-
tions in a broad range of frictional systems.

II. GENERAL FRAMEWORK

Consider two blocks in frictional contact. At this stage,
the discussion remains completely general, allowing the
two blocks to be made of different materials, to feature
different geometries and to experience general external
loadings. We denote the displacement vector fields in
the two blocks as u(1)(x, t) and u(2)(x, t), where the su-
perscripts correspond to the upper and lower blocks, re-
spectively. Each of these satisfies the momentum balance
equation ∇·σ=ρ ü, where ρ is the mass density of each
block. Cauchy’s stress tensor σ is related to the dis-
placement gradient tensor ∇u according to the isotropic

Hooke’s law (1 + ν)µ [∇u+(∇u)T] =σ − ν(I trσ − σ).
Here I is the identity tensor, ν is Poisson’s ratio and
µ is the shear modulus of each block. The coordinates
are chosen such that the interface lies along the x-axis,
which is also the direction of sliding, see Fig. 1. The
direction normal to the interface is the y-axis and the
interface is the surface y= 0. The z-axis is in the thick-
ness direction, where z= 0 is the center line. While the
formulation below and the analysis in Sect. IV are two-
dimensional (2D), we shall see that three-dimensional
(3D) effects involving the z-coordinate play an important
role in Sect. III.

Since the bulk equations are linear, one can ana-
lyze separately each interfacial Fourier mode, i.e. write
u(n)(x, y=0, t)=u(n)eik(x−ct), where k>0, c is the com-
plex phase/propagation velocity and n= 1, 2. The rela-
tion between the interfacial displacements and stresses is

also linear and can be written as u
(n)
i =M

(n)
ij (c, k)σ

(n)
yj ,

where the matrixM (n) can be obtained from the Green’s
function of the corresponding medium and σ

(n)
yi are the

interfacial stresses, i.e. at y = 0. For example, under
quasi-static conditions for semi-infinite blocks in 2D, this
relation for the lower block (i.e. the block at y < 0) takes
the form [57](

ux
uy

)
=

1

µk

(
1− ν − i

2 (1− 2ν)
i
2 (1− 2ν) 1− ν

)(
σxy
σyy

)
. (1)

The essence of frictional motion is that the displace-
ment field is discontinuous across the interface. We de-
note the slip discontinuity at the frictional interface by

εi(x) ≡ u(1)

i (x, y = 0+)− u(2)

i (x, y = 0−) . (2)

On the interface, y=0, no separation or inter-penetration
between the bulks implies εy = 0 and continuity of σyi.
Together with the known dynamic response matrices
M (n), these requirements can be used to calculate the
relation between the slip discontinuity and the interfa-
cial stresses of the composite system that consists of both
bulks. Following [58], this is done by noting that for y=0

we have σyi= (M (1)−M (2))
−1
ij εj . Thus, the response of

the composite system in 2D reads (in Fourier space)

σxy = µ(1)k Gx(c, k) εx(k) ,

σyy = iµ(1)k Gy(c, k) εx(k) ,
(3)

where we defined the elastic response functions
Gx(c, k) ≡ (µ(1)k)−1(M (1)−M (2))

−1
xx and Gy(c, k) ≡

−i(µ(1)k)−1(M (1)−M (2))
−1
yx . That is, the Gi’s can be ex-

pressed as functions of the response coefficients of both
bulks. Note that the imaginary unit i is included in
Eq. (3) for convenience. Note also that we use the same
notation for a function and its Fourier transform, as they
are easily distinguishable by the context or the stated ar-
guments (e.g. k or x).

The central player in the analysis to follow is Gy, which
represents the elastodynamic coupling between tangen-
tial slip and normal traction along the interface. In sys-
tems with complete reflection symmetry along y=0, this
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coupling is precluded by symmetry. To see this, note that
in this case the off-diagonal elements of M (1) and M (2)

are identical [57], and thus M (1)−M (2), as well as its
inverse, is diagonal. This immediately implies Gy=0. In
what follows, we study two important frictional problems
in which the sliding bodies are made of identical materi-
als, i.e. ρ(1) =ρ(2)≡ρ, µ(1) =µ(2)≡µ and ν(1) =ν(2)≡ν, yet
reflection symmetry relative to the interface is absent due
to asymmetry in the geometry of the bodies, leading to
Gy 6=0. These problems highlight the importance of geo-
metrical asymmetry to frictional sliding and its relation
to the conventional bi-material effect.

III. “THIN-ON-THICK” SYSTEMS AND THE
PROPAGATION OF FRICTIONAL CRACKS

The first problem that we examine, which is directly
motivated by recent experimental observations [44, 49],
is depicted in Fig. 1a. In this system, a thin block
of width W = 5.5 mm is pushed along its length (the
x-axis) on top of a significantly thicker block (here 30
mm). This “thin-on-thick” experimental setup was used
in various studies [46–50], where a transparent glassy
polymer (poly(methyl-methacrylate), PMMA) was used.
The transparent material allows a direct real-time visu-
alization and quantification of a fundamental interfacial
quantity: the real contact area, Ar. The latter is the sum
over isolated micro-contacts formed due to the small scale
roughness of macroscopic surfaces.
Ar is typically orders of magnitude smaller than the

nominal contact area, An. Their ratio, A≡Ar/An� 1,
plays a critical role in interfacial dynamics [2, 3, 46–
49, 59–62] because the frictional resistance/stress is pro-
portional to A, σxy ∝A, i.e. the larger the real contact
area the larger the frictional resistance. A itself depends
on the normal stress and also on the slip history of the
interface according to

σxy ∝ A ∝ σyy(1 + ψ) , (4)

where ψ is an internal variable characterizing the state
of the interface. Frictional sliding leads to reduction of
ψ, i.e. to a reduction of the contact area [1–3, 6, 61,
63]. In the absence of sliding, ψ (and hence A) grows
logarithmically with time, a process known as frictional
aging [1, 3, 48, 64, 65].

In [49] it was found that sliding is mediated by a suc-
cession of crack-like rupture fronts propagating along the
frictional interface and that these fronts are surprisingly
well described by the classical theory of shear cracks
propagating along an interface separating identical ma-
terials, Linear Elastic Fracture Mechanics (LEFM). The
variation of A along a few of these fronts is shown here
in Fig. 2a. It is seen that the rupture fronts involve a
significant overall reduction of the contact area, which
weakens the interface (i.e. reduces ψ) and facilitates slid-
ing. We would like to focus our attention on a distinct
feature of these curves: As observed in Fig. 2a, fronts

which travel at 90% of the Rayleigh wave-speed cR, here
cR'1237 m/s (for plane-stress conditions [57]), or slower
(not shown), feature a monotonic decrease of A. How-
ever, in fronts propagating even closer to cR, A features a
non-monotonic behavior, i.e. A undershoots the asymp-
totic value A∞ (i.e. A as x → −∞) and then rapidly
increases, at a rate way too high to be explained by slow
frictional aging. This non-monotonic behavior remained
unexplained in [49], where it was stated that “the non-
monotonic behavior of A ... suggests interesting dynam-
ics as c→cR...”.

In Fig. 2b we show the spatial profiles of the slip veloc-
ity v, corresponding to the contact area profiles shown in
Fig. 2a. These profiles were calculated from the experi-
mental data using the simplest cohesive zone model [66–
68] which is consistent with the measurements of the
fracture energy and cohesive zone size (see [57] for more
details). This model, while generally used to describe
identical materials, is motivated by the empirical obser-
vation [57] that the strain fields are, to first order, quite
similar in the thin-on-thin and thin-on-thick setups. This
approximation would, of course, have to be modified in
cases of strong material contrast, where the fields on both
sides of the interface differ strongly [44].

We denote the maximum slip velocity in these profiles
by vm. Next, in order to quantify the non-monotonic ef-
fect, we define the magnitude of the undershoot ∆A as
the difference between the asymptotic value A∞ and the
minimum of the profile over the range −5 mm< x < 0,
which is the typical spatial range for which ∆A > 0 is
observed in the thin-on-thick setup, see Fig. 2a. ∆A/A∞
is plotted vs. vm in Fig. 2c (red symbols), demonstrating
that the former is quasi-linear (i.e. predominantly linear)
in the latter. Note that the spread in the data does not
allow to identify any systematic deviations from linear-
ity. We stress that the effect is not only qualitatively
novel, i.e. the existence of a non-monotonic contact area
behavior ∆A/A∞ > 0, but it is also quantitatively im-
portant. As Fig. 2c shows, the local reduction in the real
contact area ∆A/A∞ can reach nearly 25%. This is a
large quantitative effect, compared to other documented
frictional effects, implying the existence of significant lo-
cal frictional weakening which can significantly influence
interfacial dynamics.

What is the source of this non-monotonicity, why does
it scale quasi-linearly with the slip velocity and why does
it appear only at sonic propagation velocities? Such be-
havior has recently been observed in [44] when investi-
gating the frictional motion of bi-material interfaces in
a geometrically symmetric system. There, a very large
local reduction of A was observed at sonic propagation
velocities, but it entirely disappeared when the upper and
lower blocks were made of the same material. We pro-
pose that the same happens in our case, only here it is
due to geometric asymmetry. That is, we suggest that
the non-monotonicity of A stems from the absence of geo-
metrical reflection symmetry of the two blocks, i.e. from
the difference in their thickness. If true, then the fast
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FIG. 2. Experimental results. (a) Snapshots of the spatial profile of the contact area A of rupture fronts in the “thin-on-
thick” setup (see Fig. 1a and [49] for additional details). These fronts propagate to the right at velocities c indicated in the
legend of panel b (0.900cR<c<0.993cR, see [57]), where x=0 corresponds to the tip of each rupture front. The contact area
is normalized by its value A0 before the passage of the front. (b) The slip velocity profiles corresponding to the snapshots
in panel a (see [57] for details). (c) ∆A/A∞, where ∆A is the magnitude of the real contact area undershoot and A∞ is the
asymptotic value (see inset), vs. the maximal slip velocity vm (see panel b) for both the “thin-on-thick” setup (red symbols)
and the geometrically symmetric “thin-on-thin” setup (blue symbols). Different symbols correspond to different experiments
and their size roughly corresponds to the measurement error. The red line is the best linear fit for the red symbols. (inset) The
contact area profile for c=0.993cR in the “thin-on-thick” setup (red line, already appearing in panel a) and in the geometrically
symmetric “thin-on-thin” setup (blue line).

non-monotonic variation of A is not an intrinsically fric-
tional phenomenon, i.e. a result of the dynamics of the
state of the interface ψ, but rather an elastodynamic ef-
fect emerging from the coupling between slip and normal
stress variations, solely induced by geometrical effects. In
terms of Eq. (4), we propose that ψ is monotonic and that
the non-monotonicity of A results from a non-monotonic
behavior of σyy.

Our strategy in testing and exploring this idea is two-
fold. First, our idea can be directly tested by a definitive
experiment. That is, we expect that when the width of
the lower block equals that of the upper one, i.e. in a
“thin-on-thin” setup, the non-monotonicity in A disap-
pears altogether even in the limit c→cR. We performed
this experiment, as in [44], and present a representative
example (for c = 0.993cR) in the inset of Fig. 2c (blue
line). The curve is indeed monotonic. Moreover, note
that the asymptotic value A∞ is the same as that in the

“thin-on-thick” setup (cf. Fig. 1a, for the same propa-
gation velocity), even though the latter exhibits a large
undershoot. In Fig. 2c (main panel) we added ∆A/A∞
of many rupture fronts in the “thin-on-thin” setup (blue
symbols). ∆A/A∞ is indeed very close to zero (small
negative values simply correspond to monotonic behav-
ior), i.e. all of the A profiles in the “thin-on-thin” setup
are monotonic. This direct experimental evidence pro-
vides unquestionable support of our basic idea that the
non-monotonic behavior corresponding to the “thin-on-
thick” setup data in Fig. 2a emerge from the absence of
geometrical reflection symmetry.

Next, our aim is to develop a theoretical understand-
ing of the origin of non-monotonicity. The challenge is to
explain both the fact that it emerges at asymptotic prop-
agation velocities (c→ cR) and the quasi-linear relation
between ∆A/A∞ and vm. The complete problem, in-
volving a thin block sliding atop a thicker one, is a very
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complicated 3D elastodynamic problem. We approach
the problem by breaking it into two steps. First, we per-
form a simplified analysis, invoking physically-motivated
approximations, which allow us to reduce the mathemat-
ical complexity of the problem and gain analytic insight
into it. The major simplification is to consider the cor-
responding quasi-static problem instead of the full elas-
todynamic one. The physical rationale for this is clear:
the absence of geometrical reflection symmetry should
manifest its generic implications also in the framework
of static elasticity and hence the simplified analysis is
expected to reveal the origin of the non-monotonicity of
the real contact area. Then, in the second step, we use
the static results in an effective dynamic calculation, to
be explained below.

The main outcome of the first step is that the static 3D
problem can be approximately mapped onto a 2D prob-
lem involving two elastically dissimilar materials. That
is, we show that the geometric asymmetry can be ap-
proximately mapped onto an effective constitutive asym-
metry, i.e. an effective material contrast. To see how this
emerges, we assume that both blocks are infinite in the y-
direction and that the thicker (lower) block is also infinite
in the z direction. That is, the lower block is replaced
by a semi-infinite 3D half-space, which allows us to use
the well-known interfacial Green’s function [69]. More
specifically, the 3D real-space Green’s function matrix
M̂ 3D(r − r′) [69] allows us to express the interfacial dis-
placements at a point r=(x, y=0, z=0) on the symme-
try line, u(r)=(ux, uy), induced by a point force applied
by the upper block at r′=(x′, y=0, z′), F (r′)=(Fx, Fy).
Note that the latter is assumed not to contain an out-
of-plane component, i.e. Fz =0, which in principle could
emerge from frustrated Poisson expansion at the inter-
face. It is reasonable, though, to neglect it to leading
order.

We physically expect shear tractions to be uniform
across the thickness W , hence they are taken to be con-
stant for |z| ≤ W

2 (and of course to vanish for |z|> W
2 ).

Thus, we obtain(
ux
uy

)
= M eff(k)

(
σxy
σyy

)
, (5)

where the effective 2D response matrix M eff(k) of the
thicker (lower) block is given by the Fourier transform of

M̂ 3D over the strip |z|≤ W
2 ,

M eff(k)=

∫ ∞
−∞
dx′
∫ W

2

−W2

dz′ eik(x−x
′)M̂ 3D(x−x′, z′) . (6)

The integration can be carried out, resulting in

M eff' 1

µk

 (1−ν)B(q) − i
2 (1−2ν)

(
1−e−

|q|
2

)
i
2 (1−2ν)

(
1−e−

|q|
2

)
(1−ν)B(q)

,
where q ≡ kW and B(q) = π−1

∫ q
0
K0(q′/2)dq′ (K0(z) is

the modified Bessel function of the second kind of order

0). The outcome of the analysis, which is presented in full
detail in [57], is that M eff(k) appears to identify with the
2D response matrix of Eq. (1), if one defines the effective
elastic moduli of the lower (thicker) block as

µeff(q) ' µ

2(1− ν)B(q)− (1− 2ν)
(

1− e−
|q|
2

) ,

νeff(q) '
(1− ν)B(q)− (1− 2ν)

(
1− e−

|q|
2

)
2(1− ν)B(q)− (1− 2ν)

(
1− e−

|q|
2

) .

(7)

These are plotted in Fig. 3a.
The mapping of the 3D problem onto an effective 2D

problem is formally valid as long as the interfacial stresses
(and hence displacements) in Eq. (5) are approximately
localized in Fourier k-space. Otherwise, Eq. (5) will not
identify with Eq. (1) due to the extra k-dependence of
µeff(kW ) and νeff(kW ), which is a result of the 3D nature
of the original problem. We note in passing that in the
limit q=kW�1, µeff→µ and νeff→ν, which corresponds
to 2D plane-strain conditions [71]. This is expected for
small wavelengths, for which the thinner block also ap-
pears infinitely thick, and hence is a consistency check
on our calculation. The important observation, though,
as is clearly seen in Fig. 3a, is that for the thicker block
µeff(k)>µ for all experimentally relevant k’s [72]. This
suggests that the thicker block is effectively stiffer than
the thinner one, as hypothesized in [73, 74] where the
thicker block was assumed to correspond to plane-strain
conditions in numerical simulations. That is, the main
physical insight gained from the performed analysis is
that geometric asymmetry gives rise to an effective ma-
terial contrast.

With this physical insight in hand, we aim now at ad-
dressing the non-monotonicity of A discussed in panels a
and c of Fig. 2. The 3D static analysis presented above
may not yield quantitatively accurate predictions when
strongly elastodynamic 2D interfacial rupture fronts are
considered. Yet, we believe that the insight embodied
in the relations µeff(k) > µ and νeff(k) > ν is physically
robust and hence try to explore their quantitative im-
plications in relation to the experimental observations in
the dynamic regime.

To accomplish this, we consider the 2D dynamic trans-
fer function Gy(c, k) in Eq. (3) and take it to approxi-
mately describe the experimental system when the effec-
tive moduli µeff(k) > µ and νeff(k) > ν are used for the
thicker (lower) block and plane-stress conditions [71] are
assumed for the thinner (upper) block. Note that it is
justified to treat the heights of the two blocks as infinite
since the experimental rupture fronts are so fast that they
do not interact with the upper and lower boundaries be-
fore traversing the whole system. Therefore, Eq. (3) can
be rewritten as

∆σyy(c, k, v) = −c−1µGy [c, k;µeff(k), νeff(k)] v , (8)

where we used v= ε̇x =−i c k εx for a constant propaga-
tion velocity c.
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FIG. 3. Analytical results. (a) The effective shear modulus µeff of the thicker block, in units of µ, vs. the dimensionless
wavenumber q= kW , cf. Eq. (7). (inset) The variation of the effective Poisson’s ratio νeff(q) with q= kW . In both we used
ν = 0.33, which is relevant for PMMA [49, 70]. (b) The response function Gy, quantifying the effective bi-material contrast
according to µeff(q) and νeff(q) (for the thicker block, the thinner one is represented by plane-stress conditions), corresponding
to selected values of q = kW . The corresponding values of the elastic moduli µeff(q)>µ and νeff(q)> ν are marked in panel
a and its inset using the same color code. (c) ∆σyy given in Eq. (8), normalized by the experimentally applied normal stress
σ0 =4.5 MPa, vs. the slip velocity v, where the propagation velocity was set to c=cR'1237 m/s. The gray dashed line is the
red line in Fig. 2c.

The 2D infinite-system dynamic transfer function
Gy(·) in Eq. (8) was calculated by Weertman for slid-
ing of dissimilar materials quite some time ago [12]. We
reiterate that the basic idea here is to use a known result
for dissimilar materials to represent a system composed
of identical materials with geometric asymmetry, utiliz-
ing the effective moduli derived in Eq. (7), µeff(k) > µ
and νeff(k)>ν. In the presence of any contrast between
the shear moduli of the materials, Gy(c) is finite and in-
creases significantly at elastodynamic velocities (in fact,
it diverges when c approaches the shear wave-speed cs of
the more compliant material), as shown in Fig. 3b. Thus,
we expect rupture fronts that propagate at near-sonic
velocities to be accompanied by a significant reduction
in the local normal stress as implied by Eq. (8), reduc-
ing locally the real contact area. In turn, this reduces
the interfacial strength, which facilitates sliding. This is
consistent with the experimental observations of Fig. 2a,
where the non-monotonicity of A becomes substantial at
asymptotic propagation velocities (c→cR). This normal
stress reduction is also remarkably similar to the recent
observations of [44] in bi-material systems, a similarity
that further strengthens the analogy between geometric
asymmetry and material asymmetry.

The connection between geometric and material asym-
metries is yet further strengthened when the directional-
ity of rupture is considered. The sub-Rayleigh (c < cR)
rupture fronts, shown in Fig. 2b, propagate from left to
right, in the direction of sliding of the thinner (upper)
block (see also Fig. 1a). Sub-Rayleigh rupture fronts that
are accompanied by normal stress reduction are known to
propagate in the direction of sliding of the more compli-
ant material in a bi-material setup, the so-called “pre-
ferred direction” [12, 17, 44]. This is fully consistent

with our result that the thinner (upper) block is effec-
tively softer than the thicker (lower) block (or alterna-
tively, that the thicker block is effectively stiffer than the
thinner one).

The quasi-linearity of ∆A with the (maximal) slip
velocity, observed in Fig. 2c, naturally emerges from
Eq. (8). To see this, note that ∆A ∝ ∆σyy according
to Eq. (4) (recall that ψ in that equation is expected to
be monotonic) and that c remains close to cR to within a
few percent. In this regime (c'cR), Gy does not change
appreciably as a function of c, while the maximal v varies
quite substantially (cf. Fig. 2a). That means that while
c'cR is required for the existence of the weakening effect,
its variability is mainly determined by v. Put together,
we obtain ∆A∝ v. To obtain some estimate of the pro-
portionality factor between ∆A and v along this line of
reasoning, we interpret ∆σyy in Eq. (8) to be a function
of v alone, with c=cR and k∼O(W−1), where µeff(k)>µ
(cf. Fig. 3a).

The results for ∆σyy(v) with kW = 3, 4, 5, normal-
ized by the experimentally applied normal stress σ0, are
shown in Fig. 3c. The slope of the kW = 5 line is very
close to the slope of the linear fit in Fig. 2c, which was
added to Fig. 3c for comparison (gray dashed line). Note
that the experimental line features a finite v intercept,
which is absent in the theoretical one. This is expected
since the undershoot, ∆A, is generally susceptible to vari-
ations both of σyy and the fracture of contacts (variations
of ψ in Eq. (4)). For low values of v, variations of σyy
should be small, and the spatial profile of A is there-
fore dominated by variations of ψ. A(x) should therefore
be monotonic in space, similar to the spatial profile in
the “thin-on-thin” setup, thus rendering any undershoots
(i.e. ∆A) to be unmeasurable.
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This quantitative agreement should be taken with
some caution in light of the various approximations in-
voked above. Yet, the existence of a characteristic
wavenumber kW = 5 is not unreasonable as the typi-
cal scale of the velocity peaks (see Fig. 2b), the spatial
scale of the undershoot in the contact area (see Fig. 2a)
and W are all in the mm-scale. Furthermore, the rela-
tive magnitudes of the slopes in Fig. 3c provide a testable
prediction for how the slope decreases with increasing W .
This should be experimentally tested in the future. Fi-
nally, as W increases and approaches the width of the
lower block, the non-monotonicity is predicted to disap-
pear, as demonstrated experimentally in Fig. 2c (blue
symbols).

The results presented in this section demonstrate that
global geometric features of the sliding bodies in a fric-
tional problem, here a difference in their thickness, affect
the frictional resistance to sliding and in fact makes it
easier for interfacial rupture fronts that mediate sliding
to propagate. In fact, the effect of geometric asymmetry
is maximal at the extreme rupture velocities that are the
norm in frictional sliding. This reduction in frictional dis-
sipation applies to any engineering or tribological system
involving identical materials and geometric asymmetry.
As such, it implies that the design and friction control
of any real-life tribological application must take into ac-
count not only the interfacial properties, but also the
relative size of the sliding bodies. In the next section
we show that the same concept applies to another class
of important sliding friction problems, where a different
form of geometric asymmetry controls the dynamic re-
sponse of the system.

IV. STABILITY OF FRICTIONAL SLIDING

We now focus on a different, yet conceptually related,
physical situation in which geometric asymmetry plays a
crucial role as well. While in Sect. III geometric asym-
metry was associated with a difference in the thickness of
the sliding bodies, here its origin is a difference in their
height. Moreover, while in Sect. III we addressed the
propagation of spatially-localized interfacial cracks, here
the focus will be on the stability of homogeneous sliding.
Yet, in both cases a geometry-induced coupling between
interfacial slip and normal stress variations, encapsulated
in the function Gy in Eq. (3), is the dominant physical
player.

We consider an elastic block of a height H(1) sliding
atop a block of height H(2) =ηH(1) (with a dimensionless
positive η, 0<η <∞), both made of the same material
under plane-strain conditions [71], as depicted in Fig. 1b.
Note that η=1 corresponds to a symmetric system. The
blocks initially slide at a fixed velocity and all of the
fields are assumed to reach steady state. A homogeneous
compressive normal stress σ(1)

yy =−σ0 is imposed at both
y=H(1) and y=−H(2). In addition, a constant velocity
u̇(1)
x =v in the positive x-direction is imposed at y=H(1)

and u̇(2)
x = 0 at y = −H(2). In this problem, unlike the

problem considered in Sect. III, the interfacial dynamics
are coupled to the boundaries at y = H(1),−H(2), and
hence the heights H1,2 are expected to play a central role
here.

To fully define the problem, one needs to specify the
frictional boundary condition at the interface. Friction
is commonly modeled as a linear relation between the
interfacial normal stress and the interfacial shear stress
(frictional resistance/stress), i.e.

σxy = −f(·)σyy , (9)

where f(·) represents the friction law. Our major goal
here is to understand the destabilizing effect associated
with geometric asymmetry, i.e. η 6=1, which to the best of
knowledge has not been studied before. Consequently, in
order to isolate the geometric effect, we will focus below
on situations in which friction is intrinsically stabilizing
such that any instability, if exists, is associated with the
absence of geometrical reflection symmetry.

To achieve this, we proceed in two steps. First, in
Sec. IV A, we present a simplified analysis involving a
simple velocity-dependent friction law and strong geo-
metrical asymmetry. This will allow us to gain much
insight into the role of geometric asymmetry in frictional
sliding and to clearly identify the physical origin of in-
stability. Then, in Sec. IV B, we present a significantly
generalized analysis for a realistic friction law, includ-
ing an internal state variable and an interfacial memory
length, and for any level of geometric asymmetry. The
emerging results strengthen the findings of Sec. IV A and
extend them.

A. Simplified analysis: Velocity-dependent friction
and large geometric asymmetry

As a primer, we use here a simple friction law where
f(·) in Eq. (9) depends only on the interfacial slip veloc-
ity v≡ ε̇x, i.e. f(v). We focus on velocity-strengthening
interfaces, f ′(v)>0, because in this case sliding is uncon-
ditionally stable for symmetric systems [57, 75, 76] and
thus the origin of any emerging instability must be asso-
ciated with the absence of geometrical reflection symme-
try. Moreover, steady state velocity-strengthening fric-
tion has been recently shown to be a generic feature of
dry interfaces over some velocity range [6]. Finally, to
simplify the analysis further we consider the case in which
the lower block is much higher than the upper one, η�1.
That is, we take the limit H(2)→∞, such that H(1)≡H
is the only lengthscale in the problem.

Under what conditions is homogeneous sliding sta-
ble? This question, which is of fundamental importance
in a broad range of frictional problems (see, for exam-
ple [3, 20, 23, 63, 75, 77–84]), is first investigated in
the context of the simplified problem defined above. As
the interface is characterized by velocity-strengthening
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FIG. 4. Linear stability: Simplified analysis. Imaginary (a) and real (b) parts of solutions to the linear stability spectrum
in Eq. (10). =(c)> 0 implies an instability and note that only one solution branch is discussed (other solution branches exist
as well, but are not discussed here). The solid lines show numerical solutions to Eq. (10) and the dashed lines show the
approximate analytic solutions obtained by a linear expansion around c= cR. The parameters used are f = 0.9 and β = 0.3,
where γ≡µ/(σ0csf

′(v)) is varied according to the legend. (c) The instability threshold χc, i.e. for χ≡γf <χc sliding is stable
for all k, vs. β≡cs/cd. The open symbols show direct numerical results and the solid line is the prediction in Eq. (13).

friction, f ′(v) > 0, friction itself tends to stabilize slid-
ing. Consequently, the only possible destabilizing piece
of physics can be the geometric-asymmetry-induced cou-
pling between interfacial slip and normal stress varia-
tions, encapsulated in the function Gy (cf. Eq. (3)), which
also played a crucial role in Sect. III. Can geometric
asymmetry destabilize velocity-strengthening frictional
interfaces in much the same way as material asymmetry
(the bi-material effect) can [23]?

To address the stability question, we perturb Eq. (9)
to linear order, obtaining [57]

µGx(c, k) + i µ f Gy(c, k) + i c σ0 δf/δv = 0 , (10)

which is an implicit equation defining the linear stability
spectrum c(k). In the simple velocity-dependent friction
case considered here, we have δf/δv=f ′(v) (more general
interfacial constitutive laws are considered in Sect. IV B).
Perturbations with =[c] > 0 are unstable and will grow
exponentially, while perturbations with =[c]< 0 are sta-
ble (remember that k>0). An explicit calculation shows
that Gy reads [57]

Gy=
c2s
c2

(
2(α2

s + 1)

1+tanh(kHαd)
− 2(α2

s + 1)

1+tanh(kHαs)

)
, (11)

where cs and cd are respectively the shear and dilata-
tional wave-speeds and α2

s,d≡1− c2/c2s,d was introduced.
The limit H→∞ amounts to a symmetric system, in

which case η→ 1, and indeed Gy vanishes in this limit.
We can thus expect the system to be unconditionally
stable for H→∞. Gy also vanishes in the limit H→ 0.
Similarly, Gx takes the form [57]

Gx=
c2s
c2

( (
α2
s + 1

)2
α−1s

1+tanh(kHαs)
− 4αd

1+tanh(kHαd)

)
. (12)

Equipped with the results for the dynamic response
functionsGi(c, k), the implicit equation for the spectrum,
Eq. (10), can be in principle solved, at least numerically.
The equation admits a few solution branches, and in

general its analysis is far from trivial. However, since
the purpose of the present discussion is not a complete
analysis of Eq. (10), but rather a demonstration of the
qualitative effect of the absence of geometrical reflection
symmetry, we focus here on a particular branch of solu-
tions which is shown in Fig. 4a. It is observed that for a
range of parameters, and for a finite range of wavenum-
bers, the solutions are unstable (=[c]>0). This is a direct
numerical evidence that geometric asymmetry can desta-
bilize systems which are otherwise stable (remember that
f ′(v)>0).

It seems natural at this point to ask under what condi-
tions this instability is observed. What are the conditions
on the various system parameters such that there will be
a range of k’s for which =[c(k)] > 0? As a prelude, we
perform a dimensional analysis. Clearly, the only length-
scale in the problem is H and indeed the wavenumber
k only appears in the dimensionless combination kH.
Thus, large (small) k is equivalent to large (small) H
and since Gy vanishes in both limits H→0 and H→∞,
we expect to find unstable modes only in a finite range
kmin<k<kmax, if any.

Another dimensionless combination is γ ≡
µ/(σ0csf

′(v)), which is the ratio of the elastody-
namic quantity µ/cs — proportional to the so-called
radiation damping factor for sliding [23, 26, 75, 85] —
and the response of the frictional stress to variations
in the sliding velocity. As such, γ quantifies the im-
portance of elastodynamics, which tends to destablize
sliding when geometrical asymmetry is present, relative
to velocity-strengthening friction, which generically
stabilizes sliding. We thus expect large γ to promote
instability, if Gy 6= 0. In addition, as Gy is the only
possible source of instability in the problem, the appear-
ance of fGy is associated with destabilization (because
f and Gy enter the spectrum in Eq. (10) only through
the combination fGy). Finally, the ratio of the two

wave-speeds β ≡ cs/cd =
√

(1− 2ν)/(2− 2ν) is also a
dimensionless parameter of the system which depends
only on the bulk Poisson’s ratio.
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To obtain analytic insight into the instability presented
in Fig. 4a, note that solutions in this instability branch
are located near the Rayleigh wave-speed, as shown in
Fig. 4b (note that here cR ' 0.95cs). Consequently, we
expand Eq. (10) to linear order around c= cR + δc, ob-
taining an explicit expression for δc(kH) [57]. A conse-
quence of this expansion is that the transition between
stable and unstable modes occurs for k’s which approxi-
mately satisfy [57]

γfGy(cR, k) ≈ −cR/cs . (13)

This approximate stability criterion explains the exis-
tence of an instability and in fact gives reasonable quan-
titative estimates for its onset.

To see this, note that since Gy(cR, k) (which is nega-
tive, cf. Eq. (11) and [57]) vanishes for both k = 0 and
k=∞, and attains a global minimum for k of order H−1,
Eq. (13) admits solutions only for certain values of the
product χ≡γf . When χ is smaller than a critical value
χc, no solutions exist and this branch of solutions is stable
for all wavenumbers. Note that this criterion has exactly
the expected structure: the instability is indeed governed
by Gy, and large γ or f promote instability, which only
happens at a finite range of wavenumbers. These pre-
dictions are quantitatively verified in Fig. 4c. In addi-
tion, the real and imaginary parts of the approximate
solution for δc(kH) [57] are added to Figs. 4a-b (dashed
lines), demonstrating reasonable quantitative agreement
with the full numerical solution for various parameters.

The results presented in this section demonstrate the
destabilizing role that the absence of geometrical reflec-
tion symmetry may play in frictional dynamics. In the
next section, we significantly extend the analysis to in-
clude more realistic friction laws and any geometric con-
trast.

B. Generalized analysis: State dependence,
memory length and arbitrary geometric asymmetry

The analysis presented in the previous section adopted
two simplifying assumptions, i.e. that the frictional re-
sponse depends only on the instantaneous slip velocity v
and that the lower block is much higher than the upper
one, η →∞. Frictional interfaces, however, are known
to depend also on the state of the interface, not just on
the slip velocity, and obviously the sliding bodies can fea-
ture any geometric asymmetry, i.e. the system can attain
any value of η. Consequently, our goal here is to relax
these simplifying assumptions and to present a signifi-
cantly generalized analysis applicable to a broad range
of realistic frictional systems.

It is experimentally well-established that the response
of frictional interfaces depends, in addition to the slip
velocity v, on the state of the interface through the (nor-
malized) real contact area A(φ)∝σyy(1 +ψ(φ)) [1–3], as
discussed in relation to Eq. (4). The auxiliary internal
state variable φ, which represents the age/maturity of the

contact and is of time dimensions, carries memory of the
history of the interface. This implies that irrespective of
the exact functional form of ψ(φ) (with dψ/dφ> 0) the
frictional response f(·) in Eq. (9) depends on both v and
φ, i.e. we have f(v, φ). Since f does not depend solely
on the instantaneous sliding velocity, but also on φ, one
should distinguish between

∂vf ≡
∂f(v, φ)

∂v
and dvf ≡

df(v, φ0(v))

dv
, (14)

where φ0(v) is the steady state value of φ.
It is also well-established that after a rapid variation in

v, accompanied by an instantaneous frictional response
characterized by ∂vf , a new steady state is established
over a characteristic slip distance D, which can be re-
garded as an interfacial memory length. This generic be-
haviour is described by the following evolution equation
for φ [1, 3, 77]

φ̇ = g
(v φ
D

)
, (15)

with g(1) = 0 and g′(1)< 0. While several functions g(·)
were proposed and extensively studied in the literature [1,
3], the only property that affects the linear stability is
g′(1). Note that if g(0)>0 (corresponding to v=0), the
equation describes frictional aging (φ increases linearly
with time under quiescent conditions) and that g(1) =

0 corresponds to steady state, φ̇ = 0, implying φ0(v) =
D/v. The latter describes contact rejuvenation, where
the typical contact lifetime is inversely proportional to v.

The physics incorporated in the distinction between
∂vf and dvf , and in the memory length D — within the
so-called rate-and-state friction constitutive framework
— imply the existence of two dimensionless parameters
that are absent in the simplified analysis of Sect. IV A

∆ ≡ dvf

∂vf
, ξ ≡ Dcs

Hv|g′(1)|
. (16)

Frictional interfaces generically feature ∂vf > 0 [1–3],
which is termed the “direct effect” (associated with ther-
mally activated rheology [3, 75]). As in Sect. IV A, we
are interested in dvf > 0 (i.e. in steady state velocity-
strengthening friction), which implies a positive ∆. In
fact, ∆ varies in the range 0 < ∆ < 1 [23], while ξ can
attain any positive value.

Within this generalized framework, δf/δv of Eq. (10)
takes the form [57]

δf

δv
= ∂vf

(
1 +

∆− 1

1− i ξ ccs kH

)
. (17)

In the limit ∆→ 1, i.e. when there is no distinction be-
tween ∂vf and dvf (∂vf→dvf), and when ξ→0, i.e. when
the memory length D becomes vanishingly small, we ob-
tain δf/δv→ dvf . This recovers the result of Sect. IV A
where dvf simply identifies with f ′(v).
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FIG. 5. Linear stability: Generalized analysis. =[c/cs] (i.e. the rate of exponential growth/decay of perturbations, =[c]>0
corresponds to instability) vs. kH for a broad range of physical parameters. In all panels the parameters are the same as in
Fig. 4 with γ=3. (a) The dependence of =[c(kH)/cs] on η for ∆=1. The curve η=∞ identifies with the blue curve of Fig. 4a.
The case η= 1 corresponds to a symmetric system and is thus stable for all k. (b) The dependence of =[c(kH)/cs] on ∆ for
ξ=1 and η=∞. (c) The dependence of =[c(kH)/cs] on ξ for ∆=0.5 and η=∞.

To understand the effect of ∆ and ξ on frictional sta-
bility, we need to solve Eq. (10) using Eq. (17). As we
also want to consider arbitrary values of the height ra-

tio η, we should first derive expressions for the interfacial
elastodynamic transfer function Gx,y for any η. The gen-
eralized result takes the form [57]

Gx =
c2s
(
1 + α2

s

)2 (
tanh(ηkHαd) + tanh(kHαd)

)
− 4αdαs

(
tanh(ηkHαs) + tanh(kHαs)

)
c2 αs

(
tanh(ηkHαd) + tanh(kHαd)

)(
tanh(ηkHαs) + tanh(kHαs)

) ,

Gy =
2c2s
(
1 + α2

s

)
c2

tanh(kHαs) tanh(ηkHαd)− tanh(kHαd) tanh(ηkHαs)(
tanh(ηkHαd) + tanh(kHαd)

)(
tanh(ηkHαs) + tanh(kHαs)

) ,

(18)

Note that Eqs. (11)-(12) are obtained from Eq. (18)
by taking the η → ∞ limit, which amounts to setting
tanh(ηkHαi) to unity (since both k and <[αi] are posi-
tive). In addition, as expected, Gy vanishes for symmet-
ric systems, i.e. for η=1.

We are now ready to study the effect of the geomet-
ric dimensionless parameter η, and of the constitutive
dimensionless parameters ∆ and ξ, on the linear stabil-
ity of frictional interfaces. That is, we aim at solving
the implicit linear stability spectrum in Eq. (10), with
Eqs. (17)-(18). The ultimate goal of such a generalized
linear stability analysis is to derive the stability phase-
diagram in the γ (here ∂vf replaces f ′(v) in the definition
of γ in Sect. IV A), f , β, η, ∆ and ξ parameter space,
where the stability boundary is a complex hypersurface
in this multi-dimensional space.

As it is obviously impossible to visualize this high-
dimensional stability boundary and in order to gain clear
physical insight, we analyze this hypersurface by study-
ing its sections along various parameter directions. A
first step was done in Sect. IV A, where the analysis
was performed for fixed values of geometric asymme-
try η, frictional resistance f and wave-speed ratio β,
while γ varied. As a simple velocity-dependent friction
model was adopted there, we also had ∆ = 1. As ob-
served in Fig. 4a and analyzed theoretically in relation

to Eq. (13), an instability emerges when γ becomes suf-
ficiently large (here somewhere between γ=2 and γ=3).
As γ=µ/(σ0cs∂vf) quantifies the importance of elastody-
namics relative to instantaneous velocity-strengthening
friction, the instability emerges when elastodynamics be-
comes more dominant in the presence of large geometric
asymmetry, η=∞.

Our next step is to isolate the geometric asymmetry
effect embodied in η. We therefore use the parameters
of Fig. 4a-b, together with γ=3, and vary η over a very
broad range, essentially from η = 1 (corresponding to a
symmetric system) to η=∞. =[c(kH)/cs], obtained by
numerically solving Eqs. (10), (17) and (18), is shown
in Fig. 5a. It is observed that for symmetric systems,
η = 1, sliding is stable for all wave-numbers. As η is
increased, =[c(kH)/cs] approaches the x-axis until they
first intersect when η ' 3.3 at kH ∼O(1), signaling the
onset of instability. This result provides direct evidence
for the destabilizing role played by geometric asymmetry
in frictional sliding. As η is further increased, the system
becomes more unstable in the sense of an increased range
of unstable wave-numbers and a larger growth rate. Ob-
viously, the result in the η=∞ limit identifies with that
of Fig. 4a. In fact, the η=∞ analysis well captures the
salient features of the instability spectrum for η values
moderately above the critical value η'3.3.
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Next, we would like to understand the effect of ∆, i.e.
of a difference between the instantaneous response ∂vf
and the steady state response dvf , on the sliding stabil-
ity in the presence of geometric asymmetry. For that
aim, we plot in Fig. 5b =[c(kH)/cs] for various values
of ∆, spanning the whole range 0 < ∆ < 1, and fixed
ξ = 1 and η =∞. It is observed that as dvf decreases
relative to ∂vf , i.e. as ∆ decreases, sliding becomes less
stable, resulting in a broader range of unstable wave-
numbers and a larger instability growth rate. This result
demonstrates the stabilizing role played by steady state
velocity-strengthening friction in frictional sliding. We
note, though, that the qualitative properties of the in-
stability spectrum are rather well captured by the ∆=1
analysis (i.e. for velocity-dependent friction, where no
distinction is made between dvf and ∂vf). We stress that
while ∆ affects the properties of instability, the origin of
instability is still geometric asymmetry (i.e. sufficiently
large η).

Finally, we explore the effect of varying the interfacial
memory length D, corresponding to varying ξ, on fric-
tional stability in the presence of geometric asymmetry.
We plot in Fig. 5c =[c(kH)/cs] for a broad range of ξ
values, and fixed η=∞ and ∆ = 0.5. It is observed that
increasing D (i.e. ξ) tends to stabilize sliding (i.e. shrink
the instability range and growth rate) as it makes the real
contact area less sensitive to slip velocity perturbations.
We also stress here that while ξ affects the range and
growth rate of instability, its origin is geometric asym-
metry (i.e. sufficiently large η).

The results presented in this section provide a rather
comprehensive physical picture of the implications of ge-
ometric asymmetry on the stability of frictional sliding,
and of the interplay between geometric asymmetry and
generic constitutive properties of frictional interfaces,
most notably the effect of the state of the interface and
of an interfacial memory length. The results significantly
extend those presented in Sect. IV A, yet they show that
the simplified analysis properly captured the destabiliz-
ing geometric asymmetry effect. We stress again that
additional solutions to Eq. (10) (with Eqs. (17)-(18)) ex-
ist. These additional solution branches, along with a
more detailed analysis of the multi-dimensional stability
phase-diagram, will be presented in a follow-up report.

The results presented in this section regarding the sta-
bility of homogeneous sliding in the presence of geomet-
ric asymmetry may have far reaching implications for the
dynamics of frictional interfaces in a variety of frictional
systems. Under homogeneous loading applied to the top
of long enough sliding bodies, as assumed in the anal-
ysis, we predict that no homogeneous steady state will
be established experimentally under certain conditions
that were carefully quantified. Instead, the interface sep-
arating geometrically asymmetric bodies will experience
inhomogeneous slip related to the most unstable mode
identified in the analysis. This will lead to spatiotempo-
ral stick-slip-like motion, accompanied by distinct acous-
tic signature as in squeaking door hinges.

In frictional systems where the loading configuration
promotes inhomogeneous slip, the obtained results may
still be relevant. Inhomogeneous slip in slowly driven fric-
tional interfaces typically takes the form of an expanding
creep patch. The conditions under which an expand-
ing creep patch spontaneously generates rapid/unstable
slip, an important process known as nucleation, may be
related to the minimal unstable wavelength in the sta-
bility analysis presented in this section for geometrically
asymmetric systems. In particular, the minimal unstable
wavelength may determine the size at which the expand-
ing creep patch loses stability.

Finally, when rapid slip develops, it is typically medi-
ated by the propagation of rupture modes. Which mode
is actually realized in a given experimental system may
be affected by the stability analysis presented here. In
particular, extended crack-like rupture modes leave be-
hind them a homogeneous sliding state, which may be
precluded under certain conditions predicted by our anal-
ysis. Instead, localized pulse-like rupture modes may de-
velop. Consequently, the results presented in this section
may affect rupture modes selection, a basic open prob-
lem in the field of friction. Additional theoretical and
experimental research should be carried out in order to
fully explore these potential implications.

V. CONCLUDING REMARKS

In this paper, combining experiments and theory, we
showed that frictional interfaces which separate bodies
made of identical materials, but lack geometric reflec-
tion symmetry about the interface, generically feature
coupling between interfacial slip and normal stress vari-
ations. This geometric asymmetry effect is shown to ac-
count for a sizable, and previously unexplained, normal-
stress-induced weakening effect in frictional cracks. New
experiments support the theoretical predictions. We
then showed that geometric asymmetry can destabilize
homogeneous sliding with velocity-strengthening friction
which is otherwise stable. These analyses demonstrate
that the effect of geometric asymmetry resembles, some-
times qualitatively and sometimes semi-quantitatively,
that of material asymmetry (the bi-material effect).

Since no system is perfectly symmetric, we expect
the geometrically-induced coupling between interfacial
slip and normal stress variations to generically exist in
a broad range of man-made and natural frictional sys-
tems. Consequently, it should be incorporated into vari-
ous theoretical approaches, into engineering models and
employed in interpreting experimental observations. The
implications in geophysical contexts, such as in subduc-
tion zone sliding (cf. Fig. 1c), call for further investiga-
tion.
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S1

Supplemental Materials for:
“On the spatial distribution of thermal energy in equilibrium”

S-I. THE RESPONSE FUNCTIONS Mij IN PLANE-STRAIN ELASTICITY

The purpose of this section is to explicitly calculate the relation between the interfacial stress σyi (which is a vector)
and the interfacial displacement u for a two-dimensional (2D) elastic body that occupies the region −∞<x<∞ and
0≤y≤H. The bottom boundary at y=0 is a frictional interface and plane-strain conditions are assumed. Thus, the
equations of motion are those of linear elasticity [S1], i.e.

∇ · σ = ρ
∂2u

∂t2
,

 σxx
σyy
σxy

 =
2µ

1− 2ν

 1− ν ν 0
ν 1− ν 0
0 0 1− 2ν

 εxx
εyy
εxy

 , (S1)

where εij≡ 1
2 (∂iuj + ∂jui) is the infinitesimal strain tensor (not to be confused with the slip displacement discontinuity

vector εi), σ is Cauchy’s stress tensor and µ, ν and ρ are the shear modulus, Poisson’s ratio and mass density,
respectively.

At the top boundary y=H the material is loaded by imposing a horizontal velocity v and a compressive normal
stress σyy=−σ0 (with σ0>0). The homogeneous solution uh consistent with these boundary conditions reads

uh(y, t) ≡
(fσ0
µ
y + vt , − 1− 2ν

2(1− ν)

σ0
µ
y
)
. (S2)

Since the equations of motion are linear, one can decompose a general solution to a sum of the steady solution of
homogeneous sliding and a deviation from it, and write u(x, y, t) = uh(y, t) + δu(x, y, t). The boundary conditions
(BC) at y=H are

∂t(δux) = 0 and δσyy = 0 . (S3)

In what follows, we calculate the response function of the field δu. For easier readability we omit henceforth the
notation δu and denote it simply by u.

Consider now a single Fourier mode, i.e. assume that all fields depend on x and t as ∝ eik(x−ct), for which Eq. (S1)
admits a solution of the form

u =

(
A1αse

−kαsy +A2αse
kαsy +A3e

−kαdy +A4e
kαdy

iA1e
−kαsy −iA2e

kαsy +iA3αde
−kαdy −iA4αde

kαdy

)
eik(x−ct) , (S4)

where cs=
√

µ
ρ and cd=

√
2−2ν
1−2ν cs are the shear and dilatational wavespeeds and we defined αi ≡

√
1− c2/c2i where

i ∈ {s, d}. Ai are 4 unknown amplitudes which are determined by employing 4 boundary conditions. These are
the 2 conditions at y =H, which are given in Eq. (S3), and 2 conditions at y = 0, given by the interfacial stresses
σyi e

ik(x−ct) (which may arise from the frictional contact with another body or any other force-generating loading
conditions). After calculating the amplitudes, one can express the relation between the interfacial displacements ui
and the interfacial stresses σyi in the form ui=Mij(c, k)σyj , where

M =
1

µk
(
Td (α2

s + 1)
2 − 4αdαsTs

) ( TdTsαs(1− α2
s) i

(
Td
(
α2
s + 1

)
− 2Tsαdαs

)
−i
(
Td
(
α2
s + 1

)
− 2Tsαdαs

)
αd(1− α2

s)

)
, (S5)

and Ti ≡ tanh(kHαi). Note that in case that the body under consideration occupies the region in space −H≤y≤0
(with H>0) the analysis remains valid, but H should be replaced by −H. This simply amounts to changing the sign
of the diagonal entries of M in Eq. (S5).

In the main text, a specific example of Eq. (S5) for a semi-infinite half-space y<0 under quasi-static (QS) conditions
was considered in Eq. (1). This is achieved from Eq. (S5) in two steps. First, a semi-infinite half-space y<0 corresponds
to H→−∞, which implies Ti→−1, for which we obtain

M = − 1

µk
(

(α2
s + 1)

2 − 4αdαs

) ( αs
(
1− α2

s

)
−i
(
1 + α2

s − 2αdαs
)

i
(
1 + α2

s − 2αdαs
)

αd
(
1− α2

s

) )
. (S6)
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Second, the QS limit is obtained by taking c→ 0. Note that since αi→ 1 in this limit, all entries of the matrix in
Eq. (S6) vanish, but the prefactor diverges. Their product approaches a finite limit, yielding

M =
1

µk

(
1− ν − i

2 (1− 2ν)
i
2 (1− 2ν) 1− ν

)
. (S7)

This expression identifies with Eq. (1) in the manuscript.

S-II. THE RESPONSE OF A COMPOSITE SYSTEM

Next we aim at calculating the response of a general composite system, composed of two bodies made of different
materials with different H’s in frictional contact. Both bodies are assumed to be infinite in the x-direction. The upper
material, denoted by the superscript (1), is assumed to occupy the region 0<y< H(1) and the lower one, denoted by
the superscript (2), the region −H(2)<y<0 (with positive H(i)). Since αs,d and Ts,d (and µ) may be different for the
different materials, they are labeled with a superscript,

α
(i)
j ≡

(
1− c

c
(i)
j

)1/2

, T
(i)
j ≡ tanh

(
kH(i)α

(i)
j

)
, i ∈ {1, 2}, j ∈ {s, d} . (S8)

Following the previous section, the displacements at the frictional interface y=0 are given as(
u(1)
x

u(1)
y

)
= M (1)

(
σ(1)
xy

σ(1)
yy

)
,

(
u(2)
x

u(2)
y

)
= M (2)

(
σ(2)
xy

σ(2)
yy

)
. (S9)

Since both σxy and σyy are continuous at y= 0, the displacement discontinuity εi (cf. Eq. (2) in the main text) can
be written as (

εx
εy

)
=
(
M (1) −M (2)

)(
σxy
σyy

)
. (S10)

Since we demand εy=0, the relation between σyi and εx takes the form(
σxy
σyy

)
= G

(
εx
0

)
, where G ≡

(
M (1) −M (2)

)−1
. (S11)

We thus write

σxy = µ(1)kGxεx σyy = iµ(1)kGyεx , (S12)

with the definitions Gx ≡ Gxx/(µ
(1)k) and Gy ≡ Gyx/(iµ

(1)k). Note that in symmetric systems M (2) is obtained
from M (1) simply by taking H → −H. Therefore, the diagonal terms of M (1) and M (2) have opposite signs and the
off-diagonal terms are identical, or in other words, M (1)−M (2) is diagonal. Thus, G is also diagonal, i.e. Gy=0, and
no coupling exists between tangential motion and normal traction in this case (i.e. for symmetric systems).

In the case addressed in Sec. IV of the main text we have µ(1) = µ(2) ≡ µ and ν(1) = ν(2) ≡ ν and therefore also
α(1)

s,d = α(2)

s,d ≡ αs,d. Plugging these in Eqs. (S5) and (S11), one obtains

Gx =
c2s
c2

( (
α2
s + 1

)2
αs
(
T (1)
s + T (2)

s

) − 4αd

T (1)

d + T (2)

d

)
, Gy = 2

(
α2
s + 1

) c2s
c2

(
T (2)

d

T (1)

d + T (2)

d

− T (2)
s

T (1)
s + T (2)

s

)
. (S13)

S-III. LINEAR STABILITY ANALYSIS OF HOMOGENEOUS SLIDING

In this section we provide more details regarding the linear stability analysis discussed in Sec. IV of the main text.
The basic constitutive relation for the frictional stress reads

σxy + f(v, φ)σyy = 0 . (S14)
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Taking the variation of this relation with respect to sliding velocity perturbations δv relative to steady state sliding
at v, one readily obtains to linear order

δσxy
δv

+ f
δσyy
δv
− σ0

δf

δv
= 0 , (S15)

where we used the fact that to zeroth order we have σyy =−σ0. Using Eqs. (S12) and the relation δv=−ickδεx we
obtain

µ
(
Gx(c, k) + ifGy(c, k)

)
+ ic σ0

δf

δv
= 0 , (S16)

where f is evaluated at the steady state sliding velocity v. This is Eq. (10) of the main text.

In the simple case of velocity-dependent friction, where f=f(v) (i.e. no state dependence), we simply have δf
δv =f ′(v).

In the general case, we have f = f(v, φ) with φ̇= g( vφD ). In steady state we have φ=D/v such that g(1) = 0, and in
addition we expect g′(1)<0. The perturbation of f takes the form

δf =

(
∂f

∂v
+
∂f

∂φ

δφ

δv

)
δv . (S17)

Avoiding direct reference to ∂φf , we use the fact that in steady state φ=D/v and thus dvf = ∂vf − D
v2 ∂φf . We then

rewrite Eq. (S17) as

δf

δv
=

(
1 + (1−∆)

v2

D

δφ

δv

)
∂vf with ∆ ≡ dvf

∂vf
. (S18)

In order to obtain δφ/δv, we perturb φ̇=g
(
vφ
D

)
by setting v=v+ δv and φ=D/v+ δφ, which to leading order yields

δφ̇ = −ickδφ = g′(1)

(
v

D
δφ+

δv

v

)
. (S19)

This is a linear equation that can be solved for δφ/δv. Plugging the solution into Eq. (S18), we finally obtain

δf

δv
= ∂vf

(
1 +

∆− 1

1− i ξ ccs kH

)
with ξ ≡ Dcs

Hv|g′(1)|
. (S20)

This is Eq. (17) in the manuscript.

A. Simplified analysis: η =∞ and ∆ = 1

In Sect. IV A of the main text we examine the stability of the steady state sliding at a velocity v for which the
frictional stress takes the form σxy = f(v)σ0 (i.e. no state-dependence, ∆ = 1). As detailed above, in this case the
equation that defines the stability spectrum c(k) is

µ
(
Gx(c, k) + if(v)Gy(c, k)

)
+ ic σ0 f

′(v) = 0 . (S21)

We also assume the bottom layer is infinitely deep, which means η→∞. As a result, T (2)

s,d of Eq. (S13) should be
replaced by −1.

As noted in the main text, Eq. (S21) admits multiple solution branches, a few of them might be stable or unstable,
depending on the system parameters and on k. Here we focus on a solution branch which is located near the Rayleigh
wavespeed c= cR in the complex c-plane, cf. Fig. 4b in the manuscript. First, we non-dimensionalize the equations
by defining z= c/cs, q= kH and using the definitions introduced in the main text γ≡µ/(σ0csf ′(v)) and β= cs/cd.
With these, we obtain

Gx = z−2

( (
1 + α2

s

)2
αs (tanh (qαs) + 1)

− 4αd
tanh (qαd) + 1

)
, (S22)

Gy = 2z−2
(
α2
s + 1

)( 1

tanh (qαd) + 1
− 1

tanh (qαs) + 1

)
, (S23)
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FIG. S1. The combinations of the response functions Gx, Gy and G′x which appear in Eq. (S26). β = 0.3 was used.

where αs=
√

1− z2 and αd=
√

1− β2z2, and the implicit spectrum equation reads

γ(Gx + ifGy) + iz = 0 . (S24)

We now expand Eq. (S24) to linear order in δz, where z = zR + δz and zR ≡ cR/cs is the dimensionless Rayleigh
wavespeed. The solution for δz reads

δz ' −
zR − iγ

(
Gx(zR, q) + ifGy(zR, q)

)
1− iγ

(
G′x(zR, q) + ifG′y(zR, q)

) , (S25)

where G′j denotes ∂Gj/∂z evaluated at z= zR. This solution is plotted in Fig. 4a-b of the main text. Since zR<∼ 1,
the functions Gx(zR, q) and Gy(zR, q) are real, as well as their derivatives. Thus, the real and imaginary parts of δz
in Eq. (S25) are

<[δz] = −
(
γfG′y + 1

)
(γfGy + zR) + γ2GxG

′
x(

γfG′y + 1
)2

+ γ2 (G′x)
2

, =[δz] = −γG′x

(
zR + γfGy

)
+ Gx

G′
x

(
1 + γfG′y

)
(
γfG′y + 1

)2
+ γ2 (G′x)

2
. (S26)

The assumption underlying the expansion to leading order in δz is |δz|� zR, where zR is smaller than, but close
to, unity. =[δz] is small by construction as we are interested in understanding the instability threshold, determined

by a zero crossing of =[δz]. To assess the smallness of <[δz], note that αs(zR)=
√

1− z2R�1 due to the proximity of
zR to unity (while αd(zR) remains of order unity because of the factor β). Furthermore, note that Gx(zR, q) contains
a term proportional to α−1s (zR), cf. Eq. (S22). Since ∂z(αs(z)

−1) = z/αs(z)
3, we have Gx(zR, q)/G

′
x(zR, q)∼α2

s�1
and therefore the second term in the numerator of =[δz] is negligible with respect to the first. This is demonstrated
explicitly in Fig. S1. Thus, the criterion for the critical wavelnumber at which =[δz] changes sign is approximately
γfGy(zR, q)≈−zR, which is Eq. (13) of the main text. Finally, we note that the fact that Gx(zR, q)/G

′
x(zR, q)� 1

is self-consistent with our working assumption that <[δz] is small near the threshold. Near threshold, i.e. when
γfGy + zR ≈ 0, we have

<[δz] ≈ − γ2Gx/G
′
x

(G′x)−2
(
γfG′y + 1

)2
+ γ2

� 1 . (S27)

S-IV. RESPONSE FUNCTION OF THE “THIN-ON-THICK” GEOMETRY

In this section we calculate the response function of the “thin-on-thick” geometry discussed in Sec. III of the main
text and depicted in Fig. 1a. The thinner (upper) block is assumed to be under plane-stress conditions, for which the
elastic response is known to be identical to that of plane-strain, cf. Eq. (S7), but with renormalized elastic constants
νplane-stress =ν/(1 + ν) and µplane-stress =µ [S2].
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To calculate the response of the thicker (lower) block, we model it as a semi-infinite half-space. Although in the
main text (and in the experimental setup) the thicker block is the lower one, in order to conform to the notations of
Sec. S-I we calculate here the response matrix of a semi-infinite half-space that occupies the upper half-space y > 0
and at the end transform the result to be valid for the lower half-space y<0. As discussed in Sec. S-I, the response
matrix of a material that occupies the lower half-space y<0 is obtained by inverting the signs of the diagonal elements
of the matrix.

The surface Green function of a half-space, which relates the displacement field u(x, y=0, z) to a point force at the
origin F δ(r), reads [S1, Eq. (8.19)]uxuy

uz

 = − 1

4πµr

2(1− ν) + 2ν x
2

r2 −(1− 2ν)xr 2ν xzr2
(1− 2ν)xr 2(1− ν) (1− 2ν) zr

2ν xzr2 −(1− 2ν) zr 2(1− ν) + 2ν z
2

r2

FxFy
Fz

 , (S28)

where r ≡
√
x2 + z2. As explained in the main text, the following properties are used:

(a) We examine the response along the symmetry line of the interface, i.e. y=z=0.

(b) We set Fz = 0, i.e. no out-of-plane forces emerge, consistent with the plane-stress assumption of the thinner
block.

(c) Fx, Fy are constant along the width −W2 ≤z≤
W
2 and consequently take the form

Fi(x, y = 0, z)=eikxH
(
W
2 − z

)
H
(
W
2 + z

)
σiydx dz ,

where H is Heaviside’s step function.

Since uz vanishes on the symmetry line z = 0 due to reflection symmetry through the x−y plane, we will only be
interested in the x, y components of the displacement field. Points (a)+(b) imply(

ux
uy

)
= − 1

4πµr

(
2(1− ν) + 2ν x

2

r2 −(1− 2ν)xr
(1− 2ν)xr 2(1− ν)

)(
Fx
Fy

)
. (S29)

Using point (c), we obtain the interfacial displacements by integrating over the contact region

(
ux
uy

)
= − 1

4πµ

∫ ∞
−∞
dx′
∫ W

2

−W2

dz′
eikx

′√
(x− x′)2 + z′2

2(1− ν) + 2ν (x−x′)2

(x−x′)2+z′2 −(1− 2ν) x−x′√
(x−x′)2+z′2

(1− 2ν) x−x′√
(x−x′)2+z′2

2(1− ν)

(σxy
σyy

)

= −e
ikx

4πµ

∫ ∞
−∞
dX

∫ W
2

−W2

dz′ eikX

(
2(1−ν)

(X2+z′2)1/2
+ 2νX2

(X2+z′2)3/2
(1− 2ν) X

X2+z′2

−(1− 2ν) X
X2+z′2

2(1−ν)
((x−x′)2+(z−z′)2)1/2

)(
σxy
σyy

)
. (S30)

where we defined X≡x′−x. The result of this integration is, by definition, the interfacial response matrix M (note
that the eikx prefactor is not included in M). That is, if we define

Iα =

∫ ∞
−∞
dX

∫ W
2

−W2

dz′
Xα−1

(X2 + z′2)α/2
eikX , α ∈ {1, 2, 3} , (S31)

then M is given by

M = − 1

4πµ

(
2(1− ν)I1 + 2νI3 (1− 2ν)I2
−(1− 2ν)I2 2(1− ν)I1

)
. (S32)

The integration is easier in polar coordinates and it is more convenient to measure the polar angle from the z-axis,
cf. Fig. S2. Then, the integrals of Eq. (S31) take the form

Iα =

∫ π

−π
dθ

∫ |W/2 cos θ|

0

dr eikr sin θ(sin θ)α−1 =

∫ π

−π

dθ

ik

[
ei
kW
2

sin θ
| cos θ| − 1

]
(sin θ)α−2 . (S33)
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FIG. S2. A sketch of the integration domain of Eq. (S31) and the polar coordinates of Eqs. (S33)-(S35).

The integrand is symmetric with respect to the reflection z→−z and thus the integral over θ can be performed on
the domain −π2 ≤θ≤

π
2 . Over this domain the cosine function does not change sign and we have

Iα =
2W

iq

∫ π/2

−π/2

[
ei
q
2 tan θ − 1

]
(sin θ)α−2dθ , (S34)

where q≡kW was introduced. Employing the change of variables u = tan θ we obtain

Iα =
2W

iq

∫ ∞
−∞

(
ei
qu
2 − 1

)
uα−2

(1 + u2)α/2
du . (S35)

Using some straightforward manipulations, the explicit integration can be performed using [S3, Eq. (3.771.2)], yielding
finally

I1(q) =
2W

q

∫ q

0

K0

(
q′

2

)
dq′ ≡ 2πW

q
B(q) , I2 =

2πW

q
i
(

1− e−
|q|
2

)
, I3 = 2WK0

(
|q|
2

)
≡ 2πW

q
C(q) , (S36)

where K0(z) is the modified Bessel function of the second kind of order 0.
Using the expressions for I1, I2 and I3 in Eq. (S32), we obtain finally

M = − 1

µk

 (1− ν)B(q) + νC(q) i
2 (1− 2ν)

(
1− e−

|q|
2

)
− i

2 (1− 2ν)
(

1− e−
|q|
2

)
(1− ν)B(q)

 . (S37)

This analysis was performed for the upper half-space y > 0. As discussed above, the response matrix of the lower
half-space, y<0, is obtained by inverting the sings of the diagonal elements, yielding

M =
1

µk

 (1− ν)B(q) + νC(q) − i
2 (1− 2ν)

(
1− e−

|q|
2

)
i
2 (1− 2ν)

(
1− e−

|q|
2

)
(1− ν)B(q)

 . (S38)

A. Mapping to an effective 2D material

How does the response matrix of Eq. (S38) relate to that of an infinite 2D plane-strain material, i.e. Eq. (S7)? We
want to write Eq. (S38) as

M eff =
1

µeffk

(
1− νeff − i

2 (1− 2νeff)
i
2 (1− 2νeff) 1− νeff

)
. (S39)

One can show that B(q) approaches unity and C(q) vanishes in the limit q → ∞. Thus, in the large q limit (i.e.
for wavelengths much smaller than W ), Eq. (S38) coincides exactly with Eq. (S39), which means in this limit the
response of the thicker (lower) block is described by 2D plane-strain elasticity (as expected physically for wavelengths
much smaller than W ).

Such a mapping does not emerge as cleanly for finite q’s. Clearly, for M of Eq. (S38) to have the same structure
as M eff of Eq. (S39), the C(q) term in Eq. (S38) should be negligible with respect to the B(q) term. As shown in
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FIG. S3. The functions B(q) and C(q), cf. Eq. (S36), as a function of q. It is observed that C(q) is negligible with respect to
B(q) except for very small q.

Fig. S3, this is actually the case except at very small q. After neglecting the C(q) term, a mapping between Eq. (S38)
and Eq. (S39) is obtained by equating the two independent terms in each matrix, i.e. by solving the two equations

(1− ν)B(q)

µ
' 1− νeff

µeff
,

(1− 2ν)
(
1− e−

q
2

)
µ

' 1− 2νeff

µeff
. (S40)

The q-dependent solution to these equations is

µeff(q) ' µ

2(1− ν)B(q)− (1− 2ν)
(
1− e− q2

) , νeff(q) '
(1− ν)B(q)− (1− 2ν)

(
1− e−

q
2

)
2(1− ν)B(q)− (1− 2ν)

(
1− e− q2

) , (S41)

which is identical to Eq. (7) in the main text. As stated above, in the limit q→∞ we have B(q)→ 1 and clearly
µeff→µ and νeff→ν. In the opposite limit, q→0, C(q) is no longer negligible compared to B(q) and a clean mapping
to 2D does not emerge, i.e. the problem is fully 3D.

The effective constants for intermediate values of q are plotted in Fig. 3 of the main text. It is seen that for the
chosen value of ν= 0.33 we have µeff>µ for all experimentally relevant values of q. For completeness, we note here
that at very large q, when µeff(q) approaches µ, µeff minutely deviates from µ and approaches it from below in the
limit. That is, the effective material contrast µeff/µ is practically unity, but slightly smaller. For realistic values of ν,
this effect is negligible and occurs at large q’s: For ν=0.3 the minimal value of µeff/µ is 1− 9.7·10−7 and is obtained
for q≈19.3. The corresponding numbers for ν=0.2 and ν=0.4 are, respectively, min{µeff/µ}=1− 7·10−4, 1− 8·10−8

which are obtained at q = 8.6, 45.

S-V. EXPERIMENT

A. Sample construction

The experiments reported on in the main text study the frictional motion of two poly(methyl methacrylate) (PMMA)
blocks and compare two geometrically different experimental setups. Both experimental setups were conducted using
same upper block of dimensions 200 mm×100 mm×5.5 mm in the x, y and z direction, respectively (see Fig. 1a in
the main text) while the lower block was of different geometry in the two setups. In the “thin-on-thin” (symmetric)
experiment, a lower block of 250 mm ×100 mm×5.5 mm dimensions was used [S4]. The “thin-on-thick” experimental
setup used a thicker lower block of 290 mm ×28 mm ×30 mm dimensions [S5]. The two blocks were pressed together
by an external normal force (∼ 4.5 MPa nominal pressure).

The shear and longitudinal wavespeeds, cs and cd respectively, were obtained by measuring the time of flight of
ultrasonic pulses, yielding cs = 1345±10 m/s and cd = 2700±10 m/s. Due to the high frequency (5 MHz) of the
ultrasonic pulses used, the measured cd corresponds to plane-strain conditions (εzz=0). Using these measured values,
cd for plane stress (σzz=0) was then calculated to be cd=2333± 10 m/s. The corresponding Rayleigh wave speed is
cR≈ 1237 m/s. This velocity is indeed consistent with the maximal measured front velocities for the “thin-on-thin”
setup. The measured maximal velocities for the “thin-on-thick” setup are systematically larger, by about 2%, quite
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close to the values of cR for plain-strain conditions (1255 m/s). This value of cR, as well as the assumption of plane-
strain conditions, were used in previous work [S5] where the “thin-on-thick” setup was utilized. The experimental
loading system, strain and contact area measurements are described in detail in [S5]. We specify here only the main
differences of the current study.

B. Strain measurements

We used miniature Vishay 015RJ rosette strain gages for local strain measurements that were mounted ' 3.5mm
above the frictional interface (top block only). Each rosette strain gage is composed of three active regions (each
0.34mm ×0.38mm size). Each active region provides a strain component, εi, along the directions denoted by the
yellow arrows in Fig. S4.

1

2



FIG. S4. Geometry and dimensions (in mm) of a single rosette strain gauge. The black rectangles represent the active area of
the measuring components, ε1, ε2 and ε3. Yellow arrows represent the direction of the measured strains.

Electrical resistance strain gages can be calibrated to a high precision when are used on very stiff materials such as
various metals. However, when these strain gages are embedded on less stiff materials such as plastics, their presence
might locally alter the strain field in their surroundings (see [S6] and references within). Analytical models and
numerical efforts exist in the literature to estimate this effect and properly calibrate the measurement of strain.

For purposes of calibration, a rosette strain gage was glued at the center of 100 mm diameter PMMA disk (7.5
mm width). The disk was subjected to radial compression at various angles with respect to the rosette axis (y axis
in Fig. S4). We assumed that a transformation that relates the altered strain field due to the rosette presence (here
denoted by ε′i) to the “actual” strain field in its absence (εi) could be found. We indeed found that the calibration
measurements can be described by a phenomenological transformation of the following form

ε′1 = a1 · ε1 + k1 · εxx + g1 · εxy , (S42)

ε′2 = a2 · ε2 + k2 · ε3 + g2 · εx̃ỹ , (S43)

ε′3 = a2 · ε3 + k2 · ε2 + g2 · εx̃ỹ , (S44)

where ai are corrections for the gage factors, ki represent the transverse sensitivity of the strain gages and gi represent
shear sensitivities. (x̃, ỹ) is the coordinate system rotated by 45◦ relative to that of ε1 (see Fig. S4). a2 =1 was chosen,
as only the relative calibration of the components was of interest. Due to reflection symmetry with respect to the y
axis, coefficients of ε2 and ε3 are identical and g1 =0. This reflection symmetry does not exist with respect to ε2 and
ε3, and hence shear sensitivity can not be excluded. As the effects of the elastic mismatch of the rosette configuration
have not been previously considered, we note that shear sensitivity has not been discussed in the literature. Here, we
find that shear sensitivity exists and is crucial for proper gage calibration. Our calibrations revealed that a1≈ 0.95,
k1≈−0.08, k2≈0 and g2≈0.1 (details of the calibration procedure will be published elsewhere). Once ε′i are measured,
εi can be calculated using an inverse transformation.
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C. Experimental results

Typical examples of strain measurements, for both experimental setups, are presented in Fig. S5. In previous work
[S4, S5], it was found that the strains in vicinity of a rupture tip are well described by the singular Linear Elastic
Fracture Mechanics (LEFM) solutions for ideal shear cracks with a single fitting parameter, the fracture energy Γ [S7].
It was found that for a wide range of rupture velocities, c, Γ is approximately constant (Γ≈1.1 J/m2). Some systemic
discrepancies (at most 30%) are observed at extreme rupture velocities (cf. Fig. S5b) between the measured strains
and LEFM predictions. These discrepancies may result from either errors involved in the strain gage calibration (see
previous section), or, possibly, violations of our implicit 2D assumption.
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FIG. S5. Comparison of strain and contact area measurements for “thin-on-thin” (blue symbols) and “thin-on-thick” (red
symbols) geometries. a. Strain tensor variations, ∆εij , after subtracting the initial strains from εxx and εyy and the residual
strain from εxy. Strains were measured 3.5 mm above the frictional interface and plotted with respect to the location of the
rupture tip, xtip. The singular term of the LEFM solution, that is plotted in black (Γ = 1.1 J/m2, c is noted in the panels),
describes rather well both geometrical setups. The apparent discrepancy in the shear component, ∆εxy, for x−xtip > 0 was
shown to be related to nonsingular LEFM terms, as discussed in [S4]. These strain profiles correspond to two of the examples
presented in Fig. 2b of the main text. b. Measured ∆εxx and ∆εyy were characterized by their peak values, εmxx and εmyy,
respectively, as denoted in a(left). The prediction based on the singular LEFM solution, which corresponds to the black line,
successfully captures the measurements with some systematic discrepancies at c>0.98cR c. The dependence of the undershoot
∆A/A∞ on εmxx for both geometries. Panel c here eventually transforms into Fig. 2c in the manuscript. This is done, as
explained below (see text), in two steps. First, the measurements of ∆εxx at y=3.5 mm are extrapolated to the interface, i.e.
∆εxx at y=0. Then, ∆εxx(y=0) is related to the slip velocity, ε̇x, according to ε̇x =−2c·∆εxx(y=0).

In this work we are especially interested in the rupture dynamics at high rupture velocities 0.9cR<c<cR. While
direct measurement of c can be performed in our system to ∼2% precision, we can significantly decrease this experi-
mental uncertainty by exploiting the significant growth of the strain amplitudes as c→cR [S5]. Using this, we improve
our measurements of c by fitting the measured ∆εxx amplitudes to the singular solution, while assuming that Γ does
not significantly change in the vicinity of cR and that the system obeys plane-stress boundary conditions. Using this
method, c is the only fitting parameter. Results of this procedure are demonstrated in Fig. S5a and are employed to
determine c in Fig. 2 of the main text.

Note that the assumption of plane-stress conditions should be violated for the “thin-on-thick” setup. As mentioned
above, the measured asymptotic velocities for the “thin-on-thick” setup are about 2% above cR for plane-stress.
Nevertheless, for simplicity, we have used the plane-stress assumption in the above analysis. This, therefore, may
lead to systematic errors in our estimated values of c (for example, the directly measured velocities for the 3 highest
velocities in Fig. 2a are all ' 1255 m/s). The use of ∆εxx, however, enables us to quantitatively differentiate
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between the different high c measurements, despite possible systematic errors in determining the absolute values of
c. Consequently, the rupture propagation velocities stated in the legend of Fig. 2b in the manuscript should be
understood in relative terms when normalized with respect to the relevant cR.

1. Slip velocity estimation

Figure S5c demonstrates that ∆A/A∞ is correlated with the amplitude of εxx, εmxx, directly measured at 3.5mm
above the frictional interface. Relating ∆A/A∞ to the slip velocity, defined at y=0, is of great interest. The LEFM
singular solution, which describes our measurements well at y= 3.5mm, predicts that the slip velocity (and actually
all strain and stress components) should be singular at y=0 and x=xtip. These singularities are naturally regularized
at the crack tip. In this section we will explain the underlying assumptions that enable us to estimate the slip velocity
and relate the direct measurements of ∆εxx presented in Fig. S5c to the extrapolated slip velocities in Fig. 2b of the
main text.
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FIG. S6. Slip velocity estimation. a. The nonsingular cohesive zone model in which the shear stress is reduced exponentially
behind the crack tip once the peak strength, τp, is reached. The model is entirely defined by the measured values of Γ and
Xc(c). The example provided is for c = 0.9cR. (inset) Snapshots of ∆εxx for various heights above the frictional interface
(c=0.9cR). The model is indistinguishable from the singular solution at the height of strain measurements (y=3.5mm). Once
the frictional interface (y= 0) is approached, amplitudes of ∆εxx significantly deviate from their value at y= 3.5mm. b. The
amplitudes of ∆εxx on the frictional interface are related to amplitudes of ∆εxx at y= 3.5mm, by virtue of the model. The
arrows indicate the crack velocities; as c→cR the amplitudes diverge.

We first note that even in the extreme case (c = 0.993cR) presented in Fig. S5, where ∆A/A∞ ≈ 0.25, strain
measurements obtained in both experiments with different geometrical setups are surprisingly similar, where only
some differences are observed at x−xtip < 0. These strain differences are only minor when compared to the large
qualitative difference in strain measurements presented in [S8], where strong material contrast is considered. This
observation enables us to adapt a perturbative approach in which we invoke the simplest cohesive zone model valid
for the “thin-on-thin” case to estimate the slip velocity at the interface for both geometrical setups. At this stage,
however, we are not able to estimate the accuracy of this assumption for the “thin-on-thick” setup.

In the non-singular cohesive zone model [S9, S10], weakening initiates once the shear stress has reached a finite
peak strength, τp, above the residual value, τr of the shear stress. The shear stress gradually decreases according to
a prescribed shear stress profile, τ(x/Xc)=τp · τ̃(x/Xc). Xc is defined to be the cohesive zone size. Far ahead of the

rupture tip the solution matches the square root singular form, i.e, σxy(x�Xc, y=0)=KII/
√

2πx. Therefore, τp, Xc

and Γ=K2
II/E, are related through [S10]

KII = τp ·
√
Xc ·

√
2

π
·
∫ 0

−∞

τ̃(ξ)√
−ξ

dξ (S45)

In previous work [S5] it was argued that the length scale over which A is reduced provides an estimate of Xc. It
was shown that Xc contracts as c→ cR. As would be expected from elastodynamic theory, these measurements were
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quantitatively described by Xc(c) = X0
c /fII(c), where X0

c = Xc(c→ 0) ≈ 2.5 mm and fII(c) is a known function
predicted by LEFM [S7].

We use the experimentally measured variation of Xc, a constant value of Γ and assume τ̃(ξ) = eξ (see example in
Fig. S6a). These constraints result in τp≈1.1 MPa, which is independent of c. Once the model is specified, all of the
dynamic fields in the bulk can be calculated. For example, snapshots of ∆εxx for various heights above the frictional
interface are plotted in Fig. S6a-inset. This model was used to relate the measured amplitudes of ∆εxx at y=3.5 mm
to amplitudes of ∆εxx on the frictional interface for various rupture velocities (Fig. S6c). Note that the systematic
discrepancies at c > 0.98cR shown in Fig. S5 may be further amplified by the non-linearity of the transformation.
Finally, the slip velocity is calculated according to v= ε̇x =−2c·∆εxx(y= 0) and the direct measurements presented
in Fig. S5c are converted and plotted in Fig. 2 of the main text.
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