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Many practical systems can be described by dynamic networks, for which modern technique
can measure their output signals, and accumulate extremely rich data. Nevertheless, the network
structures producing these data are often deeply hidden in these data. Depicting network structures
by analysing the available data, i.e., the inverse problems, turns to be of great significance. On one
hand, dynamics are often driven by various unknown facts, called noises. On the other hand, network
structures of practical systems are commonly nonlinear, and different nonlinearities can provide
rich dynamic features and meaningful functions of realistic networks. So far, no method, both
theoretically or numerically, has been found to systematically treat both difficulties together. Here
we propose to use high-order correlation computations (HOCC) to treat nonlinear dynamics; use
two-time correlations to treat noise effects; and use suitable basis and correlator vectors to unifiedly
depict all dynamic nonlinearities, topological interaction links and noise statistical structures. All
the above theoretical frameworks are constructed in a closed form and numerical simulations fully
verify the validity of theoretical predictions.

I. INTRODUCTION

In recent decades, the topic of dynamical complex net-
works has attracted great attention in interdisciplinary
fields due to its theoretical importance and practical sig-
nificance [1, 2]. It is well aware that network dynamic
structures is determined in great extent by network struc-
tures, mainly classified by dynamics of local nodes and
interactions between the nodes of networks. In practi-
cal cases, we can measure the outputs of network nodes
while the structure of networks are often deeply hidden
in the measured data. Therefore, it turns to be crucial
to develop effective methods to depict network structures
from the available data of nodes. This is the so-called in-
verse problem, which becomes one of the most important
topics in the data analysis of complex networks in wide
crossing fields, in particular, in biology and social science
[3–7].
Various methods have been proposed to treat the in-

verse problems [8]. There are several typical difficulties
in practice. First, in most of realistic cases diverse facts,
termed as noises, are involved in the data production.
These noises make the structure depiction difficult be-
cause they are unknown on one hand, and essentially in-
fluence the data analysis on the other hand. Different sta-
tistical methods based on various correlation computa-
tions have been suggested to treat the noise problems [9–
14]. Second, in almost all realistic network systems vari-
ous nonlinearities play crucial roles in generating diverse
characteristic features and significant functions. How-
ever, so far all works in treating network inference have
made approximations either neglecting noise influences

∗ ganghu@bnu.edu.cn; † shwang@bupt.edu.cn

[15–20], or considering linear dynamics and interactions
(or linearized these items) [9–14]. No one considered the
two facts jointly. These methods fail when both noise ef-
fects and nonlinearities of network structures are crucial
for the data production.
In this presentation we consider the inverse problem of

noise-driven nonlinear dynamic networks. The key point
in dealing with this problem is: We compute high-order
correlations to treat possible nonlinear structures, and
with the help of these correlations we convert the statis-
tics of inference of noise-driven nonlinear networks to lin-
ear matrix algebraic computations. In the next section
the idea and the method how to use high-order corre-
lation computation (HOCC) to infer nonlinear dynamic
networks are explained, including to depict all the inter-
nal node dynamics, mutual interactions and correlation
structures of multiplicative noises. In Sec.III we first ap-
ply the HOCC method to a simple three node network,
the well known Lorenz equation, driven by white noises.
And then large complex networks, with diverse nonlinear-
ities in local dynamics; complicated links between nodes;
and diverse noise correlations, are considered. The effec-
tiveness of the HOCC algorithm are again well justified.
In Sec.IV networks with complicated nonlinear phase dy-
namics, nonlinear interactions and nonlinear multiplica-
tive noise statistics are investigated. The HOCC method
with properly chosen basis vectors and high-order corre-
lation types are applied to satisfactorily overcome all the
difficulty by there diverse complexities. Section V gives
some conclusion and perspective of the applications of
the method in practical inverse problems.

http://arxiv.org/abs/1605.05513v3
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II. INFERRING NONLINEAR NETWORKS BY
USING HIGH-ORDER AND TWO-TIME-POINT

CORRELATIONS: THEORY

Let us consider a very general noise-driven nonlinear
network

ẋ(t) = f(x(t)) + Γ(t) (1)

x = (x1, x2, · · · , xN )T

f = (f1, f2, · · · , fN)T

Γ = (Γ1,Γ2, · · · ,ΓN )T

where noises Γi(t), i = 1, 2, · · · , N , represent impacts
from microscopic world, and they are expected to have
very short correlation time tcor ≪ 1, much smaller
than the characteristic time of deterministic dynamics
assumed to be of order 1. Then noises are approximated
as white ones,

< Γi(t) >= 0, < Γi(t)Γj(t
′) >= Qij(x)δ(t− t′) (2)

with i, j = 1, 2, · · · , N . Here noises are sufficiently strong
so that any deterministic solutions are impossible [16, 20].
It is emphasized that this is the first time to consider
multiplicative noises in the study of inverse problems due
to its essential difficulty, though this type of noises exist
extensively in practical circumstances [22–25]. In Eq.(1)
we have all measurable data in our hand, namely, we
measure

x(t1),x(t2), · · · ,x(tk), · · · ,x(tL) (3)

tcor < ∆t = tk+1 − tk ≪ 1; k = 1, 2, · · · , L; L ≫ 1

With ∆t ≪ 1 we can compute velocities of x in Eq.(1)
and with L ≫ 1 we have sufficiently large samples to
perform statistics. These conditions are not always avail-
able, but they do be available in many important practi-
cal experiments, or can be realized on purpose in case of
need.
In Eq.(1) all functions fi, i = 1, 2, · · · , N are un-

known. The noise statistic matrix Q̂(x) = (Qij(x)) are
unknown either. Only the output variables (3) are avail-
able for analysis. The task is to depict dynamic functions
fi, and noise statistics Qij , i, j = 1, · · · , N , including
their nonlinearities of node dynamics and interactions
between nodes. This task can be fulfilled either with-
out noise Qij = 0, i, j = 1, · · · , N [15–20] or with field
f = (f1, · · · , fN)T linear [9–14]. With both strong noises
and essential nonlinearities effective in Eq.(1), there has
been no method making network structure depiction, and
this is the task of the present work.
For start we assume fis can be very generally expanded

by a certain basis set [16, 21]

fi(x) =

∞
∑

µ=1

Ai,µYi,µ(x), i = 1, 2, · · · , N (4)

where all constant coefficients Ai,µ, µ =
1, 2, · · · ,Mi, · · · ,∞ are unknown, while all func-
tions Yi,µ(x) called as bases are known. For treating

nonlinearities in f(x), the chosen basis set should be
complete for expanding field f(x). In Eq.(1) we give a
freedom to use different basis sets suitable for expanding
different field f(x). It seems that the expansions
of Eq.(4) should include infinite terms for arbitrary
functions f(x). One has to truncate the expansion to
finite terms. There is a systematical and self-consistent
method, described in following section to make such
truncation. At the present, we just assume a truncation
at Mi for fi(x) expansion. Then Eq.(4) can be simplified
as

fi(x(t)) = AiYi(t) (5)

Ai = (Ai,1, Ai,2, · · · , Ai,Mi
)

Y T
i = (Yi,1(t), Yi,2(t), · · · , Yi,Mi

(t))

Without noise Γi(t), all the unknown coefficients can
be solved by algebraic equations if sufficient data are
accumulated [16, 20]. With strong noises the inference
computations are much more difficult. Here for network
depiction we use a method to compute two-time corre-
lations to filter noise effect [11, 14], together with using
high-order correlations on the chosen basis set to treat
nonlinearities of the networks and multiplicative noises
for depiction.
For arbitrary node i in the network, multiplying Eq.(1)

from the right side by a correlator vector ZT
i (x(t− τ))

Zi(x) = (Zi,1(x), Zi,2(x), · · · , Zi,Mi
(x))T (6)

and computing all related correlations, we obtain a linear
matrix algebraic equation

Bi(−τ) = AiĈi(−τ)+ < Γi(t)Z
T
i (t− τ) > (7)

with

Bi(−τ) = (Bi,1(−τ), Bi,2(−τ), · · · , Bi,Mi
(−τ))

Bi,µ(−τ) =< ẋi(t)Zi,µ(t− τ) >

=
1

L− p

L
∑

k=p+1

ẋi(tk)Zi,µ(tk−p) (8)

ẋi(tk) =
x(tk+1)− x(tk)

∆t
, τ = p∆t

Ĉi(−τ) = (Ci,µν)

= (
1

L− p

L
∑

k=p+1

Yi,µ(tk)Zi,ν(tk−p))

All correlators Z1(x(t)),Z2(x(t)),· · · ,ZN (x(t)) can be
arbitrarily chosen under the condition that their entries
must not be linearly dependent on each other so that
matrix Ĉi has full rank, and is invertible. In Eq.(8) we
should have tcor < τ ≪ 1 with τ being larger than the
correlation time of noises, and much smaller than the
characteristic times of deterministic network dynamics,
previously assumed to be of order 1. Now the noise-
correlator correlation must vanish

< Γi(t)Zi(t− τ)T >≈ 0, for τ > tcor (9)



3

since the fast-varying noises of Eq.(2) have no correla-
tion with any variable data of earlier times, disregarding
any forms of multiplicative noises Qij(x). Now with the
noise-decorrelation of Eq.(9), Eq.(7) can be reduced to

Bi(−τ) = AiĈi (10)

leading to

Ai = Bi(−τ)Ĉ−1
i (11)

and with Bi(−τ), Ĉi and Ai being given in Eqs.(8) and

(5), respectively. We delete the notion (−τ) in Ĉi be-
cause τ ≪ 1 does not considerably change the values
of Ci,µν . All elements of vector Bi(−τ) and matrix Ĉi

can be computed with known output variables x(t), and
thus all the unknown linear and nonlinear coefficients in
Eq.(1) can be depicted, though the noise statistics Q̂ for
Eq.(2) is unknown.
Statistical features of noises play crucial roles in the

data production. Depicting noise statistics is also im-
portant to understand the nature of data and to predict
future data production in practical cases. It is desirable
that noise matrix Q̂(x) can be also easily depicted from
the variable data by the a HOCC algorithm similar to
the above

Qij(x) =

Mij
∑

µ=1

Dij,µqij,µ(x)

Dij = ∆BijĜ
−1
ij (12)

where

∆Bij,ν(τ) = < ẋi(t)(xj(t+ τ)− xj(t− τ))q′ij,ν (x(t− τ)) >

=
1

L− 2p

L−p
∑

k=p+1

ẋi(tk)(xj(tk+p)− xj(tk−p)) ·

q′ij,ν(x(tk−p))

Gij,µν =
1

L− p

L
∑

k=1+p

qij,µ(x(tk))q
′
ij,ν (x(tk−p)) (13)

where qij,µ(x) are known bases for expanding Qij(x);
Gij,µν are matrix elements computable from correlations
of bases qij,µ and corresponding correlator q′ij,ν ; andDij,µ

are unknown coefficients to be depicted. The detailed
derivation of Eqs(12) and (13) are presented in Appendix.
For numerical simulation we can arbitrarily choose the

correlator vectors and we in the following computations
simply take,

Zi,µ = Yi,µ, i = 1, 2, · · · , N ;µ = 1, 2, · · · ,Mi (14)

q′ij,µ = qij,µ, i, j = 1, 2, · · · , N ;µ = 1, 2, · · · ,Mij

which can easily guarantee the invertibility of Ĉi and
Ĝij .
Now four novel points of the present method should

be emphasized. (i) High-order correlations are used to
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FIG. 1. Time sequences and trajectories of noise-driven
Lorentz system. Parameters are taken as σ = 10, ρ = 28,
β = 8/3. (a)(b) Additive noises Qij = 50δij are applied.
(c)(d) Multiplicative noises a1 = 10, a2 = −10, b1 = 10,
b2 = −5, c1 = 20, c2 = 1 in Eq.(16) are applied. Data are
chaotic and strongly random. Trajectory in (d) is consid-
erably different from that of (b) for different noise factors,
though Lorentz dynamic field is not changed in all (a)-(d).
Any deterministic solutions, ignoring noise effects are not suc-
cessful.

depict nonlinear structure of networks without pursuing
any linearization approximation; (ii) Two-time-point cor-
relations have been proposed to treat noise-decorrelation,
and the time difference τ can be adjusted to suit different
noise conditions; (iii) We suggested to freely design basis
set Yi, qij and correlator set Zi, q

′
ij to construct corre-

lation matrices under the condition of invertibility. (iv)
For the first time, multiplicative noises are taken into ac-
count in the study of inverse problems. Multiplicative
factors can be inferred together with the nonlinear fields
and interaction structures. In Eq.(12)(13) qij,µ(x) and
q′ij,µ(x), µ = 1, 2, · · · ,Mij , play roles of vector bases for
expanding multiplicative factors Qij(x), just like bases
Yi(x) and Zi(x) for computing fields fi(x) in Eq.(5)(6).
And Mij is the truncation in Qij(x) expansion like Mi

for fi(x).

III. INFERENCE OF NOISE-DRIVEN
NETWORKS

We first consider a three-node nonlinear network, the
Lorenz system, one of the most famous models in chaos
study [26]

ẋ = f1(x, y, z) + Γ1(t) f1 = σ(y − x)

ẏ = f2(x, y, z) + Γ2(t) f2 = x(ρ− z)− y (15)

ż = f3(x, y, z) + Γ3(t) f3 = xy − βz

with certain given multiplicative noises

Q =





(a1 + a2
√

|z|)2 0 0

0 (b1 + b2
√

|x|)2 0

0 0 (c1 + c2
√

|y|)2





(16)
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Though network (15) looks very simple and low-
dimensional, the inverse problem has not yet been solved
so far with available time sequences and trajectories
shown in Figs.1 where both noise and nonlinearity essen-
tially effect and noises with different multiplicative fac-
tors can produce considerably different data sets. Now we
apply the general algorithms Eqs.(11) to this system. For
start we should choose bases for field expansion. With-
out particular information, power series can be naturally
chosen as a candidate basis set. Then we assume the
following bases with truncation M ,

Yi = Zi = Y , i = 1, 2, 3

Y = (Y1, Y2, · · · , YM ) (17)

= (1, x, y, z, x2, xy, xz, y2, yz, z2, · · · )

Now we introduce an idea of self-consistent checking
of the truncation. At first we take M0

i bases in succes-
sion of Eq.(17) and compute all elements of correspond-

ing Ĉi and Bi. Then we consider some more bases, i.e.,
M1

i > M0
i bases in Eq.(17) as the truncated basis set,

and obtain further results of {Ai(M
1
i )|M

1
i > M0

i }. M0
i

is concluded as a suitable truncation if the results satisfy
two conditions. Condition (i): Ai(M

1
i ) ≈ Ai(M

0
i ) for all

coefficients obtained with M0
i truncation; Condition (ii):

Ai(M
1
i ) ≈ 0 for all coefficients of bases not included by

M0
i truncation. We conclude that M0

i is a proper trun-
cation. If any of the above two conditions is not satisfied
we should go on to include more bases in (17), M2

i > M1
i ,

M3
i > M2

i and so on, till the two conditions are satisfied

together at Mk
i truncation. We then conclude Mk−1

i is
the suitable truncation. Compressive sensing methods
are possible to be used for technically fasting the above
truncation process [16, 27, 28]. In this paper we just use
the basic method of seeking truncations from low orders
to high orders.
A self-consistent justification on correct truncation for

model Eq.(15) is illuminated in Fig.2. In Fig.2(a), it
is apparent that M1 = M2 = M3 = 4 is not a proper
truncation, since the depiction is considerably different
from that of Mi = 7. However, the depiction can well
satisfy the above two criterions after Mi > 7. Therefore
we can conclude it is enough to truncate the expansion at
Mi = 7 with properly chosen bases in Eq.(17). In Fig.1(c)
we compare the depiction results for Mi = 7 with the
actual Ai,µ, and the nonlinear and interactive structures
of Eq.(15) are recovered with very high precision.
For depicting noise statistics we construct expansion

and correlators in the similar ways as Yi = Zi in Eq.(17).
By applying Eqs.(12)(13) the coefficients of multiplica-
tive factors of noises Gij,k can be computed. The results
are shown in Fig.2(d). It is sprising that with the ran-
domly behaved data of Fig.1 only we can correctly ex-
plore not only the nonlinear fields and interaction struc-
tures, but also the detailed multiplicative behaviors of
noises.
We can also use the results of depiction to reconstruct

the Lorentz network, simulate the depicted dterministic
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FIG. 2. Inference computations of Eq.(15). Red circles are
for additive noises while blue squares for multiplicative ones.
(a) Depiction results obtained by Eq.(11) with Mi = 4 (only
consider 1 and linear bases) plotted against that with Mi = 7
(add bases x2, xy and xz). (b) The same as (a) with Mi =
7 plotted against that with Mi = 10 (include all quadratic
bases). (c) Depiction results obtained by Eq.(11) with Mi = 7
plotted against the actual coefficients, and all plots are around
the diagonal line, indicating correct depiction at Mi = 7. (d)
Depiction of Qii derived by Eq.(12) is plotted against actual
ones. All plots are around the diagonal line, indicating the
successfulness of the depiction of noise statistics.

FIG. 3. (a)(b)(c) Comparison of the reproduced trajectories
of the system depicted by our HOCC method ((a) for additive
noises, (b) for multiplicative ones) with that of the original
Lorentz system with all noise lifted ((c)). Agreement is strik-
ing since only the stongly noisy data of Fig.1 are used for
dynamics reconstruction, and the data in Fig.1(a)(b) are so
different form those in Fig.1(c)(d). (d)(e) Reproduced tra-
jectories by models depicted by HOCC with corresponding
additive ((d)) and multiplicative ((e)) noises. The data in
Figs.1 are generated convincingly, justifying that the HOCC
method is effective for depicting both network structures and
noise statistics.
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equations (f only, without noise) and compare the trajec-
tories (Fig.3(a)(b)) with the original one with noise lifted
(Fig.3(c)). It is found that both reconstructed patterns
match the original one well, though the two measured
trajectories of Figs.1(a)(b) and (c)(d) differ from each
other considerably due to different multiplicative factors
of noises. This coincidence justifies well the effectiveness
of HOCC method. In Figs.3(d)(e) we produce variable
data by simulating the reconstructed networks with de-
rived noises of the computed multiplicative factors. The
features of the noisy data are reconstructed perfectly as
well.
Next we infer a network with much higher dimension

and more complicated nonlinearities

ẋi(t) = Φi(xi) +
N
∑

j=1

Wijxj + Γi(t), i, j = 1, 2, · · · , N

(18)
Eq.(18) is very common in practical systems where local
dynamics of each node is strongly nonlinear, and dynamic
structures are diverse for different nodes. On the other
hand interactions between nodes, the external facts for
each node, are approximated to be linear. Expanding
Φi(xi) by power series to a power xmi

i

Φi(xi) =

mi+1
∑

µ=1

αi,µx
µ−1

i

we have

fi(x) =

Mi
∑

µ=1

Ai,µYi,µ

=
N
∑

µ=1

Ai,µxµ +Ai,N+1 +

Mi
∑

µ=N+2

Ai,µx
µ−N
i (19)

Then we can represent both unknown nonlinear structure
and linear interaction topology unified as

Ai = (Ai,1, Ai,2, · · · , Ai,i−1, Ai,i, Ai,i+1, · · · ,

Ai,N , Ai,N+1, Ai,N+2, · · · , Ai,Mi
) (20)

and define basis vector as

Yi(t) = (Y1(t), Y2(t), · · · , YMi
(t)) (21)

= (x1, x2, · · · , xN , 1, x2
i , · · · , x

mi

i )

Choosing correlator vector Zi as Zi = Yi, we can specify
vector Bi and matrix Ĉi as

Bi,µ = < ẋi(t)Yi,µ(t− τ) > (22)

Ĉi,µν = < Yi,µ(t)Yi,ν(t− τ) >

Inserting Eq.(22) into Eq.(11) we can solve all the un-
known elements, including all the nonlinear and linear
facts.
In Fig.4 we investigate a particular case with local dy-

namics

Φi(xi) = aixi − bix
3
i + cie

−xi (23)
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FIG. 4. Depiction of nonlinear structures and linking topol-
ogy of network in Eq.(18). Parameters are taken with uni-
form distributions in the intervals ai ∈ (−1, 1), bi ∈ (2, 5)
and ci ∈ (0, 2) and additive noises Qij ∈ δij(0.5, 1). The
interaction intensities are Wij (i, j = 1, 2, · · · , N) ∈ (0.5, 1)
with 10% probability for positive ones; ∈ (−1,−0.5) also with
10% for negative ones; and Wij = 0 otherwise. Power bases
are organized from low-order to higher-order ones. (a) Re-
sults of HOCC for mi = 2 plotted vs. those for mi = 1. The
dots are considerably away from the diagonal line, represent-
ing incorrect truncation at mi = 1. (b) The same as (a) with
results of mi = 3 plotted with those of mi = 2. mi = 2 trun-
cation is not suitable either. (c) Results for mi = 4 plotted
v.s. those for mi = 3. Both results coincide with each other
fairly well, that self-consistently confirms the correctness of
the HOCC method for sufficiently large mi ≥ 3. (d) The
results of HOCC for mi = 3 plotted vs. the actual values
of Aiµ. With suitable nonlinearity considered, all nonlinear
and interacting structures are depicted correctly with certain
fluctuations.

with ai,bi,ci uniformly distributed as ai ∈ (−1, 1),bi ∈
(2, 5),ci ∈ (0, 2). The network has positive mutual in-
teraction Wij , i, j = 1, 2, · · · , N , ∈ (0.5, 1) with 10%
probability, negative one ∈ (−1,−0.5) also with 10%,
and Wij = 0 otherwise. Simple additive white noises are
used for this model:

Qij ∈ δij(0.5, 1) (24)

with uniform probability distribution. We consider dif-
ferent truncations mi’s. It is obvious that the depictions
have large errors for too small mi in (Figs.4(a)(b)) and
they can be quickly improved by increasing mi, and sat-
urated at sufficiently large mi (Figs.4(c)(d), mi = 3 is
fairly good approximation in our case). The approach
of self-consistent truncation is stable and convincingly
confirmed though the actual expansion of Eq.(23) has
nonzero coefficients for infinitely large mi’s.

IV. NONLINEAR NETWORK DEPICTION BY
USING DIFFERENT BASIS VECTORS

For inferring linear networks, the basis vectors can be
simply chosen as output variables Y = (x1, x2, · · · , xN ).
To depict nonlinear networks, the ways to choose ba-
sis vectors become diverse. In Eqs.(17) and (21) power
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expansions are used for representing nonlinear functions.
Different types of basis vectors can be used, depending on
the nature of data and property of nonlinear dynamics.
In many practical cases the inverse computations can be
much more simplified by selecting suitable basis vectors.
Let us consider a network of coupled Kuramoto model
[29] which has been extensively studied for describing os-
cillatory complex systems.

θ̇i = wi +Φi(θi) +
N
∑

j 6=i

Ψij(θj − θi) + Γi(t) (25)

θi + 2πk = θi, k = ±1,±2, · · · ,±p, · · · , i = 1, 2, · · · , N

where θis, i = 1, 2, · · · , N , represent phase angles of os-
cillators, and all Φi(θi), Ψij(φ) are unknown nonlinear
functions with topology

Φi(θi + 2πk) = Φi(θi) (26)

Ψij(φ+ 2πk) = Ψij(φ)

It is not convenient to approximate functions Eq.(26) by
power expansions while we can conveniently do it by us-
ing Fourier basis vectors. Expanding Φi, Ψij as

Φi(θi) =

mi
∑

k=1

[αi,k sin(kθi) + α′
i,k cos(kθi)] (27)

Ψij(θj − θi) =

mi
∑

k=1

[βij,k sin(k(θj − θi)) +

β′
ij,k cos(k(θj − θi))]

we can then define basis vector as

Y T
i = (1, sin(θ1 − θi), cos(θ1 − θi), sin(2(θ1 − θi)),

cos(2(θ1 − θi)), · · · , sin(mi(θ1 − θi)),

cos(mi(θ1 − θi)), sin(θ2 − θi), cos(θ2 − θi),

· · · , sin(mi(θ2 − θi)), cos(mi(θ2 − θi)), · · · ,

sin(θi−1 − θi), cos(θi−1 − θi), · · · ,

sin(θi), cos(θi), · · · , sin(miθi), cos(miθi),

sin(θi+1 − θi), · · · , sin(θN − θi), cos(θN − θi),

· · · , sin(mi(θN − θi)), cos(mi(θN − θi))) (28a)

and the corresponding unknown coefficient vector as

Ai = (Ai,1, Ai,2, · · · , Ai,Mi
), Mi = 2miN + 1 (28b)

The corellator vector Zi can be simply defined as

Zi(t) = Yi(t) (28c)

Inserting Eq.(28a) for Y (t) and Eq.(28c) for Z(t−τ) (0<
τ ≪1) into Eq.(11), we can specify all elements of vector

Bi and matrix Ĉi, and explicitly infer all the nonlinear
structures and interaction links of targeted vector Ai in
Eq.(28b). The computational formulism is theoretically
closed.

FIG. 5. Inferences of oscillatory network Eq.(25) by using
Fourier basis set. N = 10, and other parameters are uni-
formly distributed on Ai,µ∈(-1,1)(µ ≥ 2), Ai,1 ∈(1,2) and
all the fourier components of mi ≥ 4 are zero. Multiplicative
noises Eq.(30) are used with aij , bij,k ∈ (0, 1). Truncations are
made from low-order harmonics to higher-order ones. (a)(b)
The same as Fig.2(a) with phase dynamics Eq.(25) consid-
ered, and the results of mi = 2 plotted v.s. mi = 1 (a);
mi = 3 v.s. mi = 2 (b). Without high-order harmonics,
many plots distribute away from the diagonal lines. (c) Re-
sults of mi = 4 plotted v.s. those of mi = 3. All dots are dis-
tributed around the diagonal line, indicating self-consistently
the suitable truncation at mi = 3. (d) The same as Fig.2(c)
with Eq.(25) computed. All depicted results at mi = 3 coin-
cide with those of the actual Ai,µ. (e) The same as Fig.2(d)
with Eq.(30) noises computed. The depicted results of mul-
tiplicative noises agree rather well with actual ones. HOCC
method works perfectly for depicting both networks of phase
dynamics and noise statistics, and the self-consistent checking
works.

We take a network of N = 10 as an example with

Φi(θi) =

3
∑

k=1

[αi,k sin(kθi) + α′
i,k cos(kθi)]

Ψij(θj − θi) =

3
∑

k=1

[βij,k sin(k(θj − θi)) +

β′
ij,k cos(k(θj − θi))], i 6= j (29)

where all αi,k, α′
i,k, βij,k, β′

ij,k, k = 1, 2, 3 uniformly

distribute in the interval (−1, 1). Multiplicative noises
Γi(t)s are simply chose as

Qij(x) = [aij +

2
∑

k=1

bij,k(sin(kθi) + cos(kθi))]
2δij (30)

In Fig.5(a) the results of inference for mi = 1 in which
all existing high-order harmonic terms are not consid-
ered, are compared with those for mi = 2. The results
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are poor. With mi increased, the results in Fig.5(b) are
improved. In Fig.5(c) we compare the depiction results
for mi = 3 and mi = 4, and find that all results ofmi = 3
are almost not changed in the case of mi = 4, indicat-
ing the correctness of the former truncation. With the
changes from Fig.5(a) to 5(b) to 5(c) we can surely con-
clude that the results with truncations of mi = 1 and 2
are not correct while the correctness of mi = 3 is jus-
tified in a self-consistent way. In Fig.5(d) the results
of inference of mi = 3 are compared with actual ones.
With all harmonic terms being taken into account, we
achieve rather precise depiction with certain fluctuations
caused by noise and finite measurement frequency and fi-
nite data samples. Moreover, by applying the approaches
Eqs.(12)(13) we can explore the noise statistical struc-
tures and reveal multiplicative factors rather accurately
(Fig.5(e))

V. DISCUSSION

In conclusion we have studied the inverse problem of
noise-driven nonlinear dynamic networks with measur-
able data of node variables in networks only. A high-
order correlation computation (HOCC) method is pro-
posed to unifiedly treat nonlinear dynamic structures,
coupling topology and statistics of additive and multi-
plicative noises in networks. This method treats inverse
problems by jointly considering three facts: choosing
suitable basis and correlator vectors to expand nonlinear
terms of networks; adjusting correlation time difference
to treat the noise effects; and applying high-order corre-
lations to derive linear matrix equations to explore net-
work structures, topology and noise correlation matrics.
the HOCC algorithm has been theoretically derived, and
its predictions are well confirmed by numerical results.
In biological, social and other crossing fields, we have

extremely rich and huge amount of data available while
often understand much less about the underlying mech-
anisms, the structures and dynamics producing these
data. Nonlinear dynamics and mutual node interactions
often cooperate to yield various functions, and noise of-
ten play essential roles in biological and social processes.
Now with the development of the inverse problem re-
search, it is hopefully expected that we can explore the
hidden mechanisms, find the underlying principles and
reveal various key parameters by analyzing measurable
data outputed from networks. These capabilities create a
novel and significant perspective for understanding, mod-
ulating and controlling realistic network processes.

Appendix: Derivation of Eq.(13)(12)

Equations (13) and (12) can be derived as follows:

Sij(x, t) = ẋi(t)(xj(t+ τ)− xj(t− τ)) (A.1)

= (fi(x, t) + Γi(t))

∫ t+τ

t−τ

(fj(x, t
′) + Γj(t

′))dt′

Its expectation on noise realizations reads

< Sij(x, t) > ≈ 2fi(x, t)fj(x, t)τ + 2 < Γi(t) > fj(x, t)

+fi(x, t)

∫ t+τ

t−τ

< Γj(t
′) > dt′

+

∫ t+τ

t−τ

< Γi(t)Γj(t
′) > dt′ (A.2)

Since < Γi(t) >=< Γj(t) >=0 and τ ≪ 1 we have

< Sij(x, t) > ≈

∫ t+τ

t−τ

Qij(x(t))δ(t − t′)dt′

= Qij(x(t)) (A.3)

considering the expansion of Qij(x) on qij(x) bases

Qij(x) =

Mij
∑

µ=1

Dij,µqij,µ(x) (A.4)

and multiplying the two sides of Eq.(A.3) by basis
q′ij,µ(x(t− τ)) and making time average, we arrive at

∆Bij = DijĜij (A.5)

with ∆Bij being vector having elements

∆Bij,ν = < ẋi(t)(xj(t+ τ) − xj(t− τ))q′ij,ν (x(t− τ)) >

=
1

L− 2p

L−p
∑

k=p+1

ẋi(tk)(xj(tk+p)− xj(tk−p)) ·

q′ij,ν(x(tk−p)) (A.6)

ν = 1, 2, · · · ,Mij

and Ĝij being matrix with elements

Gij,µν =
1

L− p

L
∑

k=1+p

qij,µ(x(tk))q
′
ij,ν(x(tk−p)) (A.7)

Finally we obtain

Dij = ∆BijĜ
−1
ij (A.8)

where all elements of vector ∆Bij and maxtrix Ĝij can
be computed from available data and well defined bases
qij,µ,q

′
ij,ν and vector Dij can be depicted by Eq.(A.8).
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