arXiv:1605.05879v1 [cond-mat.mes-hall] 19 May 2016

Magneto-Optical Activity in High Index Dielectric
Nanoantennas

N. de Sousa'?, L. S. Froufe-Pérez>, J. J. Saenz>*", and A. Garcia-Martin’>*

'Departamento de Fisica de la Materia Condensada, Condensed Matter Physics Center (IFIMAC) and Instituto
“Nicolas Cabrera”, Universidad Auténoma de Madrid, 28049, Madrid, Spain.

2Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, Donostia-San Sebastian 20018, Spain.
3Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland.
4IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.

>IMM - Instituto de Microelectrdnica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, Tres Cantos, E-28760 Madrid,
Spain.

“juanjo.saenz@dipc.org

*a.garcia.martin@csic.es

ABSTRACT

The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric
nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion
in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the
system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant
dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with
little effect of the electric ones.

Introduction

The ability to externally control the propagation of light in the visible and near-infrared domain by means nanostructured
materials has been a matter of intense research in the last decade. This interest is explained by the promising potential
applications in different areas of technology, like telecommunications'? or sensing.>* A way to modify the scattered light,
such as intensity, directionality, phase and polarization is by using small metallic particles compared with the wavelength. The
interaction of light with these particles, usually referred as nanoantennas, can be moulded by changing their characteristics
such as size, material or shape.’>~!° This is driven by the possibility to excite localized surface plasmons and the subsequent
strong near field interactions allow the fabrication of systems with high directionality'' !> or obtain configurations where the
electromagnetic field is confined in small volumes.'?

In the quest to exert certain degree of control of the plasmon properties using external parameters, the so-called active plasmonics,
some developments have been made using different “controlling agents”. Electric fields,'* temperature! or electromagnetic
waves'® have been used as such external agents. An interesting alternative is the use of an external magnetic field.'”-'® In
this case, the reverse effect is also very interesting, namely, to use the plasmon resonance to enhance the magneto-optical
response.'*! An important aspect in this case is that the internal architecture of the plasmonic elements can largely modify
the way that the enhancement is realized,”>* since the actual distribution of the electromagnetic field in the material plays a
crucial role.?>?

In the last years the concept of optical magnetic resonances in the visible domain has been put forward for its evident interest
in terms of scattering efficiency,’® and magneto-optical response,?’ this last based on the Babinet principle for plasmonic
entities.?%2?

On the other hand, dielectric materials present themselves as a particularly interesting alternative to resonant dipolar-like
scattering elements. High refractive dielectric nanoparticles were shown to present both strong electric and magnetic dipolar
resonances 3! exhibiting weak dissipation in the visible and practically lossless in telecomm and near-infrared frequencies.
Linked to these properties, an increasing interest in the use of high index dielectric nanoparticles as optical antennas has
emerged.’>

In this paper we address the magneto-optical effect in the context of these high index dielectric nano-antennas. To illustrate
the effect we will consider a practical case where the antenna is a silicon nanosphere with non-negligible off-diagonal elements
in the dielectric tensor. We show that, as expected, the magneto-optical effect is controlled by the internal resonances of the
nanosphere, but, contrary to the case of metals where electric dipoles dominate, the magnetic resonances are the ones that



dominate the spectral dependence of the magneto-optical response, having the electric dipolar resonance a small, even tiny,
influence. Additionally, we establish a clear correlation of the spectral magneto-optical response with that of the spatial field
profile within the nanosphere that is, in turn, linked to the nature of each resonance.

Results and discussion
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Figure 1. (a) Extinction efficiency of the Silicon nanoparticle with 230nm of radius, without external magnetic field
(continuous line) and with it (symbols); (b) and (c) spectral dependence of the x and y component of the electromagnetic field
in the backscattering direction; (d) and (e) spectral dependence of the x and y component of the electromagnetic field in the
forward direction; all fields in (b)-(e) have been normalized to the maximum value, occurring for Ef’rw. (f) Integral of the
electromagnetic field intensity inside the sphere, normalized to the sphere volume. (g) sketch of the spherical nanoantenna with
a MO core depicting the incoming field and the orientation of the external static magnetic field.

Our model system will be a high index, non-absorbing, dielectric nanoantenna consisting of a spherical particle with radius
230nm made of Silicon (n=3.5). This nanoantenna is further illuminated by a plane wave (with intensity Ey) impinging along
the z—axis and with its polarization aligned along the x—direction. The Silicon particle is assumed to be a core-shell where the
core is uniformly doped within a MO material [see sketch in Fig. 1]. In the presence of a static magnetic field along z (i.e. in
parallel of the incident electromagnetic plane wave) the dielectric permittivity of the, otherwise isotropic, material becomes a
non-diagonal tensor of the form

g gy(r) 0
€= | —g&y(r) & 0 ], (D
0 0 &4

where €, = n*> = 12.25 and &, (r) = iQg m,(r), which is proportional to the magnetization along z, ., accounts for the
nonuniform distribution of magnetic impurities in the otherwise homogeneous Si sphere. For simplicity we will assume a
lossless response with &, (r) ~ 0.1 i, a value that is easily achievable using dielectric MO active materials such as garnets [The
permittivity tensor is then Hermitian, i.e. € = €'].

In order to obtain its electromagnetic response of the nanoantenna to the incident field, we will use an extended discrete
dipole approximation (DDA), where the particle is divided in .#" = 4224 elements with identical volume. The explicit
expressions that allow calculating the electric field at any point in space, as well as the extinction, absorption, and scattering
cross sections can be found in the Methods Section [Egs. (12)-(18)].
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In Fig. 1(a) we show the Extinction Efficiency (extinction cross section normalized to the geometrical cross section) of our
model system as a function of the wavelength of the impinging radiation. It displays the typical peaked structure corresponding
to the most fundamental excitations: magnetic dipole (A /2 1625nm), electric dipole (A &~ 1250nm) and magnetic quadrupole
(A ~ 1100nm).?" In the same figure we present the scattering cross section when a static magnetic field is applied in a way such
that the permittivity tensor is MO active and homogeneous affecting equally the whole sphere (i.e. all discretization elements
present a dielectric tensor as in 1). As it can be seen, and as it is commonly the case in magneto-optical effects in the visible
and near-IR part of the electromagnetic spectrum, the optical properties, in this case the cross sections, do not experiment
a noticeable modification. However, the presence of the non-diagonal (magneto-optical) elements in the dielectric tensor
implies that the polarizability of the sphere is also non-diagonal inducing a polarization conversion.>>?* From the original
incoming x-polarized wave E\, the back-reflected or transmitted wave will have a small, MO-induced y-component E,. This
effect is commonly known as the Polar Kerr effect, for reflected waves, or Polar Faraday effect for transmitted ones. Thus
in Figs. 1(b), 1(c) we present the spectral dependence of the x and y components of the electromagnetic (EM) field in the
backscattered direction. E, presents the distinctive marks of the fundamental excitations (magnetic quadrupole and electric and
magnetic dipoles) together with a zero-field point at A ~ 1775nm. This point corresponds to the first Kerker condition, where
both electric and magnetic dipolar resonances scatter coherently, leading to a zero-backward field intensity in the radiated
power.?%33 E,, however, does not follow that principle and displays only two well defined peaks, spectrally located at the
position of the magnetic dipole and magnetic quadrupole, with a very weak shoulder the position of the electric dipole. This
fact is rather striking, since the excitation of electric dipoles is the basis of the extensively addressed enhancement of the
MO activity in metallic magnetoplasmonic systems. Similarly, in Figs. 1(d) and 1(e) the spectral dependence of the x and y
components of the EM field in the forward direction is shown. As it can be seen, E, contains basically the same information as
the cross section, with well defined peaks at the fundamental excitations, and preserving the same relative intensities [Notice
that from the Optical Theorem, the imaginary part of the amplitude of the forward wave is proportional to the extinction cross
section]. On the other hand, Ey, is very similar to the that in the backward direction. In the context of magneto-optical activity in
resonant systems, it has been pointed out that the polarization conversion can be linked to the amount of electromagnetic field
probing the magneto-optical material in the system.?>2 Thus, in Fig. 1(f), we present the integral of the EM field Intensity
(EM; = [ |E(r)/Eo|>d*r) inside the sphere, normalized to the sphere volume. As it can readily be seen, the integration reveal
only two clear peaks in the spectrum, in almost perfect resemblance of the converted component of the backscattered and/or
forward far fields.

To verify this assertion, we present in Fig. 2 the profiles of the EM field norm (|E(r)/Ey|) inside the sphere in the three
principal symmetry planes XY = (x,y,z=0), XZ = (x,y =0,z) and YZ = (x = 0,y,z) for the frequencies corresponding to
the three resonant modes. As it can be seen the weakest contribution comes from the region where electric dipole is excited,
whereas the strongest is from that where the excited mode is the magnetic quadrupole. This fact accurately coincides with the
spectral distribution of the polarization conversion presented in Figs. 1(c) and (e), and the integrated intensity within the sphere
in Fig. 1(f). Moreover, the spatial distribution of the intensities points to a higher localization towards the center of the sphere
for the case of the electric dipole, being the magnetic dipole basically absent at the sphere center. The case of the quadrupole is
more complex, since being weaker at the center, the field intensity is still larger than that of the electric dipole.

Let us now consider core @shell structures for the MO activity, i.e. the MO activity is only located within a central region
of the sphere, while keeping the rest non MO active. For small radii of the MO core, the contribution of the electric dipole
would be high, competing with that of the magnetic quadrupole. As the core radius increases, this contribution loses relative
weight with respect to the magnetic resonances, which will dominate for bigger radii. For the magnetic dipole the situation
should be close to complementary to that of the electric dipole, when the core is small there should be a very weak contribution
that increases as the radius of the core grows. We also expect that the strongest contribution will always be from the from the
quadrupole irrespective of the radius of the core, but with varying relative intensities.

This fact is nicely displayed in Fig. 3(a) where we present the polarization conversion (|E, /Eo|), normalized to the amount
of MO material for a better view, as a function of the core radius and of the wavelength. As the field profiles of the resonances
indicate, for small core radii the largest contribution is spectrally localized at the region where the magnetic quadrupole and
electric dipole are excited, being basically non-existent in the region of the magnetic dipole. As the core radius increases the
relative contribution of the electric dipole decreases, whereas that of the magnetic resonances increases, being the magnetic
quadrupole dominant irrespective of the value of the core radius. Figs. 3(b)-(e) present the same information for selected radii,
displaying in this case the bare, not normalized, intensities. The overall polarization increases as the amount of MO material
does, whereas the relative weight is that inferred from the field profiles inside the nanoantenna.

Finally, to further verify that the local field intensity in the interior of the sphere actually governs, if not fully, the overall
polarization conversion, we present in Fig. 4 the integral of the EM intensity in the core region (normalized to its volume) as a
function of core radius and wavelength, showing a remarkable agreement with the actual polarization conversion.

In summary we have deeply analyzed the polarization conversion capabilities of high-index, non-absorbing, core-shell
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dielectric nanoantennas. We have demonstrated that, in analogy with their metallic, plasmonic, counterparts, the polarization
conversion is controlled by the internal resonances of the nanosphere. However, in strong contrast with plasmon nanoparticles,
the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the
electric ones. We have also pointed out that this behavior arises from the particular spatial field profile within the nanosphere
that is, in turn, linked to the nature of each resonance.

Methods

Fields and polarisation conversion results were computed using an extended discrete dipole approximation (DDA) method**—?
for magneto-optical scattering calculations.*>** We consider a non-homogeneous finite target characterised by a dielectric
permittivity tensor £(r) embedded in an otherwise homogeneous media with g, = n,zl (real). In absence of free currents, the
total electric field is given by the solution of the integral equation

E(r) = Eo(r) + K / G(r,v) [e(r') — &1 E()dr @)
14
where I is the unit tensor and E(r) is the solution of the Maxwell equations in absence of the target. We define G(r,ry) as the

Green tensor connecting (through the homogeneous media) an electric-dipole source p at a position ry to the electric field at a
position r by the relation®

k2
E(r>dipolc = @G(RYO)P 3)
[p.V]V] eitlr—rol
= 4
G(r,ro)p {p+ el e 4)

where k = /€, ®/c, ko = /c. Following Lakhtakia’s*® theoretical discussion, the DDA is equivalent to a discretised version
of the integral formulation [Eq. (2)] of the Maxwell equations. The volume of the object, V is considered as the union of
non-overlapping, simply connected subregions of volume V,, (n =1,...,N) with V =Y, V,,. Each subregion V,, is homogeneous
and so small that the electric field can be considered as approximately constant. Assuming that r, represents a point centred in
volume V), (inside the object), Eq. (2) can be approximated as

2 N

E(r) = Eo(r) + "—gh Y Ger)p . = o(£(r) — EDVLE(r,). s)
n=1

where, G(r,r,) is the Green tensor averaged over V,,,

12 {kZG(r, ) if rev, ©

KG(r,r)=— [ G(r,r)d’ ~
(rr:) Vi, Jv, (r,r) —L,/V, +ik’Im {G(r,,1,)} = —L,/V, +ik*/(6m)T if r=r,

where L,, is the electrostatic depolarisation dyadic*®#’ that depends on the shape of the volume element V,,. For a Rectangular
parallelepiped of volume V,, = L,DCLnyan,47

Vi

1
1 W
Lt [+ 12, + 13,

From Egs. (5) and (6) it is easy to find the self-consistent coupled equations for the internal field, E(r,),

3
S YLi=1 )
i=1

2
L. = 5,~Earctan

e(ry) — &l

3 N
sl {Ieh + <Ln — iV”g;;) [&(rn) — ehl]} E(r,) = Eo(r,) + & Z G(r,,ry) VuE(ry). ©))

h m#n €n
We can identify the left hand side of equation (8) as the field, Eexc (1), exciting the (dipolar) n-volume element. If we now

define the polarizability tensor, &, as

a, ©))

Il
—N

R

31

S
\

CJ\.»-
Sie
——
|

a0 = (e(r)—el)[(Er)—al)+L, e L'V, (10)
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[a,o is the quasistatic polarizability tensor], Eq. (8) can be rewritten as a set of couple dipole equations, for the exciting fields
at each element

N
Eexc(rn) = EO(rn) +k2 Z G(rnarm)am Eexc(rm)- (11)
m#n

Notice that in our approach, the so-called radiative corrections*®~" [related to the imaginary part of the Green Tensor] arise in
a natural way and, as a consequence, the DDA results are found to be fully consistent with the Optical Theorem as discussed
below. For cubic volume elements, like for spheres, the depolarization tensor is diagonal L, = I/3 and our approach is
equivalent to previous extended DDA .**

The numerical solution of the set of 3N coupled equations (11) give the set of “exciting” fields {Eexc(r,);n=1,...,N}
from which we get

P = €&,0, Eexc(r,) (12)
1
B(ra) = oy (€m)—al) 'p. (13)

and, assuming plane wave illumination, Ey(r) = Eoe® T, the scattering, Ogcatt, absorption, Oy, and total extinction, Ogy¢, CIOSS
sections can be shown to be given by

k N
o, = — Im{E{}(r,).p, 14
ext 808h|E0|2 n;l m{ O(r ) p } ( )
k3 N
(o] —_— *Im{G g 15
scatt (808]1)2‘E0|2 mmZ:lpn m{ (l'ml'n)}pm (15)
Oabs =  Oext — Oscatt (16)
N
= Im {Ej( K Im {G( } 17
(20en) ‘E0| ; { m{Ej(r,).p.} — Z P, Im{G(r,, 1)} Pm (17)
k -1
= Ky { £ [a* } } 18
80£h|E0|2ng'1 m4 p, 0 | Pn (18)

For a lossless material, the dielectric tensor must be Hermitian £(r,) = €(r,) and so it is the inverse of the quasistatic

polarizability tensor [azo_l] [Eq. (10)], which, from Eq. (18), leads do G,ps = 0.
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Figure 2. Spatial profiles of the EM field norm (|E(r)/Ey|) inside the sphere in the three principal planes (x,y,z = 0),
(x,y =0,z) and (x = 0,y,z) for frequencies corresponding to the three resonant modes, magnetic quadrupole (A 2z 1100nm),
electric dipole (A ~ 1250nm), magnetic dipole (A ~ 1625nm).
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Figure 3. (a) Polarization conversion (|Ey/Ey|), normalized to the amount of MO material (volume of the core), as a function
of both the core radius and the wavelength. Polarization conversion for different core radii: 230nm (b), 184nm (c), 115nm (d)
and 46nm (e) showing the evolution of the contribution of the main resonances.
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Figure 4. Integral of the EM intensity (normalized to the volume) in the core region as a function of core radius and
wavelength.
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